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Abstract

entropart is a package for R designed to estimate diversity based on HCDT entropy
or similarity-based entropy. It allows calculating neutral, phylogenetic and functional
entropy and diversity, partitioning them and correcting them for estimation bias.
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1. Introduction

Diversity measurement can be done through a quite rigorous framework based on entropy, i.e.
the amount of uncertainty calculated from the frequency distribution of a community (Patil
and Taillie 1982; Jost 2006; Marcon, Scotti, Hérault, Rossi, and Lang 2014). Tsallis entropy,
also known as HCDT entropy (Havrda and Charvát 1967; Daróczy 1970; Tsallis 1988), is of
particular interest (Jost 2006; Marcon et al. 2014) namely because it includes the number
of species, Shannon (1948) and Simpson (1949) indices of diversity into a single framework.
Interpretation of entropy is not straightforward but one can easily transform into Hill numbers
(Hill 1973) which have many desirable properties (Jost 2007): mainly, they are the number
of equally-frequent species that would give the same level of diversity as the data.

Marcon and Hérault (2014) generalized the duality of entropy and diversity, deriving the
relation between phylogenetic or functional diversity (Chao, Chiu, and Jost 2010) and phy-
logenetic or functional entropy (we will write phylodiversity and phyloentropy for short), as
introduced by Pavoine, Love, and Bonsall (2009). Special cases are the well-known PD (Faith
1992) and FD (Petchey and Gaston 2002) indices and Rao’s (1982) quadratic entropy. The
same relation holds between Ricotta and Szeidl entropy of a community (Ricotta and Szeidl
2006) and similarity-based diversity (Leinster and Cobbold 2012).

The entropart package for R (R Development Core Team 2014) enables calculation of all these
measures of diversity and entropy and their partitioning.

Diversity partitioning means that, in a given area, the γ diversity Dγ of all individuals found
may be split into within (α diversity, Dα) and between (β diversity, Dβ) local assemblages. α
diversity reflects the diversity of individuals in local assemblages whereas β diversity reflects
the diversity of the local assemblages. Marcon et al. (2014) derived the decomposition of
Tsallis γ entropy into its α and β components, generalized to phyloentropy by Marcon and
Hérault (2014).
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Estimators of diversity are biased because of unseen species and also because they are not
linear functions of probabilities (Marcon et al. 2014). α and γ diversities are underestimated
by naive estimators (Chao and Shen 2003; Dauby and Hardy 2012). β diversity is severely
biased too when sampling is not sufficient (Beck, Holloway, and Schwanghart 2013). Bias-
corrected estimators of phylodiversity have been developed by Marcon and Hérault (2014).
The package includes them all.

The successive sections of this paper presents the package features, illustrated by worked
examples based on the data included in the package.

2. Package organization

2.1. Data

Most functions of the package calculate entropy or diversity of a community or of a meta-
community. Community functions accept a vector of probabilities or of abundances for species
data. Each element of the vector contains the probability or the number of occurrences
of a species in a given community. Meta-community functions require a particular data
organization in a MetaCommunity object described here.

A MetaCommunity is basically a list. Its main components are $Nsi, a matrix containing
the species abundances whose lines are species, columns are communities and $Wi, a vec-
tor containing community weights. Creating a MetaCommunity object is the purpose of the
MetaCommunity function. Arguments are a dataframe containing the number of individuals
per species (lines) in each community (columns), and a vector containing the community
weights. The following example creates a MetaCommunity made of three communities of un-
equal weights with 4 species. The weighted average probabilities of occurrence of species and
the total number of individuals define the meta-community as the assemblage of communities.

R> library(entropart)

R> (df <- data.frame(C1 = c(10, 10, 10, 10), C2 = c(0, 20,

+ 35, 5), C3 = c(25, 15, 0, 2), row.names = c("sp1",

+ "sp2", "sp3", "sp4")))

C1 C2 C3

sp1 10 0 25

sp2 10 20 15

sp3 10 35 0

sp4 10 5 2

R> w <- c(1, 2, 1)

R> MC <- MetaCommunity(Abundances = df, Weights = w)

A meta-community is partitioned into several local communities (indexed by i = 1, 2, . . . , I).
ni individuals are sampled in community i. Let s = 1, 2, . . . , S denote the species that
compose the meta-community, nsi the number of individuals of species s sampled in the local
community i, ns =

∑
i nsi the total number of individuals of species s, n =

∑
s

∑
i nsi the
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Figure 1. Plot of a MetaCommunity. Communities (named C1, C2 ad C3) are represented
in the left part of the figure, the metacommunity to the right. Bar widths are proportional
to community weights. Species abundances are represented vertically (4 species are present
in the meta-community, only 3 of them in communities C2 and C3.

total number of sampled individuals. Within each community i, the probability psi for an
individual to belong to species s is estimated by p̂si = nsi/ni. The same probability for
the meta-community is ps. Communities have a weight wi, satisfying ps =

∑
iwipsi. The

commonly-used wi = ni/n is a possible weight, but the weighting may be arbitrary (e.g. the
sampled areas). The components of a MetaCommunity object satisfy these conditions: $Ps for
example contains the probability of occurrence of each species in the meta-community:

R> MC$Ps

sp1 sp2 sp3 sp4

0.2113095 0.3184524 0.3541667 0.1160714

A MetaCommunity can be summarized and plotted (Figure 1).

The package contains an example dataset containing the inventory of two 1-ha tropical forest
plots in Paracou, French Guiana (Marcon, Hérault, Baraloto, and Lang 2012):

R> data(Paracou618)

R> summary(Paracou618.MC)

Meta-community (class 'MetaCommunity') made of 1124 individuals in 2

communities and 425 species.

Its sample coverage is 0.92266748426447

Community weights are:
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[1] 0.5720641 0.4279359

Community sample numbers of individuals are:

P006 P018

643 481

Community sample coverages are:

P006 P018

0.8943859 0.8463782

Paracou618.MC is a meta-community made of two communities named “P006” and “P018”,
containing 425 species (their name is Family Genus Species, abbreviated to 4 characters).
The values of the abundance matrix are the number of individuals of each species in each
community. Sample coverage will be explained later.

The dataset also contains a taxonomy and a functional tree. Paracou618.Taxonomy is an
object of class phylog, defined in ade4 (Dray and Dufour 2007), namely a phylogenetic tree.
This example data is only a taxonomy, containing family, genus and species levels for the sake
of simplicity. Paracou618.Functional is an object of class hclust containing a functional
tree based on leaf, height, stem and seed functional traits (Hérault and Honnay 2007; Marcon
and Hérault 2014). The package accepts any ultrametric tree of class phylog or hclust.
Paracou618.dist is the distance matrix (actually a dist object) used to build the functional
tree.

2.2. Utilities

The deformed logarithm formalism (Tsallis 1994) is very convenient to manipulate entropies.
The deformed logarithm of order q is defined as:

lnq x =
x1−q − 1

1− q
(1)

It converges to ln when q → 1, see figure 2.

The inverse function of lnq x is the deformed exponential:

exq = [1 + (1− q)x]
1

1−q (2)

Functions of the packages are lnq(x, q) and expq(x, q).

3. Neutral diversity

3.1. Community functions

HCDT entropy

Neutral HCDT entropy of order q of a community is defined as:

qH =
1−

∑
s p

q
s

q − 1
= −

∑
s

pqs lnq ps (3)
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Figure 2. Curves of lnq x for different values of q between 0 and 4 (ln1 x = lnx).

q is the order of diversity (e.g.: 1 for Shannon). Entropy can be calculated by the Tsallis
function. Paracou meta-community entropy of order 1 is:

R> Tsallis(Ps = Paracou618.MC$Ps, q = 1)

[1] 4.736023

For convenience, special cases of entropy of order q have a clear-name function: Richness for
q = 0, Shannon for q = 1, Simpson for q = 2.

R> Shannon(Ps = Paracou618.MC$Ps)

[1] 4.736023

Sample coverage

A useful indicator of sampling quality is the sample coverage (Good 1953; Chao, Lee, and Chen
1988; Zhang and Huang 2007), that is to say the probability for a species of the community
to be observed in the actual sample. It equals the sum of the probability of occurrences of all
observed species. Its historical estimator is (Good 1953):

Ĉ = 1− S1

n
(4)
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S1 is the number of singletons (species observed once) of the sample, and n is its size. The
estimator has been improved by taking into account the whole distribution of species (Zhang
and Huang 2007). The Coverage function calculates it, allowing to choose the estimator
(Zhang and Huang’s by default):

R> Coverage(Ns = Paracou618.MC$Ns)

[1] 0.9220438

The sample coverage cannot be estimated from probability data: abundances are required.

Estimation-bias corrected estimators

Estimation-bias correction is used to improve the estimation of entropy despite unobserved
species. Bias-corrected estimators (often relying on sample coverage) are returned by functions
whose names are prefixed by bc, such as bcTsallis. They are similar to the non-corrected
ones but they use abundance data and propose several bias-correction techniques to select in
the Correction argument. A “Best” correction is calculated by default, detailed in the help
file of each function.

R> bcTsallis(Ns = Paracou618.MC$Ns, q = 1)

[1] 4.898061

The best correction for Tsallis entropy follows Marcon et al. (2014). bcSimpson returns
Lande’s correction (Lande 1996) and bcShannon returns the very efficient correction by Chao,
Wang, and Jost (2013), so their results are different (and more accurate) than those of the
general bcTsallis function.

R> bcShannon(Ns = Paracou618.MC$Ns)

[1] 4.892159

Effective numbers of species

Entropy should be converted into “true diversity” (Jost 2007), i.e. effective number of species
equal to Hill (1973) numbers:

qD =

(∑
s

pqs

) 1
1−q

(5)

This can be done by the deformed exponential function, or using directly the Diversity

or bcDiversity functions (equal to the deformed exponential of order q of Tsallis or
bcTsallis)

R> expq(Simpson(Ps = Paracou618.MC$Ps), q = 2)
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[1] 68.7215

R> Diversity(Ps = Paracou618.MC$Ps, q = 2)

[1] 68.7215

R> expq(bcTsallis(Ns = Paracou618.MC$Ns, q = 2), q = 2)

[1] 73.19676

R> bcDiversity(Ns = Paracou618.MC$Ns, q = 2)

[1] 73.19676

3.2. Meta-community functions

Meta-community functions allow partitioning diversity according to Patil and Taillie’s concept
of diversity of a mixture (Patil and Taillie 1982), i.e. α entropy of a meta-community is defined
as the weighted average of community entropy, following Routledge (1979):

qHα =
∑
i

wi
q
iHα (6)

q
iHα is the entropy of community i:

q
iHα =

1−
∑
s p

q
si

q − 1
= −

∑
s

pqsi lnq psi (7)

Jost’s (2007) definition of α entropy is not supported explicitly in the package since it only
allows partitioning of equally weighted communities. In this particular case, both definitions
are identical.

γ entropy of the meta-community is defined as α entropy of a community. β entropy, the
difference between γ and α, is the generalized Jensen-Shannon divergence between the species
distribution of the meta-community and those of communities (Marcon et al. 2014):

qHβ =qHγ −qHα =
∑
s

pqsi lnq
psi
ps

(8)

β entropy should be transformed into diversity, i.e. an effective number of communities:

qDβ = e

qHβ
1−(q−1)qHα
q (9)

Basic meta-community functions

These values can be estimated by the meta-community functions AlphaEntropy, AlphaDiversity,
BetaEntropy, BetaDiversity. They accept a Metacommunity and an order of diversity q as
arguments, and return an MCentropy or MCdiversity object which can be summarized and
plotted. GammaEntropy and GammaDiversity return a number. Estimation-bias corrections
are applied by default:
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R> e <- AlphaEntropy(Paracou618.MC, q = 1)

R> summary(e)

alpha Entropy of order 1 of MetaCommunity Paracou618.MC

with correction: Best

Entropy of communities:

P006 P018

4.403435 4.673620

Average entropy of the communities:

[1] 4.519057

Diversity Partition of a metacommunity

The DivPart function calculates everything at once. Its arguments are the same but bias
correction is not applied by default. It can be, using the argument Biased = FALSE, and the
correction chosen by the argument Correction. It returns a DivPart object which can be
summarized (entropy is not printed by summary) and plotted:

R> p <- DivPart(q = 1, MC = Paracou618.MC, Biased = FALSE)

R> summary(p)

Diversity partitioning of order 1 of MetaCommunity Paracou618.MC

with correction: Best

Alpha diversity of communities:

P006 P018

81.73115 107.08473

Total alpha diversity of the communities:

[1] 91.74905

Beta diversity of the communities:

[1] 1.460828

Gamma diversity of the metacommunity:

[1] 134.0296

R> p$CommunityAlphaEntropies

P006 P018

4.403435 4.673620

Diversity Estimation of a metacommunity

The DivEst function decomposes diversity and estimates confidence interval of α, β and γ
diversity following Marcon et al. (2012). If the observed species frequencies of a community
are assumed to be a realization of a multinomial distribution: they can be drawn again to
obtain a distribution of entropy.
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Figure 3. Plot of the diversity partition of the meta-community Paracou618.MC. The long
rectangle of height 1 represents γ diversity, equal to 134 effective species. The narrower and
higher rectangle has the same area: its horizontal size is α diversity (92 effective species) and
its height is β diversity (1.46 effective communities).

R> de <- DivEst(q = 1, Paracou618.MC, Biased = FALSE, Correction = "Best",

+ Simulations = 1000)

======================================================================

R> summary(de)

Diversity partitioning of order 1 of MetaCommunity MC

with correction: Best

Alpha diversity of communities:

P006 P018

81.73115 107.08473

Total alpha diversity of the communities:

[1] 91.74905

Beta diversity of the communities:

[1] 1.460828

Gamma diversity of the metacommunity:

[1] 134.0296

Quantiles of simulations (alpha, beta and gamma diviersity):

0% 10% 50% 10% 25% 50% 75%

79.37784 87.02291 91.91839 87.02291 89.24340 91.91839 94.34100

90% 95% 99% 100%

96.60530 97.89250 99.91433 103.85602

0% 10% 50% 10% 25% 50% 75%

1.392408 1.430387 1.461703 1.430387 1.444735 1.461703 1.476975
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Figure 4. Plot of the diversity estimation of the meta-community Paracou618.MC. α, β and
γ diversity probability densities are plotted, with a 95% confidence interval.

90% 95% 99% 100%

1.493036 1.501148 1.520533 1.532889

0% 10% 50% 10% 25% 50% 75%

119.3878 127.7087 134.2285 127.7087 130.6513 134.2285 137.3767

90% 95% 99% 100%

140.4857 142.5028 145.9436 152.1611

The result is a Divest object which can be summarized and plotted (Figure 4).

Diversity Profile of a metacommunity

DivProfile calculates diversity profiles, i.e. the value of diversity against its order (Figure 5).
The result is a DivProfile object which can be summarized and plotted.

R> dp <- DivProfile(seq(0, 2, 0.2), Paracou618.MC, Biased = FALSE)

R> summary(dp)

Diversity profile of MetaCommunity MC

with correction: Best

Diversity against its order:

Order Alpha Diversity Beta Diversity Gamma Diversity

[1,] 0.0 205.84226 1.441996 296.82368

[2,] 0.2 181.63811 1.424471 258.73825

[3,] 0.4 157.35277 1.413780 222.46224



Eric Marcon, Bruno Hérault 11
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Figure 5. Diversity profile of the meta-community Paracou618.MC. Values are the number
of effective species (α and γ diversity) and the effective number of communities (β diversity).
α and γ diversity decrease from q = 0 (number of species) to q = 2 (Simpson diversity) by
construction.

[4,] 0.6 133.77507 1.413903 189.14504

[5,] 0.8 111.70847 1.428705 159.59848

[6,] 1.0 91.74905 1.460828 134.02961

[7,] 1.2 75.51773 1.500587 113.32093

[8,] 1.4 63.95522 1.549024 99.06819

[9,] 1.6 55.37376 1.590012 88.04495

[10,] 1.8 48.97244 1.626123 79.63520

[11,] 2.0 44.21244 1.655569 73.19676

Alternative functions

Beta entropy can also be calculated by a set of functions named after the community func-
tions, such as TsallisBeta, bcTsallisBeta, SimpsonBeta, etc. which require two vectors of
abundances or probabilities instead of a MetaCommunity object: that of the community and
the expected one (usually that of the meta-community). Bias correction is currently limited
to Chao and Shen’s correction. The example below calculates the Shannon β entropy of the
first community of Paracou618 and the meta-community.

R> ShannonBeta(Paracou618.MC$Psi[, 1], Paracou618.MC$Ps)

[1] 0.3499358
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Figure 6. Hypothetical ultrametric tree. (a) The whole tree contains three slices, delimited
by two nodes. The length of slices is Tk. (b) Focus on slice 2. The tree without slice 1 is
reduced to 3 leaves. Frequencies of collapsed species are uk,l. (c) Slice 3 only.

These functions are available for particular uses, when a MetaCommunity is not available or
not convenient to use (e.g. simulations). Meta-community functions are preferred for current
use.

4. Phylogenetic diversity

Phylogenetic or functional diversity generalizes HCDT diversity, considering the divergence
between species (Marcon and Hérault 2014). Here, all species take place in an ultrametric
phylogenetic or functional tree (Figure 6). The tree is cut into slices, delimited by two nodes.
The first slice starts at the bottom of the tree and ends at the first node. In slice k, Lk
leaves are found. The probabilities of occurrence of the species belonging to branches that
were below leaf l in the original tree are summed to give the grouped probability uk,l. HCDT
entropy can be calculated in slice k:

q
kH = −

∑
l

uqk,l lnq uk,l (10)

Then, it is summed over the tree slices. Phyloentropy can be normalized or not. We normalize
it so that it does not depend on the tree height:

qH (T ) =
K∑
k=1

Tk
T
q
kH (11)

Unnormalized values are multiplied by the tree height, such as qPD (T ) (Chao et al. 2010).
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Phyloentropy is calculated as HCDT entropy along the slices of the trees applying possi-
ble estimation-bias corrections, summed, possibly normalized, and finally transformed into
diversity:

qD (T ) = e
qH(T )
q (12)

4.1. Community functions

PhyloEntropy and the estimation-bias-corrected bcPhyloEntropy are the phylogenetic analogs
of Tsallis and bcTsallis. They accept the same arguments plus an ultrametric tree of class
hclust or phylog, and Normalize, a boolean to normalize the tree height to 1 (by default).

Phylogenetic diversity is calculated by PhyloDiversity or bcPhyloDiversity, analogous to
the neutral diversity functions Diversity and bcDiversity.

Results are either a PhyloDiversity or a PhyloEntropy object, which can be plotted (Fig-
ure 7) and summarized.

R> phd <- bcPhyloDiversity(Paracou618.MC$Ns, q = 1, Tree = Paracou618.Taxonomy,

+ Normalize = TRUE)

R> summary(phd)

alpha or gamma phylogenetic or functional diversity of order 1

of distribution Paracou618.MC$Ns

with correction: Best

Phylogenetic or functional diversity was calculated according to the tree

Paracou618.Taxonomy

Diversity is normalized

Diversity equals: 55.13383

The AllenH function is close to PhyloEntropy: it also calculates phyloentropy but the algo-
rithm is that of Allen, Kon, and Bar-Yam (2009) for q = 1 and that of Leinster and Cobbold
(2012) for q 6= 1. It is much faster since it does not require calculating entropy for each
slice of the tree but it does not allow estimation-bias correction. ChaoPD calculates phylo-
diversity according to Chao et al. (2010), with the same advantages and limits compared to
PhyloDiversity.

For convenience, PDFD and Rao functions are provided to calculate unnormalized phyloentropy
of order 0 and 2.

4.2. Meta-community functions

DivPart, DivEst and DivProfile functions return phylogenetic entropy and diversity values
instead of neutral ones if a tree is provided in the arguments.

R> dp <- DivPart(q = 1, Paracou618.MC, Biased = FALSE, Correction = "Best",

+ Tree = Paracou618.Taxonomy)

R> summary(dp)
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Figure 7. Plot of the γ phylodiversity estimation of the meta-community Paracou618.MC.
The effective number of taxa of Shannon diversity is plotted against the distance from the
leaves of the phylogenetic tree. Here, the tree is based on a rough taxonomy, so diversity of
species, genera and families are the three levels of the curve.

Diversity partitioning of order 1 of MetaCommunity Paracou618.MC

with correction: Best

Phylogenetic or functional diversity was calculated according to the tree

Paracou618.Taxonomy

Diversity is normalized

Alpha diversity of communities:

P006 P018

37.22132 51.31045

Total alpha diversity of the communities:

[1] 42.70238

Beta diversity of the communities:

[1] 1.291119

Gamma diversity of the metacommunity:

[1] 55.13383

Other meta-community functions, such as AlphaEntropy behave the same way:

R> summary(BetaEntropy(Paracou618.MC, q = 2, Tree = Paracou618.Taxonomy,

+ Correction = "None", Normalize = FALSE))

beta Entropy of order 2 of MetaCommunity Paracou618.MC

with correction: None
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Phylogenetic or functional entropy was calculated according to the tree

Paracou618.Taxonomy

Entropy is not normalized

Entropy of communities:

P006 P018

0.04117053 0.02325883

Average entropy of the communities:

[1] 0.03350547

Compare with Rao’s divc computed by ade4:

R> library(ade4)

R> divc(as.data.frame(Paracou618.MC$Wi), disc(as.data.frame(Paracou618.MC$Nsi),

+ Paracou618.Taxonomy$Wdist))

diversity

Paracou618.MC$Wi 0.03350547

5. Similarity-based diversity

Leinster and Cobbold (2012) introduced similarity-based diversity of a community qDZ . A
matrix Z describes the similarity between pairs of species, defined between 0 and 1. A
species ordinariness is its average similarity with all species (weighted by species frequencies),
including similarity with itself (equal to 1). Similarity-based diversity is the reciprocal of the
generalized average of order q (Hardy, Littlewood, and Pólya 1952) of the community species
ordinariness.

The Dqz function calculates similarity-based diversity. Its arguments are the vector of prob-
abilities of occurrences of the species, the order of diversity and the similarity matrix Z.

This example calculates the γ diversity of the meta-community Paracou. First, the simi-
larity matrix is calculated from the distance matrix between all pairs of species as 1 minus
normalized dissimilarity.

R> DistanceMatrix <- as.matrix(Paracou618.dist)

R> Z <- 1 - DistanceMatrix/max(DistanceMatrix)

R> Dqz(Paracou618.MC$Ps, q = 2, Z)

[1] 1.472353

If Z is the identity matrix, similarity-based diversity equals HCDT diversity:

R> Dqz(Paracou618.MC$Ps, q = 2, Z = diag(length(Paracou618.MC$Ps)))

[1] 68.7215
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R> Diversity(Paracou618.MC$Ps, q = 2)

[1] 68.7215

The similarity-based entropy of a community qHZ (Leinster and Cobbold 2012; Ricotta and
Szeidl 2006) has the same relations with diversity as HCDT entropy and Hill numbers. The
Hqz function calculates it:

R> Hqz(Paracou618.MC$Ps, q = 2, Z)

[1] 0.3208152

R> lnq(Dqz(Paracou618.MC$Ps, q = 2, Z), q = 2)

[1] 0.3208152

6. Advanced tools

The package comes with a set of tools to realize frequents tasks: running Monte-Carlo simu-
lations on a community, quickly calculate its diversity profile, applying a function to a species
distribution along a tree, and manipulation of meta-communities.

6.1. Entropy of Monte-Carlo simulated communities

The EntropyCI function is a versatile tool to simplify these simulations. Its arguments are
an entropy function (any entropy function of the package accepting a vector of species abun-
dances, such as bcTsallis), the number of simulations to run and the observed species
frequencies. The result is a numeric vector containing the entropy value of each simulated
community. Entropy can be finally transformed into diversity but it is not correct to use a
diversity function in simulations because the average simulated value must be calculated (and
only entropy can be averaged).

This example shows how to use the function. First, the distribution of the γ HCDT entropy
of order 2 (Simpson entropy) of Paracou meta-community is calculated and transformed into
diversity. Then, the actual diversity is calculated and completed by the 95% confidence
interval of the simulated values.

R> SimulatedDiversity <- expq(EntropyCI(FUN = bcTsallis,

+ Simulations = 1000, Ns = Paracou618.MC$Ns, q = 2),

+ q = 2)

======================================================================

R> bcDiversity(Paracou618.MC$Ns, q = 2)

[1] 73.19676
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R> quantile(SimulatedDiversity, probs = c(0.025, 0.975))

2.5% 97.5%

63.07206 107.44083

6.2. Diversity or Entropy Profile of a community

This function is used to calculate diversity or entropy profiles based on community functions
such as Tsallis or ChaoPD. It is similar to DivProfile but does not require a Metacommunity

for argument. It returns a list which can be plotted, see the help page of the function for an
example.

6.3. Applying a Function over a Phylogenetic Tree

The PhyloApply function is used to apply an entropy community function (generally bcTsallis)
along a tree.

6.4. Manipulation of meta-communities

Several meta-communities, combined in a list, can be merged two different ways: the MergeMC
function simplifies hierarchical partitioning of diversity: it creates a new meta-community
whose communities are the original meta-communities aggregated data. The α entropy of the
new meta-community is the weighted average γ entropy of the original meta-communities.

MergeC combines the communities of several meta-communities to create a single meta-
community containing them all. Last, ShuffleMC randomly shuffles communities accross
meta-communities to allow simulations to test differences between meta-communities.

7. Conclusion

The entropart package allows estimating biodiversity according to the framework based on
HCDT entropy, the correction of its estimation-bias (Grassberger 1988; Chao and Shen 2003)
and its transformation into equivalent numbers of species (Hill 1973; Jost 2006; Marcon et al.
2014). Phylogenetic or functional diversity (Marcon and Hérault 2014) can be estimated,
considering phyloentropy as the average neutral diversity over slices of a phylogenetic or
functional tree (Pavoine et al. 2009). We believe it is a complete toolbox for ecologists who
need to estimate the diversity of actual, undersampled communities and to partition it.

Similarity-based diversity is also considered even though neither estimation-bias correction
nor decomposition are available yet.
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