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Abstract

This paper covers the usage and implementation of the jvmr package for the statisti-
cal software R. The package provides four simple interfaces between R and programs or
scripts running on the Java Virtual Machine (JVM). The package allows programmers
to easily combine code from different languages in a single project. First, the package
provides the means to embed an R interpreter in a Scala program using Scala-specific
syntactical features. Second, more generally, the package allows a programmer to embed
an R interpreter in a Java program or any other program written in a language available
on the JVM, including JRuby, Jython, Groovy, Clojure. The jvmr package also provides
the reverse functionality for embedding JVM languages in R using functionality from the
rJava package. Specifically, the jvmr package embeds a Scala interpreter/compiler in R
for running Scala code within an R program. Finally, it embeds the BeanShell interpreter
in R, providing a high-level interface for running Java code snippets and calling Java code
within an R program. The package is available on CRAN and requires no special instal-
lations or configurations of R, Java, or Scala. The jvmr package has been tested on a
variety of operating systems, including Linux, Mac OS X, and Microsoft Windows.
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1. Introduction

The paper introduces the jvmr package that allow users to seamlessly incorporate R (R Core
Team 2013) and Scala (Odersky and et. al. 2004) or Java code in one program and uti-
lize each language’s respective strengths (including libraries, methods, speed, graphics, etc.).
Java is arguably one of the most popular programming languages currently in use. It is a
general-purpose, object-oriented programming language which runs on the Java Virtual Ma-
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chine (JVM). Scala is a newer, general purpose programming language that provides both
object-oriented and functional programming constructs, freeing the programmer to intermin-
gle paradigms. Scala also runs on the JVM, is statistically typed, and is often more concise
and expressive than equivalent Java code. R is a scripting language and environment devel-
oped by statisticians for statistical computing and graphics with a large library of routines.
R has many contributors and a large base of statistically-oriented users. Computationally
intensive code written in R is generally slower than Scala, Java, C, Fortran, etc. Scala, Java,
and R each have distinct strengths and weaknesses. Through the jvmr package, users can use
the appropriate language or library within the same script or program.

The jvmr package provides a simple syntax to interface R, Scala, Java, and other JVM-based
languages. Specifically, The jvmr package provides four high-level interfaces which embed
R within Scala, R within Java, Scala within R, and Java within R. The user may “pull” and
“push” values between languages. Presently, the jvmr package supports the pulling of single
values, arrays, and matrices of boolean, integer, double, and string types.

Creating interfaces between programming languages is common. R has native ability to
execute code written in C, C++, and Fortran. rJava (Urbanek 2013a) permits R to execute
code written in Java and, more generally, any code running on the JVM. Conversely, the
development community has also provided various means to run R code in other programming
environments. These projects include RServe (Urbanek 2013b), rJava (Urbanek 2013a), RPy
(Moreira and Warnes 2011), and RinRuby (Dahl and Crawford 2009). Another interesting
project is Renjin (Bertram and et. al. 2013), a new JVM-based interpreter for the R language.

There are several items that make the jvmr package unique. First, the jvmr package is the
first to explicitly support running R from within a Scala program, including taking advan-
tage of Scala syntax. Second, while the rJava package allows one to call code from Java
and other JVM-based languages, the jvmr package provides a Java interpreter and a Scala
interpreter /compiler (using the rJava package). Finally, a key feature of the jvmr package
is its simplicity and ease of installation while still providing reasonable performance. The
package is available on the Comprehensive R Archive Network (CRAN) and uses standard
installations of R, Scala, and Java. It has been tested on Linux, Mac OS X, and Microsoft
Windows. No special compiling, installation, or configuration of R, Scala, Java, or the firewall
is needed.

2. Installation

The jvmr package is available on the Comprehensive R Archive Network (CRAN) and can be
installed through R’s graphical interface or by executing the following R code:

R> install.packages("jvmr")

Note that the jvmr package only needs a standard installation of R. No special compilation
flags or installation procedures are needed. It was developed and tested using R 3.0.1, but
the package is expected to work on earlier versions. The Java interpreter from BeanShell
(Niemeyer 2011) and the Scala interpreter/compiler are distributed as part of the jvmr pack-
age. These do not need to be installed separately in order to embed Java or Scala interpreters
in R. To do the reverse (i.e., embed the R interpreter in a Java or Scala program), development
kits for Java or Scala programming must be installed.
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The jvmr package was developed and tested using Java 7 (a.k.a., Java 1.7) and Scala 2.10,
but Java 6 is sufficient. The jvmr package was tested on Windows 7, Ubuntu 12.04, Mac
OS X 10.8 (Mountain Lion). Windows XP and mainstream Linux distributions should be
compatible.

3. Supported data types

The interfaces provided in the jvmr package allow a programmer to “pull” and “push” data
between R, Scala, and Java. The names of these data types differ by language. For example,
when an R character is pulled into Scala or Java, it will become a String. The term “pull”
is somewhat of a misnomer since the jvmr package does not actually move objects across
platforms. Rather, jvmr makes a copy of the data.

The jvmr package supports four data types (booleans, integers, doubles, and strings) in three
types (primitives, vectors, and matrices). Matrices in R are represented in Java and Scala as
row-major arrays of arrays. Vectors in R are arrays in Java and Scala. The term “primitive”
is used loosely to denote single piece of data not contained in a vector or matrix. Table 1
outlines the equivalent representations of the four data types and the three data structures
in the three languages.

Primitives Vectors Matrices
a <- TRUE a <- c(TRUE,FALSE) a <- matrix(c(TRUE,FALSE) ,nrow=2)
R b <- 1L b <- c(1L,2L,3L) b <- matrix(c(1L,2L) ,nrow=2)
c < 1.0 c <- ¢(1.0,2.0,3.0) c <- matrix(c(1.0,2.0),nrow=2)
d <- "a" d <- c("a","b","c") d <- matrix(c("a","b"),nrow=2)
val a = true val a = Array(true,false) val a = Array(Array(true),Array(false))
Scala val b = 1 val b = Array(1,2,3) val b = Array(Array(1),Array(2))
val ¢ = 1.0 val ¢ = Array(1.0,2.0,3.0) val ¢ = Array(Array(1.0),Array(2.0))
val 4 = "a" val d = Array("a","b","c") val d = Array(Array("a"),Array("b"))
boolean a = true; boolean[] a = {true,false}; boolean[][] a = {{truel},{false}};
Java int b = 1; int[] b = {1,2,3}; int[100 b = {{1},{2}};
double c = 1.0; double[] ¢ = {1.0,2.0,3.0}; double[l1[] c = {{1.0},{2.0}};
String d = "ail; Strlng[] d = {Ilall’"b"’llcll}; Strlng[] [] d = {{Ilall},{"bll}};

Table 1: Equivalent data types in R, Scala, and Java.

4. Usage

The examples provided in this paper are generally shown as if at an R, Scala, or BeanShell’s
Java prompt. R code is designated with “R>”, Scala code with “scala>”, and Java code (as
if at a BeanShell prompt) with “bsh %”. Although the examples provided are presented as
if at a command line, they can easily be incorporated into an R, Scala, or Java scripts and
programs. Comprehensive documentation for the jvmr package is provided by means of R
documentation, Scaladoc, and Javadoc. This documentation is available at http://dahl.
byu.edu/software/jvmr.

4.1. Embedding R in Scala

In order for a Scala script or program to embed an R interpreter, the classpath must contain
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the JAR file whose location is given by the . jvmr. jar object in R. That is, at the R prompt,
query the path of the JAR file on the local machine as follows:

R> library("jvmr")
R> .jvmr.jar

Let JVMR_JAR denote a shell variable containing the file path from the above R statement. In
Windows, the value of the JVMR_JAR variable will be similar to:

C:/Program Files/R/R-3.0.1/library/jvmr/java/jvmr_2.10-1.0.3.jar

Suppose “MyProgram.scala” in the current directory contains the code for a Scala program
using the jvmr package. To compile and run, for example on Linux and Mac OS X, execute
the following at the operating system shell:

JVMR_JAR=$(R --slave -e 'library("jvmr"); cat(.jvmr.jar)')
scalac -cp "$JVMR_JAR" MyProgram.scala
scala -cp ".:$JVMR_JAR" MyProgram

Note that Windows users should use a semi-colon in lieu of a colon in the above code. Also,
the manner in which the shell variable JVMR_JAR is set and accessed will be different. To use
R in the interactive Scala read-eval-print loop (REPL), start Scala using the same code as
above but exclude MyProgram.

Using R’s statistical routines and graphics within Scala is simple and intuitive. The following
examples are presented as if at the Scala prompt (designated by “scala>”), but the same
code can be included in a Scala program. An R interpreter is instantiated using the RInScala
companion object to the RInScala class in the package org.ddahl. jvmr as follows:

scala> import org.ddahl.jvmr.RInScala
scala> val R = RInScala()

In this case, the R object provides the connection through which R code and data can be
evaluated, transferred, and accessed. Multiple instances of the R interpreter are allowed, and
each interpreter maintains its own workspace and memory (i.e., each interpreter creates a
separate connection to a new R session).

Once an instance of the R interpreter has been created, R expressions can be evaluated using
the eval method. For example, consider:

scala> R.eval("words <- 'This String was made in R'")

The above code assigns a character string to the variable words in R through the interpreter
R. Alternately, some may prefer the following shortcut:

scala> R> "words <- 'This String was made in R'"

The above statement is a shorthand version of the eval method and is easy to remember
since it resembles an R prompt. The eval and R> methods can also evaluate multi-line code
by using triple quotes:
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scala> R> """n <- 100
set.seed(24)
draws <- rnorm(n)
stdev <- sd(draws)

At this point, the R session has four variables (words, n, draws, stdev) in its workspace. In
order to “pull” a string representation of an R expression, use the capture method, as follows:

scala> println(R.capture("words"))
[1] "This String was made in R"

Again the jvmr package provides a shorthand:

scala> R> "words"
[1] "This String was made in R"

The apply function evaluates expressions in R similar to the eval function; however, the
apply function also returns a Scala object of type Any. The apply function also has two
equivalents. The following three statements are equivalent and return the value of name in R
as a Scala object of type Any:

scala> R.apply("words")
scala> R("words")
scala> R.words

If another instance of an R interpreter is created, it maintains its own workspace and memory.
For instance, variables defined in the interpreter R would be inaccessible by the interpreter
AA. For example:

scala> val AA = RInScala()
scala> AA> "words"

produces an error, but the following is okay:

scala> R> "words"
[1] "This String was made in R"

The jvmr package allows the user to pull single values, vectors, and matrices from R into Scala
and vice-versa. The toPrimitive, toVector, and toMatrix methods create Scala represen-
tations of R objects (i.e., it “pulls” objects from R into Scala). Each of these methods takes a
type argument (String, Double, Int, or Boolean) for the Scala object. This is illustrated in
the following examples:

scala> println("The variance is "+math.pow(R.toPrimitive[Double] ("stdev"),2))
The variance is 0.899108595474283

scala> println(R.toPrimitive[Int] ("as.integer(n)"))
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100

scala> R.toVector[String] ("c('Hello','World',"!")")
resO: Array[String] = Array(Hello, World, !)

scala> R.toMatrix[Boolean] ("matrix(c(TRUE,FALSE,TRUE,FALSE) ,nrow=2)")
resl: Array[Array[Boolean]] = Array(Array(true, true), Array(false, false))

Creating R representations of Scala objects (i.e., pulling Scala data into R) can be done with
the update method, or its equivalent “dot” notation. For example, the following two lines of
code are equivalent and assign the vector named “lengths” in R from a Scala array:

scala> R.update("lengths", Array[Double] (2.2,3.5,4.2))
scala> R.lengths = Array[Double] (2.2,3.5,4.2)

Although this “dot” syntax (second line of code above) is more concise, the update method
will need to be used when assigning values to R variables containing a dot (e.g., n.samples).

The jvmr package also provides the prompt method which opens an R prompt within Scala.
To access the prompt, use either R.prompt () or R>. (Note: if invoking the R prompt using
R>, the user may get a warning. This warning can be averted in three ways: 1. By simply
invoking the prompt using R.prompt (), 2. Including import scala.language.postfixOps
in the Scala program, or 3. Using -language:postfix0Ops as a command line option when
invoking Scala.) Once the prompt method is invoked, the command line will act as if the user
is at the R prompt. (On some operating systems, green text represents output from the R
interpreter):

scala> R.prompt()

Welcome to the R prompt! Type R commands. No prompt is provided.
Exit by pressing “D.

pval <- function(z) pnorm(z)

pval(o)

Variables and functions defined in the prompt will be available for use by the interpreter after
the prompt is closed (by pressing ctrl+D):

scala> R> "pval(0)"
[1] 0.5

4.2. Embedding R in Java

Embedding R in Java requires that additional JAR files are in the classpath. To find all the
required JAR files, query the .jvmr.alljars object in R as follows:

R> library("jvmr")
R> .jvmr.alljars
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The value of the . jvmr.alljars will be specific to the operating system and R installation.
These JAR files should be included in classpath when compiling (e.g., using javac) and
executing (e.g., using java).

Since BeanShell is packaged with the jvmr package, a Java read-eval-print loop (REPL),
functionality from the jvmr package can be invoked from the operating system shell using:

java -cp "$JVMR_ALLJARS" bsh.Interpreter

assuming the JVMR_ALLJARS shell variable contains the value of the . jvmr.alljars object in
R.

Embedding R in Java in similar to embedding it in Scala, with a few syntactical limitations
imposed by Java. In the following examples “bsh %’ indicates Java code at the BeanShell
prompt; however, the same code can be incorporated into a Java program. An R interpreter
is instantiated using the RInJava class in the package org.ddahl. jvmr as follows:

bsh % import org.ddahl.jvmr.RInJava;
bsh % RInJava R = new RInJava();

The interpreter R provides the interface through which R code will be evaluated. As in Scala,
multiple instances of the R interpreter are allowed and each interpreter will maintain its own
workspace and memory.

Once an instance of the R interpreter has been created, evaluate R expressions within Java
using the eval and capture methods in the same manner as in Scala. Note, however, that
Java syntax does not support the “dot” notation, multi-line expressions, and the R> method.
Processing multiple R statements within a single eval method is demonstrated in the following
example:

bsh % R.eval("set.seed(24);\n" +
"draws <- rgamma(100,1,2.3);\n" +
"stdev <- sd(draws)");

As in Scala, the apply method evaluates R code and returns an object of class Object (Java’s
equivalent to Scala’s Any). In Java, there is no shorthand for the apply method. The following
code assigns the R variable name and returns a JavaObject:

bsh % R.apply("name <- 'Grace Richards'");

To create Java copies of R objects (i.e., “pull” R objects into Java), the following methods are
available:

toPrimitiveString  toPrimitiveDouble  toPrimitiveInt  toPrimitiveBoolean
toVectorString toVectorDouble toVectorInt toVectorBoolean
toMatrixString toMatrixDouble toMatrixInt toMatrixBoolean

Consider a couple of examples:

bsh % double spread = R.toPrimitiveDouble("stdev");
bsh ¥ double[] sample = R.toVectorDouble("draws");
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Creating R copies of Java objects (i.e., “pulling* Java data into R) is the same as in Scala
except Java code is used in place of Scala code. The following code creates an R matrix from
a Java two-dimensional array:

bsh % R.update("rmatrix",new double[][] { {1.1,1.2}, {2.1,2.2}, {3.1,3.2} } );
bsh % System.out.println(R.capture("rmatrix"));
[,11 [,2]
[1,1 1.1 1.2
[2,] 2.1 2.2
[3,1] 3.1 3.2

Due to limitations on Java syntax, the “dot” syntax is not available in Java.

Similar to Scala, the prompt method opens an R prompt within Java. To access the prompt,
type the command R.prompt (). Once the prompt method is invoked, the command line will
act as if the user is at the R prompt (as shown in Section 4.1). As in Scala, functions and
objects defined while in the R prompt will be available for use by the interpreter.

4.3. Embedding Scala in R

Instantiating a Scala interpreter/compiler in R is accomplished as follows:

R> library("jvmr")
R> a <- scalalnterpreter()

Multiple interpreters can be created and each maintains its own workspace and memory.
Scala code can be evaluated using the interpret function or its shorthand equivalent. The
following two lines of code are equivalent:

R> interpret(a,'val mu = 3")
R> a['val mu = 3']

Both the interpret function and its shorthand are capable of handling multi-line code:

R> a["val sigma = 2.5
val n = 10
"]

To create R representations of Scala objects (i.e., “pulling” Scala data into R) simply use
al[’x’], where x is a Scala object (or a valid Scala expression) and a is the interpreter created
by the scalaInterpreter function. Copies of R objects can be created from Scala single
values, arrays, and arrays of arrays of strings, doubles, integers, and booleans. Pulled values
and objects can be assigned to variables in R or used elsewhere in the R code. Consider, for
example:

R> r.mu <- a["mu"]

R> r.sample <- rnorm(al['n'],a['mu']l,a['sigma'l)

R> r.mtx <- a['Array(Array(4.24,19.90),Array(1.3,5.2))']
R> r.mtx
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[,1]1 [,2]
[1,] 4.24 19.9
[2,] 1.30 5.2

Creating a Scala representation of an R variable or vector (i.e., “pulling” a value from R into
Scala) can be done intuitively:

R> a['pVal'l <- pnorm(-2.5)
R> a['message']l <- c("Hello","world","again","!")

Output generated by Scala is not displayed in the R session by default, but can be enabled
by setting the echo.output argument to TRUE. For example, consider:

R> a['message.foreach{ x => println("<" + x + ">")}']

R> a['message.foreach{ x => println("<" + x + ">")}' echo.output=TRUE]
<Hello>

<world>

<again>

<I>

String substitutions in Scala code is supported as additional arguments to the interpret
function. Up to nine string substitutions are allowed and their placement is indicated in the
string as ${d}, where d is a digit 1, 2, ..., 9. A simple example of substitution is:

R> a['val statement = "${1} costs ${2}."',"Milk","$3.70"]
statement: String = Milk costs $3.70.

Numerical arguments are converted to strings for substitution. The following example creates
an array filled with 3 random doubles:

R> a["val draws = new Array[Double] (${1})
val random = new java.util.Random()
for(i <- O until ${1}) draws(i) = random.nextDouble()", 3]

Note the use of multi-line code in the previous example.

4.4. Embedding Java in R

Embedding Java in R is identical to embedding Scala in R with two notable exceptions. First,
the interpreter is created using the javaInterpreter() function. Second, the interpreter
only processes Java code. It may be interesting to the user to note that when processing
single Java statements, the semicolon may be omitted (e.g., a[’String name = "John"’]).
Multi-line statements require the usual semicolons in standard Java code.

5. Case studies

5.1. Scala web server performs statistical analysis using R
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Suppose a web developer in the Department of Natural Resources needs to build an online
tool for field scientists studying the birth weights of a large mammal in separate herds. The
data are entered into the web-based system running in the Play Framework available for Scala
and is stored in an array of arrays of Doubles named births. Using the jvmr package, the
developers can embed R in Scala to compute the p-value for a simple ANOVA comparing the
average birth weights between herds. To accomplish this, the developer performs a standard
installation of R on the web server, adds to Play’s classpath the JAR whose location is given
by the .jvmr.jar variable, and uses the following code:

scala> import org.ddahl.jvmr.RInScala
scala> val R = RInScala()
scala> R.update("births",births)
scala> R> """
births <- as.data.frame(births)
names (births) <- c("weight","herd")
model <- with(births,lm(weight ~ as.factor(herd)))
results <- anova(model)

nnn

scala> val pValue = R.toPrimitive[Double] ("results$'Pr(>F)'[1]")

The developer can then return the pValue variable in Scala as part of a larger web page
resulting from an HTTP response. Of course, the Scala web server could also easily serve
plots generated in R through the jvmr package.

5.2. Java program summarizes data using R

For simplicity, assume that the birth variable from the previous example is available in a
Java program and that the developer wants the first quartile of the second herd. This can be
accomplished with the following Java code:

bsh % import org.ddahl.jvmr.RInJava;

bsh % RInJava R = new RInJava();

bsh % R.update("births",births);

bsh % System.out.println("The first quartile is " +
R.toPrimitiveDouble("quantile(births[births[,2]==2,1],0.25)"));

The first quartile is 9.795

5.3. Computationally-expensive algorithm compared in R, Scala, and C

Suppose one is interested in modeling the relationship between poverty and years of education
via Bayesian logistic regression in R. For simplicity, consider only one covariate and ignore
the intercept. The dependent variable is “poverty status” (with 1 indicating poverty and 0
indicating not in poverty) and our independent variable is “years of education.” Assume a
normal prior distribution with mean 1 and variance 1 for the coefficient on “years of edu-
cation.” Since the model is not conjugate, consider Markov chain Monte Carlo (MCMC)
using a Metropolis sampling algorithm to obtain draws from the posterior distribution of the
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Implementation using pure R Implementation using Scala embedded in R
y <~ ¢(0,1,1, 0, 0, 0, 0, 0, 1, 1, 1) y <= ¢(0,1,1, 0,0, 0, 0, 0, 1, 1, 1)
x <- ¢(16,6,9,18,20,19,13,14,11,10, 4) x <- ¢(16,6,9,18,20,19,13,14,11,10, 4)

library("jvmr")

a <- scalalnterpreter()

al'x']l <- x; al'y'l <- y

al

import math.{exp,log}

val random = new java.util.Random()

mcme.in.R <- function(n.draws) { def mcmc(nDraws : Int) = {
log.like <- function(beta) { def logLike(beta : Double) = {
sum(dbinom(y,1,1/(1+exp(-x*beta)),log=TRUE)) var sum = 0.0
} var i = 0

while ( i < y.length ) {
val p = 1/(1+exp(-x(i)*beta))
if ( y(i) == 0 ) sum += log(i-p)
else sum += log(p)

i+=1
}
sum
}
samples <- rep(1,n.draws) val samples = Array.fill(nDraws) { 1.0 }
11.previous <- log.like(samples[1]) var 11Previous = logLike(samples(0))
var i =1
for ( i in 2:length(samples) ) { while ( i < nDraws ) {
proposal <- rnorm(1) + 1 val proposal = random.nextGaussian() + 1
11.proposal <- log.like(proposal) val 11Proposal = logLike(proposal)
hastings.ratio <- exp(ll.proposal - 1ll.previous) val hastingsRatio = exp(1llProposal - llPrevious)
if ( runif(1) < hastings.ratio ) { if ( random.nextDouble() < hastingsRatio ) {
samples[i] <- proposal samples (i) = proposal
11.previous <- 1ll.proposal 11Previous = 11lProposal
} }
else samples[i] <- samples[i-1] else samples(i) = samples(i-1)
} i+=1
}
samples samples

} }
]

mcmc.in.Scala <- function(ndraws) {a['mcmc(${1})',ndraws]}

Table 2: A line-by-line comparison of two implementations of an algorithm in pure R and
Scala embedded within R.

coefficient on “years of education.” Due to the computationally intensive nature of MCMC
methods, we demonstrate below that implementation using Scala is much faster than the pure
R implementation and on par with an implementation using C. The Scala implementation is
nonetheless very convenient because the code is embedded within the R script in a single file
and a seperate compiler does not need to be installed.

Consider the side-by-side listing of code in Table 2 showing an implementation written purely
in R and an implementation embedding Scala code in an R script. The implementation using
Scala is a bit longer than the pure R implementation for two reasons: First, data must be
passed between the two languages. Second, this Scala implementation uses an imperative pro-
gramming style. An implementation in Scala using a declarative programming style would be
both shorter and somewhat slower to execute. An implementation using C is also considered.
Its code, available in Appendix A, follows the Scala code very closely except for syntactical
differences between the languages.

Each implementation was run 10 times in a random order and the CPU time was recorded.
The results are found in Table 3. Note that the Scala implementation is much faster than the
pure R implementation and not much slower than the implementation using C. As opposed
to the C implementation, an external compiler is not required for Scala implementation. A C
compiler is not typically installed on Windows computers. It is also interesting to note that

11
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the Scala implementation is conveniently self-contained in a single file.

Mean (St. Dev.)  Times Faster Times Slower

Implementation CPU Time in sec. Than R Than C
Pure R 175.2 (0.03) 1.0 22.0
Scala embedded in R 11.6 (0.12) 15.2 1.5
C called from R 7.9 (1.18) 22.2 1.0

Table 3: Execution speed for three implementations of a computationally-intensive algorithm.

5.4. Exploiting a Java library in R

A feature of the jvmr package is the ability to easily use libraries within Java and Scala in R.
By including the appropriate JAR files in the class path when instantiating the interpreter
within R, software written in Scala and Java are available in R. This feature is particularly
useful when the user is already familiar with a Java or Scala library and that equivalent
functionality is not available in R.

Suppose a programmer is familiar with the MixtureMultivariateNormalDistribution class
in the Apache Commons Math package to sample from a mixture of multivariate normal
distributions. Certainly sampling from a mixture of multivariate normal distributions could
be implemented by the programmer, but it is probably more convenient to use the Java library
with which he is already familiar. To generate the samples, the user could either write an
external Java program, use the rJava package in R, or use the jvmr package. Below we show
an example using the jvmr package. Assume that the Apache Commons Math JAR file is in
the current working directory and consider the following code and the resulting Figure 1.

library("jvmr")
a <- javalnterpreter("commons-math3-3.2.jar")

al'

import org.apache.commons.math3.distribution.*;

double[] weights = {0.2,0.3,0.5};

double[] [] means = {{0,0},{3,0},{6,0}};

double[] []1[] covariance = {{{2.0, 1.4},{ 1.4,2.0}},
{{1.0, 0.0},{ 0.0,1.0}2,
{{1.0,-0.8},{-0.8,1.0}}};

MixtureMultivariateNormalDistribution multivar =

new MixtureMultivariateNormalDistribution(weights,means,covariance);

']

n <- 1000000L

sample <- a['multivar.sample(${1})',n]
library("MASS")

density3d <- kde2d(samplel,1],sample[,2],n=60)
pdf ("normal-mixture.pdf",width=7,height=6)
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Figure 1: Multivariate density plot produced by R from data generated using a Java library.

persp(density3d, box=FALSE, col="tomato",phi=5,theta=15)
dev.off ()

6. Technical notes

In terms of the technical implementation, the embedding of R within Scala is accomplished
by running a subprocess and utilizing a custom protocol over standard input/output and
local TCP/IP sockets. The Scala software starts an R subprocess on the local machine,
automatically finds available ports, and then sends commands to the R subprocess through
standard input/output instructing the R client how to connect back to the Scala server. For
security purposes, the server only accepts connections from the local host and automatically
authenticates using a random challenge/response scheme. Commands are issued over the
standard input/output and data is transferred over local TCP/IP sockets. Only the one
Java Archive (JAR) file, whose location is given by the . jvmr. jar object in the jvmr package,
is needed in the classpath.

The software embedding R within Java is accomplished using a Java class that simply wraps
the Scala code just described. Since the Java code is essentially calling bytecode compiled
from code written Scala, the Scala library and compiler JARs must also be the classpath,
whose location is given by the .jvmr.alljars object in the jvmr package.

The embedding of Scala and Java withing R is based on executing functions in the rJava
package which interface with BeanShell’s Java interpreter and Scala’s interpreter/compiler.
As these interpreters and the rJava package are already available from other authors, the
amount of code and effort required to provide the embedding of these interpreters in R was
considerably less than the effort required to do the opposite, i.e., provide the embedding of R
in Java and Scala programs.

When repeatedly running the same Scala code embedded in R, it can be much faster to execute
the loop in Scala as opposed to R. As an illustration, consider computing the standard normal
distribution on a grid between —3 and 3 using loops in Scala and R.

13
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library("jvmr")
a <- scalalnterpreter()
a['import math._; val pi = ${1}; val m = ${2}; val s = ${3}',pi,0,1]

looping <- function(n.items) {
x <- seq(-3, 3, length.out=n.items)

inScala <- system.time ({

al'x'] <- x

evals <- a['x.map{x => exp(-(0.5*Llog(2*pi*s*s)+0.5*%((x-m)/s)*((x-m)/s)))}']
D

inR <- system.time({
evals <- numeric(length(x))
for ( i in 1:length(x) ) {
al['x'] <- x[i]
evals[i] <- a['exp(-(0.5%1log(2*pi*s*s)+0.5%((x-m)/s)*((x-m)/s)))']
}
b

cat(inR/inScala,"\n")

A call to looping(n) means there will be n function evaluations. When n = 10, R looping
is 1.5 times slower than the equivalent Scala code. The problem becomes more apparent as
n increases, with n = 100 and n = 1000 showing that R looping is 15 and 246 times slower,
respectively. The explanation for these results are that each call to execute Scala code involves
an on-the-fly compilation of the code to Java bytecode before execution on the JVM. Reducing
the number of compilations avoids this costly step and allows the Java HotSpot compiler the
opportunity to optimize the execution.

On a related note, it should be recognized that the BeanShell Java interpreter executes Java
code by costly reflection. The code is not compiled and therefore not subject to Java HotSpot
optimization. This is in contrast to the Scala interpreter/compiler which automatically com-
piles Scala code on-the-fly. Therefore, running Java code in the BeanShell interpreter is
expected to be slow, whereas Scala code in the interpreter is expected to run at the full speed
of the JVM. Of course, any compiled libraries executed by the BeanShell or Scala interpreters
will themselves run at full speed on the JVM.
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7. Conclusion

The jvmr package provides four interfaces which embed R in Scala, R in Java, Scala in R,
and Java in R. The package has some limitations. The jvmr package is released under the
GNU General Public License (GPL) version 3. Contributions are welcome. Currently, only
booleans, integers, doubles, and strings in matrices, vectors, or single items are supported. It
would be interesting to extend support to other data types or data structures. It would also
be interesting to explicitly support other JVM-based languages.
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Appendix A. C code for computationally-expensive algorithm
The R wrapping functions for the C code used in Section 5.3 is listed below:

y <~ c(O0,1,1, 0, 0, 0, O, O, 1, 1, 1)
x <- c¢(16,6,9,18,20,19,13,14,11,10, 4)

dyn.load("C.so")
mcmc.in.C <- function(n.draws) {
out <- .C("mcmcInC",
nDraws=as.integer (n.draws),
nObs=as.integer(length(x)),
y=as.double(y),
x=as.double(x),
samples=double(n.draws))
return(out$samples)

}

The actual C code used in Section 5.3 is listed below:

#include <math.h>
#include <R.h>
#include <Rmath.h>

double logLike(double beta, int nObs, double *y, double *x) {
double sum = 0.0;
int i = 0;
while ( 1 < nObs ) {
double p = 1/(1+exp(-x[il*beta));
if ( y[i]l == 0 ) sum += log(1-p);
else sum += log(p);
i+=1;
}

return sum;

void mcmcInC(int *nDraws, int *nObs, double *y, double *x, double *samples) {
GetRNGstate();
samples[0] = 1.0;
double 11Previous = logLike(samples[0],*n0Obs,y,x);
int i = 1;
while ( i < *nDraws ) {
double proposal = rnorm(0.0,1.0) + 1;
double 11Proposal = logLike(proposal,*n0bs,y,x);
double hastingsRatio = exp(1llProposal - 1lPrevious);
if ( runif(0.0,1.0) < hastingsRatio ) {
samples[i] = proposal;
11Previous 11Proposal;
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}
else samples[i] = samples[i-1];
i+=1;
}
PutRNGstate() ;
}
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