
Using KDETrees

Grady Weyenberg

August 21, 2013

1 Introduction

KDETrees is a tool for finding discordant phylogenetic trees. It takes as input an
ape::multiPhylo object, which contains a set of trees, and produces a score for
each tree. (A list of phylo objects is also accepted.) High scores mean the tree
is relatively similar to other trees in the sample, while low scores indicate that
the tree in question may be discordant with the others. Low scoring trees are
identified as putative “outliers” with the cutoff controlled by a tuning parameter
k, and their contribution to the calculation is removed.

2 Using kdetrees

The simplest method of using the software is the kdetrees.complete function.
This is a convienence function which will do all the steps of the analysis at once.
The simplest use is to simply pass it the filename of a Newick file containing the
trees to be analyzed. It will write several result files to the R working directory
(getwd).

This call assumes there is a file containing newick formatted trees called
trees.tre in the current working directory. It will write out 4 files: out-

liers.tre a newick file containing only the trees identified as outliers; re-

sults.csv a csv files with the density estimates; plot.png and hist.png are
diagnostic images.

> kdetrees.complete("trees.tre")

The kdetrees.complete function also accepts any of the parameters ac-
cepted by the kdetrees function, as described in Sections 2.2 and 2.4.

2.1 Importing Trees

Trees may be imported using any of the methods provided by ape. (See ?read.tree
and ?read.nexus for examples.) In the following examples, many functions are
a part of the ape package, and it is recommended that you import it. For ex-
ample, to load the apicomplexa dataset, I placed the Newick tree strings into
the apicompexa.tre file and used the following command:

1

> blibrary(ape)

> apicomplexa <- read.tree("apicomplexa.tre")

2.2 Running kdetrees

The simplest way to run kdetrees is to call the function of the same name,
with the list of trees as the first argument.

> result <- kdetrees(apicomplexa)

Called from: kdetrees(apicomplexa)

> result

Call: kdetrees(trees = apicomplexa)

Density estimates:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9963 65.8700 82.6400 77.3000 94.4900 114.5000

Cutoff: 22.92261

Outliers detected:

[1] 488.tre 497.tre 515.tre 546.tre 547.tre 641.tre 660.tre

[8] 662.tre 728.tre 747.tre 773.tre 780.tre

There are 3 main settings which control the method used in the analysis:
the outlier detection tuning parameter, the distance computation method, and
whether or not to include branch length information in the distance calculation.
These are controlled by the parameters k, distance, and topo.only, respec-
tively. By default the geodesic distance with branch lengths is used, with a
tuning parameter of k = 1.5.

For example, this call uses topology-based dissimilarity map distance.

> kdetrees(apicomplexa, k=1.25, distance="diss", topo.only=TRUE)

One can plot or hist the result object to create diagnostic plots. The plot

and hist methods use the ggplot2 package, not base graphics, thus you can
modify them as you see fit. See Figure 1 for example plots.

2.3 Results

The result object is a list with three components, as well as several attributes
that are used internally. The first element, density, has the computed score
for each tree in the input list. This is the variable displayed in the diagnostic
plots. The second elemen,t i, contains the indices of the low scoring trees which
were not included in the calculations. Finally, the outliers element contains
the trees which were identified as outliers.

One might then wish to look at a plot of the putative outlier trees. Here I plot
the lowest scoring tree in the apicomplexa dataset. It appears that something

2

> plot(result)

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●
●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

0

30

60

90

120

0 100 200
Tree Index

N
on

−
no

rm
al

iz
ed

 D
en

si
ty

outlier ● ●FALSE TRUE

12 Outliers Removed

> hist(result)

0

10

20

30

40

50

0 50 100
Non−normalized Density

C
ou

nt

outlier FALSE TRUE

Histogram of Estimates: 12 Outliers Removed

Figure 1: Diagnostic plots can be created with plot and hist.

3

> plot(result$outliers[[1]])

Tt

Ta

Bb

Pf

Pv

Cp

Tg

Et

Figure 2: A plot of an outlying tree.

bad happened during the reconstruction of this tree, causing one branch to be
much longer than the others.

If you would like to export the outlier trees to a file, you may use the
write.tree function in the ape package. Data frames can also be created
from the result object.

> write.tree(result$outliers,file="outliers.tre")

> as.data.frame(result)

2.4 Advanced Options

Currently, kdetrees uses an adaptive bandwidth method based on a nearest-
neighbor calculation by default. It is possible to control the number of trees
used to define the neighborhood, or disable the adaptive method entirely and
provide a constant bandwidth, using the bw parameter. If bw is passed as a list,
the list is used as a set of parameters for a call to bw.nn. For example, to change
the neighborhood to include 50% of the sample we pass the following option.

> kdetrees(apicomplexa, bw=list(prop=0.5))

If bw is set to a single number, a constant bandwidth is used.

> kdetrees(apicomplexa, bw=6)

2.5 CLI

CLI use can be achieved by using the Rscript executable included with R. For
example, this CLI command replicates the first example call in Section 2.

4

$ Rscript -e 'library(kdetrees); kdetrees.complete("trees.tre")'

5

