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1. Introduction

This vignette illustrates the use of the ldDesign R package for design of experi-
ments for detecting genomic associations. Version 1 of this package implements the
method for quantitative traits (Ball 2005: “Experimental designs for reliable detec-
tion of linkage disequilibrium in unstructured random population association stud-
ies” Genetics 2005). There are two main functions: ld.power() and ld.design()

for determining the power and sample size respectively. Version 2 of this pack-
age also implements the method for case-control studies (Ball 2011; “Experimental
designs for robust detection of effects in genome-wide case-control studies” Genet-
ics 2011). For case-control studies there are two main functions: cc.power() and
cc.design() for determining the power and sample size respectively.

While ldDesign was written primarily for genetic applications, ldDesign also
provides generally useful functions like SS.oneway.bf() for calculating Bayes fac-
tors from one-way analysis of variance models, oneway.bf.alpha() for calculat-
ing the Bayes factor for a given α level in one-way analysis of variance models,
calc.Balpha.ABF() for calculating the approximate Bayes factor corresponding to
a given α level and calc.alphaB.ABF() for calculating the α level corresponding to
an approximate asymptotic Bayes factor. These functions are useful for retrospec-
tive calculations: e.g. determining the Bayes factor when p-values are published,
or to give Bayesian measures of evidence when using frequentist methods like anal-
ysis of variance or vice versa. Readers interested in these functions for non-genetic
analyses may wish to skip to Section. 5.
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This package implements a Bayesian experimental design methodology designed
to ensure robust detection of effects in genome-wide association studies (GWAS). In
GWAS, hundreds of thousands of loci are being tested on thousands of individuals.
To robustly detect effects we need sufficient power to detect the effects with suffi-
ciently strong evidence to overcome the low prior odds for any given polymorphism
to be associated with a detectable size effect.

Traditional approaches design experiments with power to detect effects with
a given p-value or less (P < α for some α). However the p-value as a measure of
evidence can be misleading and is not well calibrated for detecting effects in general.
This is particularly problematic in genome-wide association studies where sample
sizes are large and effect sizes are small. Traditional approaches using p-values have
lead to many published spurious associations (Altshuler et al., 2000; Terwilliger and
Weiss, 1998; Emahazion et al., 2001; Ball, 2005, 2007a,b, 2011) Even very low p-
values (e.g. 5 × 10−7, or 5 × 10−8) may not be sufficient for respectable posterior
odds in large studies or meta-analyses (Ball, 2011).

Traditional frequentist approaches adjust for multiple tests. However, gene map-
ping is, intrinsically, a model selection problem not a hypothesis testing problem.
The model we wish to determine is ultimately something approximating the true
genetic model—the set of loci affecting the trait and their modes of action. See e.g.
(Ball, 2001; Sillanpää and Corander, 2002, and references therein)

Often the true model is not unequivocally determined by the data. Neglecting
this leads to problems with spurious associations and selection bias, where the
estimated effects are over-estimated unless the power to detect the true size of effect
is high or independent data is used for detection and estimation. We recommend
Bayesian ‘model selection’ approaches that consider alternative possible models
according to their probabilities (e.g. Ball (2001)). A non-MCMC implementation of
Bayesian model selection for QTL mapping is given in the R package BayesQTLBIC
(Ball, 2009).

The power calculations in this package are for single marker tests, which are
widely used. This will be a good approximation as long as the resolution of the
study and the extent of linkage disequilibrium is such that effects are approximately
independent. When multiple markers within the extent of linkage disequilibrium
are affecting the trait multi-locus methods for analysis are recommended. In this
case, the power calculations in ldDesign would be approximate and conservative.

This package uses a novel approach: unlike traditional power calculations that
use p-values as a measure of evidence, we use Bayes factors, which, unlike p-values,
have a direct interpretation as strength of evidence independent of sample size,
experimental design, and test set-up. Designing experiments with power to obtain
a sufficiently large Bayes factor, B, where B is chosen large enough to obtain
respectable posterior odds enables us to design experiments with sufficient power
to robustly detect associations at unknown positions in the genome.

Note that by obtaining the Bayes factor in single marker tests we are still consid-
ering multiple models: corresponding to the null and alternative hypotheses H0, H1

— the Bayes factor combined with prior odds determines the posterior probabili-
ties. If posterior odds are not high an unbiased estimator would be the product of
the estimate conditional on H1 and the posterior probability for H1. This would
often result in considerable shrinkage of effect estimates.

Association studies detect linkage disequilibrium between an observed marker
locus and an unobserved trait locus (QTL or QTN). Since linkage disequilibrium
between 2 loci decays exponentially each generation at a rate proportional to
the recombination rate between the loci, association mapping using population
based samples offers potentially higher resolution (resolution 100s to 1000s of base
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pairs) than family based QTL mapping approaches (centi-Morgans to 10s of centi-
Morgans) which detect linkage disequilibrium generated within a pedigree. However
achieving this resolution requires much larger sample sizes. Spurious associations
can be generated by population structure or simply because the strength of ev-
idence is insufficient to overcome the low prior odds for genomic associations in
diverse populations. For further information see (Ball, 2005, 2007a,b, and refer-
ences therein)

2. Quantitative traits

2.1. Factors affecting power. For a given marker and causal locus, factors af-
fecting power of an experiment to detect linkage disequilibrium between the marker
and causal locus include:

• sample size (n)
• allele frequency at the marker locus (p)
• allele frequency at the causal locus (q)
• linkage disequilibrium coefficient (D, or D′)
• effect QTL heritability (h2

q)
• genetic model (dominance ratio, φ)
• Bayes factor required (B)

corresponding to the arguments of ld.power():

> library(ldDesign)

> args(ld.power)

function (n, p, q, D, h2, phi, Bf, missclass.rate = 0)

NULL

The function ld.power() implements the method from Ball (2005) which uses
the Spiegelhalter and Smith (1982) Bayes factor—an analytical formula for one way
analysis of variance models (implemented in the R function SS.oneway.bf(), cf.
Section 5), in conjunction with a frequentist power calculation adapted from Luo
(1998).

Note: the Spiegelhalter and Smith (1982) Bayes factor—an analytical formula for
one way analysis of variance models (function SS.oneway.bf()), so does not incor-
porate prior variance. In our experience, use of SS.oneway.bf() is approximately
equivalent to assuming prior information equivalent to a single sample point (a = 1
in the arguments to cc.power() below). In principle ld.power() could incorporate
prior variance using the methods used by cc.power(). This may be incorporated
in a future version of ld.power().

2.2. Bayes factor, B. The Bayes factor for comparing two models (M0, M1) is
the ratio

B =
Pr(data | M1)

Pr(data | M0)
(1)

Prior and posterior odds are related by:

posterior-odds = B × prior-odds(2)

Hence, e.g. if the prior odds were 1:50000 and we want posterior odds of 20:1,
we should have a Bayes factor of

20

1/50, 000
= 1, 000, 000(3)



ldDesign 2: EXPERIMENTAL DESIGN FOR GENOME-WIDE ASSOCIATION STUDIES 5

2.3. Linkage disequilibrium. We do not necessarily observe the causal locus,
but a marker-trait association is induced by linkage disequilibrium between the
marker and a causal locus. Linkage disequilibrium (Weir, 1996) is non-independence
between genetic loci or positions on the genome. We will consider bi-allelic loci,
e.g. a marker with alleles A, a and a causal locus with alleles Q, q. The pairwise
probabilities for the alleles

Pr(AQ) = Pr(A)Pr(Q) + D = pq + D(4)

Pr(aQ) = Pr(a)Pr(Q) − D = (1 − p)q − D(5)

Pr(Aq) = Pr(A)Pr(q) − D = p(1 − q) − D(6)

Pr(aq) = Pr(a)Pr(q) + D = (1 − p)(1 − q) + D(7)

where D is the linkage disequilibrium coefficient and p, q are the allele frequencies at
the marker and causal locus, respectively. Linkage disequilibrium can also be spec-
ified as D′ which is D expressed as a proportion of the maximum (resp. minimum)
disequilibrium if D is positive (resp. negative).

It is often more convenient to specify D′ (D divided by its maximum absolute
value for the given allele frequencies and sign of D) because otherwise we have to
work out the maximum or minimum values of D for the given allele frequencies.

Another useful quantity is r2, related to D, p, q by:

(8) r2 =
D2

p(1 − p)q(1 − q)

Similar to r2 in linear regression, r2 gives approximately the proportion of variance
explained by the marker in predicting the causal locus. The approximation is to
first order for r2 ≈ 1, however in practice r2 may be significantly less than 1. For
this reason our power calculations use exact quantities in expressed in terms of
D, p, q.

2.4. Examples.

1. Find the power to detect an effect with QTL heritability h2
q = 0.05, with

Bayes factor 106, marker and causal allele frequencies 0.3, 0.2, linkage dis-
equilibrium coefficient D = 0.1, and sample size 1000. Assume an additive
model.
> ld.power(B=1e6, h2=0.05, D=0.1, p=0.3, q=0.2, n=1000, phi=0)

n power

[1,] 1000 0.0134

attr(,"parms")

p q D h2

3e-01 2e-01 1e-01 5e-02

phi Bf missclass.rate

0e+00 1e+06 0e+00

2. Find the power to detect an effect with QTL heritability h2
q = 0.05, with

Bayes factor 106, marker and causal allele frequencies 0.3, 0.2, linkage dis-
equilibrium coefficient D = 0.1, and sample size 1000. Assume a dominant
model.
> ld.power(B=1e6, h2=0.05, D=0.1, p=0.3, q=0.2, n=1000, phi=1)

n power

[1,] 1000 0.008843

attr(,"parms")

p q D h2

3e-01 2e-01 1e-01 5e-02
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phi Bf missclass.rate

1e+00 1e+06 0e+00

3. As per [2.] above find the sample size required for power 0.8 and print the
power curve:
> ld.design(B=1e6, h2=0.05, D=0.1, p=0.3, q=0.2, phi=1, power=0.8,

+ nmin=1730, nmax=4620, ninterp=20, print.it=TRUE)

n power

[1,] 1730 0.09797

[2,] 1822 0.12026

[3,] 1918 0.14662

[4,] 2020 0.17760

[5,] 2127 0.21337

[6,] 2240 0.25425

[7,] 2359 0.30015

[8,] 2484 0.35092

[9,] 2616 0.40603

[10,] 2755 0.46465

[11,] 2901 0.52576

[12,] 3055 0.58785

[13,] 3217 0.64953

[14,] 3388 0.70892

[15,] 3568 0.76467

[16,] 3757 0.81514

[17,] 3956 0.85941

[18,] 4166 0.89672

[19,] 4387 0.92700

[20,] 4620 0.95049

attr(,"parms")

p q D h2

3e-01 2e-01 1e-01 5e-02

phi Bf missclass.rate

1e+00 1e+06 0e+00

[1] 3695

3. Case-control studies

3.1. Factors affecting power. For a given marker and causal locus, factors af-
fecting power of an experiment to detect linkage disequilibrium between the marker
and causal locus include:

• Bayes factor required (B)
• odd ratio(s) (OR) (or relative risk(s) (R))
• linkage disequilibrium coefficient (D, or D′)
• allele frequency at the marker locus (p)
• allele frequency at the causal locus (q)
• disease prevalence (or baseline risk)
• sample sizes (number of cases, number of controls)
• genetic model (additive, dominant, recessive or general)
• prior variance for effects (a, or σ2

η)

corresponding to the arguments of cc.power():

> library(ldDesign)

> args(cc.power)
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function (B, OR = NULL, D, p, q, baseline.risk, Dprime = NULL,

R = NULL, prevalence = NULL, n.cases, n.controls, model = c("additive",

"dominant", "recessive", "general"), a = 1, sigma2.eta = NULL,

verbose = FALSE, amalgamate.cells = FALSE, show.attributes = FALSE)

NULL

3.2. Odds ratios. The odds ratio for 2 genotypes g1, g2 is the ratio

Pr(case | g2)/Pr(control | g2)

Pr(case | g1)/Pr(control | g1)
(9)

For the additive, dominant and recessive models a single odds ratio or relative
risk is specified. For the general model a vector of 2 odds ratios or relative risks are
specified.

3.3. Examples.

1. Find the power to detect an effect with odds ratio 1.6, with Bayes factor
106, marker and causal allele frequencies 0.3, 0.2, linkage disequilibrium
coefficient D = 0.1, baseline risk 0.1, 1000 cases and 1000 controls. As-
sume an additive model, and a prior with information equivalent to a single
sample point.
> cc.power(B=1e6, OR=1.6, D=0.1, p=0.3, q=0.2, baseline.risk=0.1,

+ n.cases=1000, n.controls=1000, model="additive", a=1)

[1] 0.01322

2. (Illustrating vectorisation of sample sizes). As per [1.] above but find the
power for sample sizes from 2000 to 12000 in steps of 2000.
> cc.power(B=1e6, OR=1.6, D=0.1, p=0.3, q=0.2, baseline.risk=0.1,

+ n.cases=1000*seq(2,12,by=2),

+ n.controls=1000*seq(2,12,by=2),

+ model="additive", a=1)

[1] 0.2113 0.8895 0.9973 1.0000 1.0000 1.0000

3. Find the sample size required to detect an effect with odds ratio 2.0 with
Bayes factor 106, marker and causal allele frequencies 0.3, 0.2, linkage dis-
equilibrium coefficient D = 0.1, baseline risk 0.1. Assume the number of
controls is 50% more than the number of cases. Assume an additive model,
and a prior with information equivalent to a single sample point. Print the
power curve with power ranging from 0.1 to 0.99.
> cc.design(B=1e6, OR=2.0, D=0.1, p=0.3, q=0.2, power=0.9,

+ baseline.risk=0.1, n.cases=2000, n.controls=3000,

+ model="additive", a=1, pmin=0.1, pmax=0.99,

+ ninterp=20, print.power.curve=TRUE)

Power curve:

n.controls n.cases power

[1,] 681 454 0.1000

[2,] 723 482 0.1253

[3,] 768 512 0.1557

[4,] 816 544 0.1918

[5,] 867 578 0.2339

[6,] 921 614 0.2822

[7,] 978 652 0.3366

[8,] 1038 692 0.3966

[9,] 1103 735 0.4610

[10,] 1171 781 0.5286

[11,] 1244 830 0.5974

[12,] 1322 881 0.6653
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[13,] 1404 936 0.7301

[14,] 1491 994 0.7895

[15,] 1584 1056 0.8420

[16,] 1682 1121 0.8862

[17,] 1786 1191 0.9218

[18,] 1897 1265 0.9489

[19,] 2015 1344 0.9684

[20,] 2141 1427 0.9816

[21,] 2274 1516 0.9900

1719 controls and 1146 cases for power 0.9

n n.controls n.cases

2865 1719 1146

4. As per [3.] but assume a general model with 2 independent odds ratios of
1.5, 1.5.
> cc.design(B=1e6, OR=c(1.5,1.5), D=0.1, p=0.3, q=0.2, power=0.9,

+ baseline.risk=0.1, n.cases=2000, n.controls=3000,

+ model="general", a=1, print.power.curve=FALSE)

8120 controls and 5414 cases for power 0.9

n n.controls n.cases

13534 8120 5414

5. (Show attributes.) As per [1.] show attributes including non-centrality
parameter (ncp) and the optimal weighing used (c1.opt).
> cc.power(B=1e6, OR=1.6, D=0.1, p=0.3, q=0.2, baseline.risk=0.1,

+ n.cases=1000, n.controls=1000, model="additive", a=1,

+ show.attributes=TRUE)

[1] 0.01322

attr(,"model")

[1] "additive"

attr(,"n.cases")

[1] 1000

attr(,"n.controls")

[1] 1000

attr(,"prevalence")

[1] 0.1214

attr(,"baseline.risk")

[1] 0.1

attr(,"relative.risk")

[1] 1.509

attr(,"odds-ratio")

[1] 1.6

attr(,"p")

[1] 0.3

attr(,"q")

[1] 0.2

attr(,"ncp")

[1] 12.63

attr(,"B")

[1] 1e+06

attr(,"alphac")

[1] 7.735e-09

attr(,"c1.opt")

[1] 0.6792
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attr(,"ps")

bb Bb BB

control 0.4986 0.4155 0.08587

case 0.4274 0.4527 0.11988

A brief explanation of the attributes is shown in Table 1. Other at-
tributes are as given in the function call, except that odds ratios and rela-
tive risks are both shown and baseline risk and prevalence are both shown
regardless of which were specified.

Table 1. Attributes returned by cc.power()

ncp the non-centrality parameter (12.63)
alphac the value of α threshold corresponding

to the given Bayes factor (7.73× 10−9)
c1.opt c1.opt = 0.679 is the weight placed

on the first odds ratio (Bb vs bb) and
1−c1.opt = 0.321 is the weight placed
on the second odds ratio (BB vs Bb)
when estimating the odds ratio in the
additive model

ps table of expected marker allele frequen-
cies. A 2x3 table for the additive or
general models and a 2x2 table (with
functionally equivalent genotypes amal-
gamated) for the dominant or recessive
models.

4. Design of Association Studies

Here we discuss application to design of GWAS for detecting genomic associa-
tions, including elicitation of the prior parameters.

4.1. Genomic associations. The genome contains many (e.g. 3×109 for humans)
loci. Typically about 1/1000 loci are polymorphic, i.e. differ between individuals
in a species. For a given trait, only a small proportion or polymorphic loci will be
causal loci with practically significant effects on the trait.

4.2. Genome-wide association studies. Genome-wide association studies (GWAS)
aim to detect associations between SNP markers spaced along the genome and
causal loci. If a marker is in linkage disequilibrium with a causal locus, then the
marker genotypes will be associated with trait variation. The strength of association
depends on the size of the causal effect and the linkage disequilibrium coefficient
D.

4.3. Prior elicitation. Prior odds and prior variance for the effect(s) being tested
are critical factors in determining the Bayes factor required. Ascertaining the prior
is, inevitably, subjective. This does not mean, however, that we can ‘choose’ the
prior arbitrarily. The prior should represent our prior knowledge before carrying
out the experiment or observing the data. This is a subjective Bayesian approach
as opposed to ‘objective’ Bayesian approaches that try to use a ‘default’ or non-
informative prior. Using a = 1 in cc.power() is an example of a default prior.
While it is useful to have a good conservative default it is not recommended in
general to always use this. The process of ascertaining the prior is known as prior
elicitation.
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Prior elicitation (O’Hagan et al., 2006), where prior information is elicited from
experts is an important but neglected area. This is likely to become more important
(and interesting) as more associations are detected.

In general the prior odds depend on the number of loci expected to significantly
affect the trait (ignoring effects that are undetectable), the number of markers and
the extent of linkage disequilibrium. If marker spacing is comparable to the extent
of LD, then we consider the prior probability per interval of this size around a
marker. If there are fewer markers the number of markers is limiting, and we again
consider the prior probability per interval of this size around a marker. If there are
substantially more markers we may increase the minimum D that we design for.

Prior odds also depend on previous results from the same or similar loci and/or
traits in the same or related populations and/or species. In practice one never
observes true replicates but experiments, data or information that have varying
degrees of relevance to the experiment or decision in question. What weight to
give various elements of information is the subjective aspect, where experts can be
useful. This is central to the application of statistics in general since we are always
trying to infer or predict something in a new or similar but different situation using
information from past observations.

4.4. Genome scans. First consider the scenario as in Table 2 with approximately
one marker per interval of length equal to the extent of LD.

Table 2. Determination of prior odds and Bayes factor required.

Bayes factor from previous studies 500
genome length 3 × 109

expected number of loci 10
extent of LD 6kb
number of SNP markers 500000
prior odds per marker 6 × 103/3 × 109 = 1/500000
posterior odds required 20:1
combined Bayes factor required 106

study Bayes factor required 106/500 = 2000

Note:

• The posterior probability per marker is the probability that the marker is
within the extent of LD of a causal marker.

• We are free to choose the criterion for defining the extent of LD, e.g. D′ >
0.5 or r2 > 0.8. However if choosing a lower threshold this will reduce
power, and if choosing a higher threshold this will result in smaller sized
intervals requiring more markers to be genotyped for acceptable coverage.

• Conversely if we have more markers we may use a higher value of D in the
power calculations.

• The expected number of loci, should be the expected number of loci with de-
tectable size effects. If the experiment is sufficiently powerful the expected
number of effects may increase. For example, if the intended experiment
is powerful enough to detect effects explaining 1% of the phenotypic vari-
ance and the trait heritability is 30%, there can be at most 30 such effects.
In practice the amount of variation explained by additive effects of 1% or
greater may be less, e.g. only 10%, due to the possible existence of many
smaller effects, and non-additive variation, justifying and expected number
of loci of 10.
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• We also need to consider the allele frequencies for loci we wish to detect.
Rare alleles may be poorly tagged by common SNPs e.g. from the HapMap
project (www.hapmap.org) (e.g Yang et al. (2010)). Large recessive effects
may not yet be detected Ball (2011), e.g. to detect an effect of odds ratio
3 with minor allele frequency 5% when tagged by a marker with allele
frequency 10% at D′ = 0.5 requires over 106 cases and controls:
> cc.design(B=1e6, OR=3, Dprime=0.5, p=0.1, q=0.05,

+ baseline.risk=0.1, n.cases=1000, n.controls=1000,

+ model="recessive", a=1, power=0.8,

+ print.power.curve=FALSE)

688379 controls and 688379 cases for power 0.8

n n.controls n.cases

1376758 688379 688379

Recent analyses for human height (e.g. Gudbjartsson et al. (2008), Lango Allen
et al. (2010),Weedon et al. (2008)) have of the order of 15,000 samples in combined
meta-analyses. Hundreds of putative effects were identified although few were repli-
cated across all three analyses. For example, (Weedon et al., 2008, Table 1, p577)
reported 20 SNP effects with combined p-values P < 5 × 10−7 putatively collec-
tively explaining 3% of the variance from a meta-analysis of human height. We
re-examine the power, using a prior odds based on 100 expected loci:

> ld.power(B=5e5, h2=0.001, D=0.25, p=0.5, q=0.5, n=13665, phi=1)

n power

[1,] 13665 0.003232

attr(,"parms")

p q D h2

5.0e-01 5.0e-01 2.5e-01 1.0e-03

phi Bf missclass.rate

1.0e+00 5.0e+05 0.0e+00

we see the power is low to obtain respectable posterior odds, even for a well tagged
locus, hence these effects are not robustly detected. At the very least, the effects
need to be re-estimated in an independent population.

The Bayes factor corresponding to the threshold used is:

> calc.Balpha.ABF(alpha=5e-7, n=13665, a=1)

[1] 2617

representing strong evidence, but not strong enough for respectable posterior odds
without replication at a similar strength of evidence.

The sample size required for good power is from 50,000 for a well tagged locus
(r2 ≈ 1) or 110,000 for a less well tagged locus (r2 = 0.5) or 460,000 for a poorly
tagged locus (r2 = 0.12):

> ld.design(B=1e5, h2=0.001, D=0.25, p=0.5, q=0.5, power=0.8,

+ phi=1)

[1] 52410

> # sample size for a less well tagged locus, D=Dmax, MAF=0.05

> ld.design(B=1e5, h2=0.001, D=0.045, p=0.1, q=0.05, power=0.8,

+ phi=1, nmin=50000, nmax=200000)

[1] 108472

> # sample size for a poorly tagged locus, D=Dmax/2, MAF=0.05

> ld.design(B=1e5, h2=0.001, D=0.045/2, p=0.1, q=0.05, power=0.8,

+ phi=1, nmin=50000, nmax=500000)

[1] 466401
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Note the use of arguments nmin and nmax here. These values should be chosen
to bracket the required sample size, as interpolation is used on values calculated by
ld.power() for sample sizes from nmin to nmax. This may require some iteration.
Having found a solution, the solution can be refined by specifying nmin and nmax

closer to the solution.

4.5. Candidate gene studies. ldDesign applies equally well to candidate gene
studies, where polymorphisms are sourced from ‘candidate genes’ considered likely
to affect the trait. Depending on the trait and candidate gene, the polymorphism
may have higher prior probability than a random genomic polymorphism.

As a default starting value we may assume similar prior odds to a genome scan.
Substantially higher prior odds than this require some justification. Just being in

a gene or associated promoter alone does not necessarily increase prior odds by much
since there are ∼ 50, 000 genes and a number (e.g. up to ∼ 10 ??) of polymorphisms
in each gene, and we have to allow for the possibility that a proportion of causal
effects are not in the candidate gene set.

A polymorphism mapping into a QTL region may have higher prior odds de-
pending on strength of evidence for the QTL, the posterior distribution for QTL
location, and relative position of the polymorphism and the QTL (Ball, 2007b).

Bioinformatics, e.g. where similar sequences have been found in other species,
and knowledge of gene action and pathways that affect the trait, may be useful.

4.6. Dense markers and whole genome sequencing. With dense markers or
whole genome sequencing we may be in the luxurious position of having multiple
or many markers within the extent of LD of any given marker or causal locus. This
means there may be multiple markers within the extent of LD of a causal locus
competing to explain the variation. A work-around is to consider the prior odds
for a single representative marker within the interval.

Whole genome sequencing raises additional challenges e.g. errors in marker geno-
typing when coverage is low or limited sample sizes when coverage is high. The
argument missclass.rate in ld.power() can be used where there is an estimate
of genotyping error rate.

On the ‘+’ side of the ledger having whole genome sequences means we will have
the causal locus, i.e. some polymorphism in complete LD with a causal locus. We
just have to identify which ones. This should give more power, quantifying this is
a topic for future research.

4.7. Choice of population. Where sample size is limited experimenters may be
better off choosing a less diverse population, e.g. an isolated Finnish or island
population with a relatively small number of founders, rather than a diverse African
population.

The tradeoff is lower resolution but smaller sample size and number of markers
needed to obtain that resolution. This means more power to detect effects but
a number of effects (particularly rare variants) may not be present in the small
population. If studying a disease, the disease would obviously have to be present
in the study population. A population with high prevalence may be promising.

Effects could then be validated in other populations requiring genotyping only a
limited number of markers.

4.8. Choice of trait. A trait closer to basic biochemistry e.g. resulting from a
known biochemical pathway is likely to be influenced by only a moderate number
of genes. Prior odds would be much higher for polymorphisms in the known genes.
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Human height or traits such as tree growth rate or wood density may be influ-
enced by many small effect genes. Putative associations from GWAS to date explain
only a small proportion of the variation in human height and complex diseases.

Some of these may in fact be larger effect rare alleles poorly tagged by current
SNPs (cf. the example in subsection 4.4).

4.9. Multi-stage trials and replication. ldDesign does not yet cater explicitly
for multi-stage designs. However, when detecting and validating effects in several
stages we may partition the Bayes factor required among stages, e.g. if B > 1000
in each of 2 independent samples this combines, conservatively, to give B > 106, of
the order required for genomic associations.

It is not sufficient just to say the results have been replicated for some α level
(which is usually much less than the 5 × 10−7 used in genome scans circa 2007
(e.g. WTCCC2007)). It is vital that the replication sample(s) have a sufficiently
large Bayes factor so that the combined Bayes factor is large enough to achieve the
required posterior odds. Since the p-value 5 × 10−7 corresponds to a Bayes factor
around 1000 this value replicated twice would be of the order of magnitude needed.

The current de facto standard of 5 × 10−8 is the threshold for the combined
p-value over all replicates. This corresponds to a Bayes factor of around 24000 for
Weedon et al. (2008)(n = 13665) or a Bayes factor of around 9000 if n = 100, 000:

> calc.Balpha.ABF(alpha=5e-8, n=13665, a=1)

[1] 24245

> calc.Balpha.ABF(alpha=5e-8, n=100000, a=1)

[1] 8971

5. Functions useful for general Bayesian analysis

5.1. SS.oneway.bf(). This function, used by ld.power(), calculates the Spiegel-
halter and Smith (1982) Bayes factor corresponding to a one-way analysis of vari-
ance with given group sizes and F -statistic:

B =

(

1 + m−1

n−mF
)n/2

√

m+1

2n

∏m
i=1

ni

(10)

where m is the number of groups, ni the sample size within the ith group, n =
∑

ni

is the total sample size. This can be used in general statistical applications where
a Bayesian measure of evidence is desired, either for retrospective analysis where
p-values have been used or where it is convenient to use existing software like R
analysis of variance. We find this frequently useful as a quick and easy way to
complement a frequentist analysis with a Bayesian analysis measure of evidence,
that does not seem to be generally realised.

Consider the following R analysis of variance for the Oats dataset:

> library(nlme)

> data(Oats)

> summary(aov(yield ~ nitro* Variety + Error(Block), data=Oats))

Error: Block

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

nitro 1 19536 19536 81.52 7.6e-13 ***
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Variety 2 1786 893 3.73 0.03 *

nitro:Variety 2 168 84 0.35 0.71

Residuals 61 14620 240

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> with(Oats, table(Variety))

Variety

Golden Rain Marvellous Victory

24 24 24

Noting that there are 3 groups (3 varieties) of size 24, and an F -statistic of 3.73,
the Spiegelhalter and Smith (1982) Bayes factor for testing and effect of Variety
is calculated as:

> SS.oneway.bf(group.sizes=c(24,24,24), Fstat=3.73)

[1] 2.055

A Bayes factor of 2 indicates that the evidence for Variety is very weak in-
deed. Traditionally this would have been regarded as ‘significant’. Early users of
significance tests were fortunate that their prior odds were generally high.

Note: Although not strictly a one-way analysis of variance, the method can nev-
ertheless be applied here if it is assumed the F -statistic represents a comparable
strength of evidence to the same F -statistic obtained without the additional ex-
perimental structure. (This seems reasonable here, and underlies most frequentist
analysis, but don’t take our word for it! We leave it to the reader to find a proof
or derive an adjustment.)

5.2. oneway.bf.alpha(). This function, used by ld.power(), calculates the Spiegel-
halter and Smith (1982) Bayes factor corresponding to a given α threshold. For
example: the Bayes factors corresponding to α = 0.05, 0.01, 0.001 for testing for an
effect of Variety in the Oats data are calculated as:

> oneway.bf.alpha(n=72, group.sizes=c(24,24,24), alpha=c(0.05,0.01,0.001))

[1] 1.163 6.234 68.908

5.3. calc.alphaB.ABF(). This function, used by cc.power() calculates the α thresh-
old corresponding to a given Bayes factor when using asymptotic approximate Bayes
factors, for given prior and sample size. For example, to calculate the α significance
level corresponding to a Bayes factor B = 1000 for a sample size n = 20, 100, 1000,
with prior information equivalent to a single sample point (a = 1):

> calc.alphaB.ABF(B=1000, n=20, a=1, alpha.start=1e-3)

[1] 2.582e-05

> calc.alphaB.ABF(B=1000, n=100, a=1, alpha.start=1e-3)

[1] 1.600e-05

> calc.alphaB.ABF(B=1000, n=1000, a=1, alpha.start=1e-3)

[1] 5.247e-06

Note the decreasing thresholds with increasing sample size. Early users of signifi-
cance tests were fortunate that their prior odds were generally high and their sample
sizes relatively low.

It is sometimes useful to specify an approximate starting value (alpha.start)
as above. The starting value is used as an initial upper bound in searching for a
solution. If the function returns NA, try a higher or lower starting value.

The function uses interpolation to find a solution. The solution can be refined
by choosing a starting value slightly above the solution and using a smaller value
of reduction.factor e.g.
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> calc.alphaB.ABF(B=1000, n=1000, a=1, alpha.start=6e-6,

+ reduction.factor=1.05)

[1] 5.247e-06

This makes little difference in this case confirming the accuracy of the initial solu-
tion.

5.4. calc.Balpha.ABF(). This function is the inverse of calc.alphaB.ABF() i.e.
calculates the approximate Bayes factor corresponding to a given α level for given
prior and sample parameters.

> calc.Balpha.ABF(alpha=0.01, n=100, a=1)

[1] 2.657

> calc.alphaB.ABF(B=2.657, n=100, a=1, alpha.start=0.02)

[1] 0.01000

Note: Approximate Bayes factors for genetic analysis similar to those used in
calc.Balpha.ABF() were first derived by the author in (Ball, 2007a, p166–167) for
S-TDT tests and subsequently by Wakefield (2007) for asymptotically normal test
statistics. Our derivation uses the Savage–Dickey approximation (cf. Ball (2011)),
which gives the Bayes factor for nested models in certain conditions as a ratio of
prior to posterior at zero. Assuming a test statistic with sampling variance 1/n and
a prior with mean 0 and variance 1/a equivalent to a sample points the approximate
Bayes factor is given as:

B ≈
√

a√
n + a

exp
( n2Z2

n

2(n + a)

)

(11)
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