
marked Package Vignette

Jeff L. Laake, Devin S. Johnson, and Paul B. Conn

Mar 27, 2013

Summary

We describe an R package called marked for analysis of mark-recapture data. Cur-
rently, the package is capable of fitting Cormack-Jolly-Seber (CJS) models with
maximum likelihood estimation (MLE) and Bayesian Markov Chain Monte Carlo
(MCMC) methods. In addition, Jolly-Seber (JS) models can be fitted with MLE.
Additional models will be added as the package is updated. We provide some exam-
ple analyses with the well-known dipper data and compare run timing and results
with MARK. For analysis with several thousand or more capture histories and sev-
eral time-varying covariates, the run times with marked are substantially less. By
providing this open source software, we hope to expand the analyst’s toolbox and
enble the knowledgeable user to understand fully the models and software.

Introduction

Currently the most comprehensive software for analysis of capture-recapture data
is MARK (White and Burnham 1999). MARK is a FORTRAN program for fitting
capture-recapture models that are manually constructed with a graphical user in-
terface. RMark (Laake and Rexstad 2008) is an R package that constructs models
for MARK with user-specified formulas to replace the manual model creation. With
RMark and MARK most currently available capture-recapture models can be fit-
ted and manipulated in R. Additional R packages for analysis of capture-recapture
data have been made available including Rcapture (Baillargeon and Rivest 2007),
mra (McDonald et al. 2005), secr (Borchers and Efford 2008), BTSPAS (Schwarz
et al. 2009), SPACECAP (Royle et al. 2009), and BaSTA (Colchero et al. 2012).
Rcapture fits closed and open models in a log-linear framework. The mra package

1

fits Cormack-Jolly-Seber (CJS) and the Huggins closed model with a “regression ap-
proach” to model specification. The secr and SPACECAP packages provide spatially
explicit modeling of closed capture-recapture data and BTSPAS fits time-stratified
Petersen models in a Bayesian framework. BaSTA estimates survival with covariates
from capture-recapture/recovery data in a Bayesian framework when many individ-
uals are of unknown age. Each package is designed for a unique niche or structure.
We believe these alternative packages in R are useful because they expand the an-
alyst’s toolbox and the code is open source which enables the knowledgeable user
to understand fully what the software is doing. Also, this independent innovation
provides testing for existing software and potential gains in developer knowledge to
improve existing software.

We developed this R package we named marked for analysis with marked animals
in contrast to the R package unmarked (Fiske and Chandler 2011) that focuses
on analysis with unmarked animals. The original impetus for the package was to
implement the CJS model using the hierarchical likelihood construction described by
Pledger et al. (2003) and to improve on execution times with RMark/MARK (White
and Burnham 1999;Laake and Rexstad 2008) for analysis of our own large data sets
with many time-varying individual (animal-specific) covariates. Subsequently, we
implemented the Jolly-Seber model with the Schwarz and Arnason (1996) POPAN
structure where the hierarchical likelihood construction idea extended to the entry of
animals into the population. We also added a Bayesian Markov Chain Monte Carlo
(MCMC) implementation of the CJS model based on the approach used by Albert
and Chib (1993) for analyzing binary data with a probit regression model.

Background

We assume you know and understand mark-recapture terminology and models. For
background material on capture-recapture and MARK refer to http://www.phidot.

org/software/mark/docs/book/. In the appendix, we provide a comparison of the
MARK and marked data and model structures and details on likelihood construction
for the CJS and JS models. Our focus in the vignette will be to provide examples
on the use of marked and simulation with timing differences.

Dipper data example

Anyone who has used RMark will find it easy to use marked because it has nearly
identical syntax and structure with a few minor differences. The structure of the

2

input dataframe for marked is also identical to RMark. Any dataframe with a char-
acter field named ch containing the capture history will work with marked. If the
capture history represents more than one animal then the dataframe should contain
the additional numeric field named freq, which is the number of animals represented
by that capture history. However, it is not necessary to accumulate capture histories
in the input data because the process.data step will accumulate duplicated records
by default. There can be any number of additional fields, some of which can be used
as covariates in the analysis. Some of the functions in marked and RMark have the
same name (e.g., process.data, make.design.data), so only one of the packages should
be loaded in R to avoid aliasing and resulting errors.

We will start by fitting the simplest CJS model with constant φ and p. The
dipper data contain 294 records with the capture history (ch) and a factor variable
sex with values Female or Male. Models are fitted with the function crm (capture-
recapture model). After a call to library to attach the package, and data to retrieve
the dipper data from the package, the model is fitted with crm and assigned to the
object named model :

> library(marked)

> data(dipper)

> model=crm(dipper)

255 capture histories collapsed into 53

Computing initial parameter estimates

Accumulating capture histories based on design. This can take awhile.

53 capture histories collapsed into 31

Starting optimization for 2 parameters

Elapsed time in minutes: 0.0143

For this example, we are using the default CJS model and a default formula of ˜1
(constant) for each parameter. The function crm calls three functions in turn: 1)
process.data to process the data, 2) make.design.data to create the list of parameter-
specific dataframes, and 3) cjs, to fit the CJS model with the defined formulas. The
code reports progress and some results as it executes. We’ll suppress these messages
in later examples but show them here to explain some of the messages. When it
processes the data, it collapses the 294 rows into 55 which are the unique number of
rows in the data including ch and sex. After processing, it creates the design data and
the design matrices for each parameter. Prior to the optimization, it also collapses
the histories further from 55 to 32 which it can do here because sex is not used

3

in either formula. The final steps are to compute initial values for the parameters
and find the MLEs with the selected optimization method(s). As it progresses, the
value of -2log-likelihood is reported every 100 evaluations of the objective function.
It is not shown above because there were fewer than 100 function evaluations for
this example. A brief listing of the model results is obtained by typing model which
invokes the function print.crm because class(model)=”crm”.

> model

crm Model Summary

Npar : 2

-2lnL: 666.8377

AIC : 670.8377

Beta

Estimate

Phi.(Intercept) 0.2420302

p.(Intercept) 2.2270627

The output includes the number of parameters (npar), -2log-likelihood, Akaike’s
Information Criterion (AIC), and the estimates for φ and p.

Estimates of precision are not shown because the default is hessian=FALSE and
it must be set to TRUE to get estimates of precision. This default was chosen because
the marked package does not count parameters from the hessian, so there is no need
to compute it for each model as with MARK. The hessian may never be needed if the
model is clearly inferior. Also, this allows the model to be fitted again from the final
or different estimates to check for convergence without the penalty of computing the
hessian at the final values each time. Separate functions (cjs.hessian and js.hessian)
are provided to compute and store in the model the variance-covariance matrix from
the hessian at the final estimates as shown below:

> model=cjs.hessian(model)

> model

crm Model Summary

Npar : 2

-2lnL: 666.8377

4

AIC : 670.8377

Beta

Estimate se lcl ucl

Phi.(Intercept) 0.2420302 0.1020079 0.04209475 0.4419656

p.(Intercept) 2.2270627 0.3252176 1.58963625 2.8644892

Once the hessian has been computed, printing the model will display the standard
errors and 95% normal confidence intervals for the parameter estimates on the link
scale (e.g., logit for φ and p). You can set hessian=TRUE in the call to crm if you
want to compute it when the model is fitted.

You’ll never fit only one model to data, so the most efficient approach is to call
process.data and make.design.data separately and pass the results to crm so they
can be used for each fitted model as shown below:

> dipper.proc=process.data(dipper)

> dipper.ddl=make.design.data(dipper.proc)

> Phi.sex=list(formula=~sex)

> model=crm(dipper.proc,dipper.ddl,model.parameters=list(Phi=Phi.sex),

+ accumulate=FALSE)

Collapsing capture history records is controlled by the accumulate arguments in pro-
cess.data and crm. In the above example, accumulate was TRUE for the process.data
step but it was turned off for the model fit because it would have not resulted in
any accumulation with the sex term in the model. Typically the default values are
optimal but if you are fitting many models and most are complex models, then it
may save time to accumulate in the process.data step but not for the model fitting
step.

If you fit more than a few models, use crm.wrapper rather than crm. It fits a
set of models and returns a list with a model selection table that summarizes the
fit of all the models. By default, crm.wrapper stores the model results externally
and in the list it only stores the names of the files containing the models. If you
set external=FALSE, then it will store the model results in the list as shown in the
example below.

> dipper.proc=process.data(dipper)

> dipper.ddl=make.design.data(dipper.proc)

> fit.models=function()

+ {

5

+ Phi.sex=list(formula=~sex)

+ Phi.time=list(formula=~time)

+ p.sex=list(formula=~sex)

+ p.dot=list(formula=~1)

+ cml=create.model.list(c("Phi","p"))

+ results=crm.wrapper(cml,data=dipper.proc, ddl=dipper.ddl,

+ external=FALSE,accumulate=FALSE)

+ return(results)

+ }

> dipper.models=fit.models()

The model selection table is displayed with:

> dipper.models

model npar AIC DeltaAIC weight neg2lnl

1 Phi(~sex)p(~1) 3 672.6762 0.000000 0.4241510 666.6762

3 Phi(~time)p(~1) 7 673.7301 1.053881 0.2504224 659.7301

2 Phi(~sex)p(~sex) 4 674.1518 1.475609 0.2028131 666.1518

4 Phi(~time)p(~sex) 8 675.1583 2.482104 0.1226135 659.1583

convergence

1 0

3 0

2 0

4 0

A non-zero value for convergence means the model did not converge. If the models
are not stored externally, an individual model can be extracted from the list with
either the model number which is listed in the model table or with the model name
which is the model formula specifications pasted together as shown below:

> dipper.models[[1]]

crm Model Summary

Npar : 3

-2lnL: 666.6762

AIC : 672.6762

6

Beta

Estimate

Phi.(Intercept) 0.20364163

Phi.sexMale 0.07928539

p.(Intercept) 2.22748575

> dipper.models[["Phi.sex.p.dot"]]

crm Model Summary

Npar : 3

-2lnL: 666.6762

AIC : 672.6762

Beta

Estimate

Phi.(Intercept) 0.20364163

Phi.sexMale 0.07928539

p.(Intercept) 2.22748575

If the models are stored externally, they can be retrieved with the function load.model
as shown below:

> model=load.model(dipper.models[[1]])

> model

crm Model Summary

Npar : 3

-2lnL: 666.6762

AIC : 672.6762

Beta

Estimate

Phi.(Intercept) 0.20364163

Phi.sexMale 0.07928539

p.(Intercept) 2.22748575

To make the analysis more interesting, we will add some covariates for φ and
p. For φ, we will add a static covariate weight which is a random value between 1

7

and 10. For φ, we also add a time-varying covariate Flood which is the same for all
dippers but varies by time with a 0 value for times 1,4,5,6 and a value of 1 for times
2 and 3. For p, we will add a time-varying individual covariate td (trap dependence)
which is the 0/1 value of the capture from the previous occasion. Static covariates
are entered in the dataframe in a single column and time-varying covariates have
a column and name for each occasion with the appropriate time appended at the
end of each name. In this case, Flood will be Flood1,...,Flood6 and for td it will be
td2,...,td7 because time for φ is based on the time at the beginning of the interval
and for p it is the time for the capture occasion. Below the names of the covariates
in the dataframe are shown after they are created:

> data(dipper)

> # Add a dummy weight field which are random values from 1 to 10

> set.seed(123)

> dipper$weight=round(runif(nrow(dipper),0,9),0)+1

> # Add Flood covariate

> Flood=matrix(rep(c(0,1,1,0,0,0),each=nrow(dipper)),ncol=6)

> colnames(Flood)=paste("Flood",1:6,sep="")

> dipper=cbind(dipper,Flood)

> # Add td covariate, but exclude first release as a capture

> # splitCH and process.ch are functions in the marked package

> td=splitCH(dipper$ch)

> td=td[,1:6]

> releaseocc=process.ch(dipper$ch)$first

> releaseocc=cbind(1:length(releaseocc),releaseocc)

> releaseocc=releaseocc[releaseocc[,2]<nchar(dipper$ch[1]),]

> td[releaseocc]=0

> colnames(td)=paste("td",2:7,sep="")

> dipper=cbind(dipper,td)

> # show names

> names(dipper)

[1] "ch" "sex" "weight" "Flood1" "Flood2" "Flood3" "Flood4"

[8] "Flood5" "Flood6" "td2" "td3" "td4" "td5" "td6"

[15] "td7"

Next we process the data with the default CJS model and make the design data
with parameters that identify which covariates to use for each parameter. By default,
each covariate in the dataframe is added to the design data of each parameter but

8

the argument static can be used to limit the variables appended and the time-varying
argument is needed to identify which covariates vary by time and should be collapsed
into a single column. If we did not include the static argument for φ, then weight
and each of the td columns would also be included and for p, weight and each of
the Flood columns would be included. If td was added to the time-varying argument
for φ and Flood was added for p, then we would have also needed to add td1 and
Flood7 due to the different time labels for φ and p. We have no intention to use those
variables so it is best to specify what is needed. After specifying the design lists for
φ and p, they are used in the call to make.design.data and the resulting dataframe
names are shown below:

> # Process data

> dipper.proc=process.data(dipper)

> # Create design data with static and time varying covariates

> design.Phi=list(static=c("weight"),time.varying=c("Flood"))

> design.p=list(static=c("sex"),time.varying=c("td"),

+ age.bins=c(0,1,20))

> design.parameters=list(Phi=design.Phi,p=design.p)

> ddl=make.design.data(dipper.proc,parameters=design.parameters)

> names(ddl$Phi)

> names(ddl$p)

Next we define the models for φ and p that we want to fit and call crm.

> Phi.sfw=list(formula=~Flood+weight)

> p.ast=list(formula=~age+sex+td)

> model=crm(dipper.proc,ddl,hessian=TRUE,

+ model.parameters=list(Phi=Phi.sfw,p=p.ast))

Below we create a range of data values to compute predicted φ values and then
plot the results for Flood and non-Flood years for a range of weights. Not surpris-
ing that the slope for weight is nearly 0 because the weight values were generated
randomly.

> newdipper=expand.grid(sex=c("Male","Female"),weight=1:10,Flood1=0,

+ Flood2=1,Flood3=1,Flood4=0,Flood5=0,Flood6=0,td2=0,td3=c(0,1),

+ td4=c(0,1),td5=c(0,1),td6=c(0,1),td7=c(0,1))

> reals=predict(model,newdata=newdipper,se=TRUE)

> library(ggplot2)

9

> realsPhiFlood=factor(realsPhiFlood,labels=c("Non-flood","Flood"))

> ggplot(reals$Phi,aes(weight,estimate,ymin=lcl,ymax=ucl))+

+ geom_errorbar(width=0.2)+geom_point()+geom_line()+

+ xlab("\nWeight")+ylab("Survival\n")+facet_grid(Flood~.)

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

N
on−

flood
F

lood

2.5 5.0 7.5 10.0

Weight

S
ur

vi
va

l

Fitting an MCMC CJS model (probitCJS) to the dipper data is quite similar to
the MLE models with the added arguments burnin and iter to control the number of
burnin iterations and the number of iterations to perform after the burnin process.
The following fits Phi(˜Flood)p(˜sex+time) with low values set for burnin and iter
to reduce the vignette build time.

> data(dipper)

> # Add Flood covariate

> Flood=matrix(rep(c(0,1,1,0,0,0),each=nrow(dipper)),ncol=6)

> colnames(Flood)=paste("Flood",1:6,sep="")

10

> dipper=cbind(dipper,Flood)

> design.parameters=list(Phi=list(time.varying="Flood"))

> model.parameters=list(Phi=list(formula=~Flood),

+ p=list(formula=~time+sex))

> MCMCfit=crm(dipper,model="probitCJS",

+ model.parameters=model.parameters,

+ design.parameters=design.parameters,

+ burnin=1000,iter=5000)

Computing initial parameter estimates

probitCJS MCMC beginning...

p model = ~ time + sex

phi model = ~ Flood

Approximate time till completion: 0.6 minutes

10 % completed

20 % completed

30 % completed

40 % completed

50 % completed

60 % completed

70 % completed

80 % completed

90 % completed

100 % completed

Elapsed time in minutes: 0.8665

The results shown are the mode,mean,standard deviation, and 95% highest pos-
terior density interval for the beta parameters and unique φ and p real values.

> # beta estimates

> MCMCfit

crm Model Summary

Npar : 9

Beta

mode mean sd CI.lower

11

Phi.(Intercept) 0.2749370 0.2912696 0.08973318 0.1106013

Phi.Flood -0.3884804 -0.3753850 0.14141597 -0.6533261

p.(Intercept) 0.4140836 0.5698078 0.44489929 -0.2487042

p.time3 0.5139672 0.6586387 0.59991937 -0.4850090

p.time4 0.6657875 0.6543644 0.55642292 -0.4855225

p.time5 0.6820132 0.6657598 0.51173699 -0.3420197

p.time6 0.8461588 0.7910958 0.54636214 -0.3259645

p.time7 0.4996805 0.5179868 0.64625588 -0.7060412

p.sexMale 0.2548546 0.2671861 0.29836671 -0.2965319

CI.upper

Phi.(Intercept) 0.4628545

Phi.Flood -0.1025575

p.(Intercept) 1.4814044

p.time3 1.8677067

p.time4 1.7002608

p.time5 1.6692771

p.time6 1.8130904

p.time7 1.8843851

p.sexMale 0.8708236

> # real estimates

> MCMCfit$results$reals

$Phi

Flood mode mean sd CI.lower CI.upper

1 0 0.6088605 0.6141262 0.03412873 0.5440337 0.6782657

2 1 0.4674608 0.4666748 0.04259277 0.3869100 0.5513335

$p

time sex mode mean sd CI.lower CI.upper

1 2 Female 0.7596788 0.6979662 0.14002079 0.4240942 0.9427035

2 2 Male 0.8507216 0.7765668 0.12293162 0.5375297 0.9796021

3 3 Female 0.9379705 0.8684767 0.08557616 0.7050317 0.9978447

4 3 Male 0.9593349 0.9113565 0.06872156 0.7728171 0.9993625

5 4 Female 0.9122068 0.8747917 0.07150282 0.7386733 0.9874568

6 4 Male 0.9522966 0.9177248 0.05605280 0.8091453 0.9970443

7 5 Female 0.9078881 0.8806079 0.06007884 0.7688724 0.9853112

8 5 Male 0.9539749 0.9223662 0.04762355 0.8303261 0.9942904

9 6 Female 0.9305683 0.8999823 0.05843383 0.7853789 0.9919248

12

10 6 Male 0.9636290 0.9360712 0.04520629 0.8431578 0.9988252

11 7 Female 0.8342433 0.8330626 0.09818177 0.6618383 0.9998414

12 7 Male 0.9369966 0.8887917 0.07566673 0.7475864 0.9996799

Validation and timing

For a comparison of execution times and to validate the results against RMark/MARK,
we replicated the dipper data twenty-fold so there were roughly 6,000 records, added
a random weight field rounded to values 1 to 10, added individual time-varying co-
variates td and age as shown in the following code:

> data(dipper)

> dipper=dipper[rep(1:nrow(dipper),each=20),]

> dipper$weight=round(runif(nrow(dipper),0,10),0)

> dipper$region=factor(floor(runif(nrow(dipper),1,10.99)))

> td=splitCH(dipper$ch)

> td=td[,1:6]

> colnames(td)=paste("td",2:7,sep="")

> dipper=cbind(dipper,td)

> age=t(apply(process.ch(dipper$ch,all=TRUE)$Fplus,1,cumsum))

> colnames(age)=paste("age",1:7,sep="")

> dipper=cbind(dipper,age)

We defined the following set of 8 models for φ and 7 models for p and fitted all 56
models with the marked and RMark packages.

> Phi.1=list(formula=~1)

> Phi.2=list(formula=~weight+age)

> Phi.3=list(formula=~time+weight)

> Phi.4=list(formula=~sex+weight)

> Phi.5=list(formula=~sex+weight+age)

> Phi.6=list(formula=~region+weight+age)

> Phi.7=list(formula=~region+time+weight)

> Phi.8=list(formula=~region+sex+weight)

> p.1=list(formula=~1)

> p.2=list(formula=~time)

> p.3=list(formula=~sex)

> p.4=list(formula=~td)

13

> p.5=list(formula=~td+sex)

> p.6=list(formula=~td+sex+age)

> p.7=list(formula=~region+sex+age)

>

>

The models were fitted with marked in 18.09 minutes with the R MLE implementa-
tion, 18.03 minutes with the ADMB implementation (use.admb=TRUE) and 22.91
minutes with RMark/MARK. MARK was using 7 threads for those timings and
marked was using only 1 thread. The time difference was larger prior to the recent
implementation of parallel processing in MARK. As more group structure and time-
varying individual covariates are added the time difference increases substantially.
As a comparison of convergence performance, we subtracted the -log-likelihood value
of the RMark model fit from the equivalent value from marked. A negative value
implies a better fit (convergence) for the marked package and vice-versa for a positive
value. With the initial runs of each package using their default starting values there
were 9, 11, and 4 models with a difference exceeding 0.01 for R (use.admb=FALSE)
versus ADMB (use.admb=TRUE), R versus MARK and ADMB versus MARK. The
range of -loglikelihood differences was from -9.2973E-03 to 1.3911E-01, -1.3142E+01
to 1.3611E-01, and -1.3142E+01 to 9.0000E-03 for the three comparisons respec-
tively. ADMB had the lowest negative log-likelihood for all of the models. The
models that differed had little model weight and either had confounded parameters
(e.g., Phi(time)p(time)) or had large negative or positive parameters as the real pa-
rameters approached boundaries of 0 or 1. With the exception of the 1 model in
MARK most converged to similar values in the initial run. We re-ran the set of
MARK models using starting values from the models fit with marked, and then ran
the marked models with starting values from the models re-fitted with MARK. Af-
ter re-running models the differences in -log-likelihood values between ADMB and
MARK ranged from -1.0000E-02 to 9.0000E-03 showing that the likelihood for both
packages are the same and the initial differences resulted from differences in starting
values and tolerance criterion.

References

Albert, J. and Chib, S. (1993). Bayesian-analysis of binary and polychotomous
reponse data. Journal of the American Statistical Association, 88(422):669–679.

Baillargeon, S. and Rivest, L. P. (2007). Rcapture: loglinear models for capture-
recapture in R. Journal of Statistical Software, 19(5):1–31.

14

Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood
methods for capture-recapture studies. Biometrics, 64(2):377–385.

Colchero, F., Jones, O. R., and Rebke, M. (2012). BaSTA: an R package for Bayesian
estimation of age-specific survival from incomplete mark-recapture/recovery data
with covariates. Methods in Ecology and Evolution, 3:466–470.

Fiske, I. J. and Chandler, R. B. (2011). unmarked : An R Package for fitting
hierarchical models of wildlife occurrence and abundance. 43(10):1–23.

Laake, J. and Rexstad, E. (2008). RMark – an alternative approach to building linear
models in MARK. In Cooch, E. and White, G. C., editors, Program MARK: A
Gentle Introduction.

Manly, B. F. J. and Parr, M. J. (1968). A new method of estimating population size,
survivorship, and birth rate from recapture data. Transactions of the Society for
British Entomology, 18:81–89.

McDonald, T. L., Amstrup, S. C., Regehr, E. V., and Manly, B. F. J. (2005). Exam-
ples. In Amstrup, S. C., McDonald, T. L., and Manly, B. F. J., editors, Handbook of
capture-recapture analysis, pages 196–265. Princeton University Press, Princeton,
New Jersey USA.

Pledger, S., Pollock, K. H., and Norris, J. L. (2003). Open capture-recapture models
with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics, 59(4):786–794.

Royle, J. A., Karanth, K. U., Gopalaswamy, A. M., and Kumar, N. S. (2009).
Bayesian inference in camera trapping studies for a class of spatial capture-
recapture models. Ecology, 90(11):3233–44.

Schwarz, C. J. and Arnason, A. N. (1996). A general methodology for the analysis
of capture-recapture experiments in open populations. Biometrics, 52(3):860–873.

Schwarz, C. J., Pickard, D., Marine, K., and Bonner., S. J. (2009). Juvenile salmonid
outmigrant monitoring evaluation, Phase II, september 2009. Unpublished Report
prepared for the Trinity River Restoration Program, Weaverville, CA.

White, G. C. and Burnham, K. P. (1999). Program MARK: survival estimation from
populations of marked animals. Bird Study, 46:120–139.

15

Appendix

Model construction

The manner in which models are constructed in the marked package is different than
in MARK. We start by describing how MARK specifies and constructs models and
how the marked package differs. The likelihood for CJS/JS is a product multinomial
and the multinomial cell probabilities are functions of the parameters. We will focus
on CJS which has two types of parameters: p (capture/recapture probability) and
φ (apparent survival). Each cell is associated with a release cohort and recapture
time (occasion). The cohorts can be further split into groups based on categorical
variables (e.g., sex). In MARK, a parameter index matrix (PIM) is used to specify
the parameters. Each cell can have a unique index for each type of parameter type
(e.g., p and φ). As a very simple example, we will consider a CJS model for a single
group with k=4 occasions. For this structure the PIMS are triangular with a row
for each cohort released at each occasion (time) and the column representing the
occasions (times) following the release. Using an unique index for each potential
parameter, the PIMS would be:

φ p
Time Time

Cohort 2 3 4 Cohort 2 3 4
1 1 2 3 1 7 8 9
2 4 5 2 10 11
3 6 3 12

The index 5 represents survival of the second release cohort between occasions 3 and
4 and index 8 represents recapture probability of the first release cohort on the third
occasion. A separate set of PIMS is created for each group defined in the data. For
this example, if there were g groups there would be g*12 possible unique indices.

Some reduced models with constraints on parameters can be constructed by modi-
fying the PIMS. For example, a model with constant survival and capture probability
(Phi(.)p(.)) could be specified by setting all of the PIM values to 1 for the φ PIM
and 2 for the p PIM. Not all reduced models can be specified by modifying the PIMS
and more generally reduced models are constructed with a design matrix which is a
set of linear constraints. Each parameter index specifies a row in the design matrix
which can be used to apply constraints on the parameters and to relate covariates
to the parameters. The PIM approach minimizes the work of manually creating a
design matrix by reducing the set of potential parameters and thus the number of

16

rows in the design matrix. For our example, there would be 12 rows in the design
matrix and each column in the design matrix (X) represents one of the parameters
in the vectorβ. If a logit link is used, the real parameters θ (e.g., φ and p in CJS)
are:

θ =
1

1 + exp(−Xβ)
(1)

To specify the Phi(.)p(.) model, the design matrix (X) would have 12 rows and 2
columns. The first column in X would have a 1 in the first six rows (indices 1-6) and
a 0 in the last six rows (indices 7-12). The second column would have 0 in the first
six rows and a 1 in the last 6 rows. The resulting model would have two parameters
with the first representing φ and the second p.

To automate the creation of design matrices with formula, the RMark package
creates “design data” which are data about the parameters like cohort, time, group,
and any related variables. However, having a single X becomes problematic with
individual covariates (variables that differ for animals in the same group/cohort). In
MARK, these individual covariates are entered into the design matrix as a covariate
name. When the real parameters are computed, the name of the covariate is replaced
with the value for an animal. If there are only a few individual covariates and small
number of animals, the time required for replacement and computation is minor, but
when the individual covariates differ in time, there is a different covariate name for
each time and most rows in the design matrix must be recomputed which results in
longer execution times for large models.

Even if computation time is not limiting, we agree with McDonald et al. (2005)
that the PIMs used in MARK can be quite confusing to the novice user because they
are an additional layer of abstraction from the data. PIMS are useful for manual
model creation, but they become an unnecessary nuisance when models and design
matrices are created with formula. Explicit PIMS can be avoided by having an
underlying real parameter for each animal for each occasion regardless of the release
cohort. It can be viewed as a rectangular matrix with a column for each animal
and a row for each occasion. That was the solution of McDonald et al. (2005) who
in their mra package use a rectangular covariate matrices as predictor for the real
parameters as in standard regression.

We use a similar approach that we believe is simpler for the user. For a specified
model structure (e.g., CJS), the marked package creates from the raw data, a list of
dataframes. Each dataframe contains the covariate data for a type of parameter in
the model (e.g., φ and p). The dataframes contain a record for each animal-occasion
and the columns are the covariates. Each record contains the covariate values for
that animal-occasion. If the covariate is constant across time then the value is the

17

same value in each record for an animal and the value may be different for each
occasion if the covariate is time-varying. Time-varying covariates must be named in
the raw data in a certain manner and specified in the processing step. Each column
in the dataframe is a vector that is equivalent to one of the covariate matrices in
mra; however, rather than specifying the model as a set of covariate matrices, the
standard R model formula (e.g., ˜time+sex) can be used with the dataframe for each
parameter which is even closer to a typical regression analysis.

A separate dataframe is created for each parameter to allow different data (e.g.,
time values for φ and p) and number of occasions (e.g., φ and p in CJS) for each
parameter. For φ and p in the CJS model, there are n(k− 1) rows for n animals and
k − 1 occasions for each parameter but time is labeled by 1 to k − 1 for φ and 2 to
k for p. For the JS model, there are n(k − 1) records for survival probability and
entry probability, but for capture probability there are nk records because the initial
capture event is modeled.

The parameter-specific animal-occasion dataframes are automatically created from
the user’s data which contain a single record per animal containing the capture his-
tory and any covariates. Some covariates like cohort, age, and time are generated
automatically for each record. Other static and time-varying covariates specified in
the data are added. Static variables (e.g., sex) are repeated for each occasion for each
animal. Time-varying covariates are specified in the data using a naming convention
of “vt” where “v” is the covariate name and “t” is a numeric value for the time (oc-
casion) (e.g., td19 contains the value of covariate td at time 19). The time-varying
covariates are collapsed in the animal-occasion dataframes to a single column with
the name identified by “v” and each record contains the appropriate value for the oc-
casion. All of this is transparent to the user who only needs to specify a dataframe,
the type of model (e.g., CJS), the variables that should be treated as time-varying,
and the formula for each parameter.

With the R function model.matrix, the formula is applied to the dataframe to
create the design matrix for each parameter (e.g, Xφ,Xp). They are each equivalent
to a portion of the design matrix in MARK for an animal which are then “stacked
on top of one another” to make a matrix for all animals. For maximum likelihood
estimation (MLE), equation 1 (or similar inverse link function) is applied and the
resulting vector is converted to a matrix with n rows and a column for each required
occasion (k− 1 or k). For Bayesian MCMC inference in marked, onlyXβ are needed
for updating.

18

Model fitting

Currently there are only three types of models implemented in the marked package:
1) CJS, 2) JS, and 3) probitCJS. The first two are based on MLE and the third is
an MCMC implementation as described by (Johnson et al in prep). The likelihoods
for CJS and JS were developed hierarchically as described by Pledger et al. (2003)
for CJS. For simplicity we only consider a single animal to avoid the additional
subscript. Let ω be a capture history vector having value ωj= 1 when the animal
was initially captured and released or recaptured at occasion j and ωj= 0 if the
animal was not captured on occasion j, for occasions j=1,...k. The probability of
observing a particular capture history Pr(ω) for CJS can be divided into two pieces
(Pr(ω) = Pr(ω1)Pr(ω2): 1) ω1 is the portion of the capture history from the initial
release (i.e., first 1) to the last occasion it was sighted (i.e., last 1), and 2) ω2 is from
the last 1 to the last occasion. Pr(ω1) is easily computed because the time period
when the animal was available for capture is known but Pr(ω2) is more difficult to
compute because it is unknown whether the animal survived until the last occasion,
or if it died, when it died. Typically, Pr(ω2) has been computed recursively (Nichols
2005). A hierarchical construction is more direct and understandable. As described
in Pledger et al. (2003), we let f be the occasion an animal was released and let d
be the occasion after which the animal is no longer available to be recaptured due to
death or termination of the study. Then Pr(ω| f) =

∑
d Pr(ω| f, d)Pr(d | f) where

the conditional probability Pr(ω| f, d) is:

Pr(ω| f, d) =
d∏

j=f+1

p
ωj

j (1− pj)(1−ωj)

and the departure probability is

Pr(d | f) =

(
d−1∏
j=f

φj

)
(1− φd)

Viewed in this way, it is possible to construct the likelihood values for all of the
observations with a set of matrices as we describe in the Appendix.

The hierarchical approach is easily extended to JS. Now the capture history has
an additional component with Pr(ω) = Pr(ω0)Pr(ω1)Pr(ω2) where ω0 is the portion
of the capture history vector from the first occasion (j=1) to the occasion the animal
was first seen (j=f). The Pr(ω0) is similar to Pr(ω2) but now it is e, the occasion
at which the animal was first available for capture (i.e., entered in the prior interval)
that is unknown. The CJS likelihood provides Pr(ω| f) so we only need to compute

19

Pr(ω0) =
∑f−1

e=0 Pr(ω0| e)πe where πe is the probability of an animal enters the

population in the interval between occasion e and e+1 (
∑k−1

e=1 πe = 1 − π0; pent
parameters in MARK and specified as β by Schwarz and Arnason (1996)) and

Pr(ω0| e) =

(
f−1∏
j=e+1

(1− pj)

)
pf

The JS likelihood also contains a component for animals that entered but were never
seen. The details for the JS likelihood construction are provided in the Appendix.

The MLEs are obtained numerically by finding the minimum of the negative
log-likelihood using optimization methods provided through the optimx R package
(Nash and). The default optimization method is BFGS but you can specify alternate
methods and several methods used independently or in sequence as described by Nash
and (). Initial values for parameters can either be provided as a constant (e.g., 0)
or as a vector from the results of a previously fitted similar model. If initial values
are not specified then they are computed using general linear models (GLM) that
provide approximations. Using the underlying idea in Manly and Parr (1968) we
compute initial estimates for capture-probability p for occasions 2 to k − 1 using
a binomial GLM with the formula for p which is fitted to a sequence of Bernoulli
random variables that are a subset of the capture history values yij i = 1, ..., n and
j = fi + 1, ..., li − 1 where fi and li are the first and last occasions the ith animal
was seen. A similar but more ad-hoc idea is used for φ. We know the animal is
alive between fi and li and assume that the animal dies at occasion li + 1 ≤ k.
We use a binomial GLM with the formula for φ fitted to the y∗ij i = 1, ..., n and
j = fi + 1, ..., li + 1 ≤ k where y∗ij=1 for j = fi + 1, ..., li and y∗ij=0 for j = li + 1 ≤ k.
For φ and p, a logit link is used for MLE and a probit link for MCMC. For JS, a log
link is used for f 0, the number never captured and the estimate of super-population
size is the total number of individual animals plus f 0. Also, for JS a multinomial
logit link is used for πe. The initial value is set to 0 for any β that is not estimated
(e.g., pK in CJS or p1,πe, N for JS).

Likelihood Details

Here we provide some details for the likelihoods that are computed in cjs.lnl and
cjs.f for the CJS model and in js.lnl for the JS model. Let φ,M p be n× k matrices
which are functions of the parameters whereφij is the survival probability for animal
i from occasion j − 1 to j (φi1 = 1), mij is the probability of dying in the interval
j to j + 1 (mik = 1) and pij is the capture probability for animal i on occasion j

20

(pi1 = 0). In addition we define a series of matrices and vectors computed from the
data in the function process.ch. Let C be an n × k matrix of the capture history
values and fiand li are the first and last occasions the ith animal was seen. Derived
from those values are n × k matrices L, F and F+ which contain 0 except that
Lij = 1 j ≥ li,Fij = 1 j ≥ fi and F+

ij = 1 j > fi. The likelihood calculation has the
following steps where the matrix multiplication is element-wise and 1 and represents
an n× k matrix where each element is 1:

1. Construct the n× k matrix φ′ = 1− F+ + φF+which is the φ matrix modified
such that φij = 1 for j ≤ fi.

2. Construct the n× k matrix φ∗from φ′ where φij∗ =
∏j

i=1 φ
′
ij.

3. Construct the n× k matrix p′ = 1− F+ + F+(Cp+ (1− C)(1− p)).

4. Construct the n× k matrix p∗from p′ where pij∗ =
∏j

i=1 p
′
ij.

5. Compute n× 1 vector of probabilities of observed capture histories Pr(ωi) i =
1, ..., n which are the sums of the rows of LMφ∗p∗.

6. Compute the log-likelihood
∑n

i=1 ln(Pr(ωi))

The R code translates from the mathematics quite literally as:

> Phiprime=1-Fplus + Phi*Fplus

> Phistar=t(apply(Phiprime,1,cumprod))

> pprime=(1-Fplus)+Fplus*(C*p+(1-C)*(1-p))

> pstar=t(apply(pprime,1,cumprod))

> pomega=rowSums(L*M*Phistar*pstar)

> lnl=sum(log(pomega))

While this code is simple it is faster if the apply is replaced with a loop because there
are far more rows than occasions or replaced with compiled code which we did with
a FORTRAN subroutine (cjs.f called from cjs.lnl).

The Jolly-Seber likelihood can be partitioned into 3 components: 1) CJS likeli-
hood for Pr(ω1)Pr(ω2) treating the first “1” as a release, 2) a likelihood component
for Pr(ω0); entry and first observation, 3) a component for those that entered before
each occasion but were never seen. We define an additional n×k matrix π which are
the entry probabilities into the population (specified as β by Schwarz and Arnason
(1996)) with the obvious constraint that

∑k−1
j=0 πij = 1 and Ng g = 1, ..., G is the

abundance of animals in each of the defined G groups (e.g., male/female) that were

21

in the population at some time (super-population size). Ng = ng + f 0
g where ng is

the number observed in the group and f 0
g are the estimated number of animals in

the group that were never seen.
The same hierarchical approach used for CJS can be used for the second com-

ponent. Construct the capture history probability for a given entry time and then
sum over all possible entry times. . The second component is constructed with the
following steps:

1. Construct the n× k matrix E = (1− p)φ(1− F) + F ,

2. Construct the n× k matrix E∗where Eij∗ =
∏k

l=j Eil,

3. Compute n × 1 vector of probabilities Pr(ω′) which are the sums of the rows
of E ∗ (1− F+)π multiplied by the vector pifi i = 1, ..., n,

4. Compute the log-likelihood
∑n

i=1 ln(Pr(ω′i)).

For the third likelihood component for missed animals, we constructed G×k dummy
capture histories of all 0’s except for a “1” at the occasion the animals entered. From
the CJS portion of the code, we obtained p0gj the probability that an animal released
in group g on occasion j would never be captured. The final log-likelihood component
is:

G∑
g=1

f 0
g ln

[
k∑
j=1

πg,j−1(1− pgj)p0gj

]
+ ln(Ng!)− ln(f 0

g !)

The JS log-likelihood is the total of the 3 components plus −
∑G

g=1

∑k
j=1 ln(ngj!)

which do not depend on the parameters but is added after optimization in function
js, to be consistent with the output from MARK.

With the structure we have used, the design matrices can become quite large
and available memory could become limiting. For the design matrices, we use sparse
matrices with the R package Matrix (citation). In addition, for MLE analysis, we
use the following to reduce the required memory:

1. We reduce the data to n∗ ≤ n individuals by aggregating records with identical
data and using the frequencies (f1, ..., fn∗ ;n =

∑n∗

i=1 fi) in the likelihood.

2. We construct the design matrix X incrementally with a user-specified size of
data chunk that is processed at one time.

3. We retain only the rows of X which are unique for the design and including
any fixed parameters which can be animal-specific.

22

For Bayesian MCMC inference, we cannot aggregate records but we reduce the re-
quired memory by:

1. Eliminating the unused animal-occasion data for occasions prior to and includ-
ing the release occasion for the animal, and

2. Storing only the unique values of the real parameters which are unique rows of
Xφand Xp.

23

