
mefa4 Design Decisions and Performance

Péter Sólymos
solymos@ualberta.ca

Abstract

mefa4 is a reimplementation of the S3 object classes found in the mefa R package. The
new S4 class "Mefa" has all the consistency checks that S3 classes cannot have, and most
importantly, it stores the cross-tabuted results as a compact sparse matrix (S4 object class
"dgCMatrix" of the Matrix package). The use of sparse matrices speed up computations,
and reduces object sizes considerably. This vignette introduces the main functions, classes
and methods of the package mefa4.

Processed with mefa4 0.3-0 and mefa 3.2-3 in R version 3.0.2 (2013-09-25) on October
7, 2013.

Keywords: biodiversity, biogeography, data manipulation, ecology, multivariate methods, R,
sparse matrices.

1. Introduction

The aim of the mefa and mefa4 packages are to help in storing cross tabulated ecological data
tables (community data) together with attributes for rows (samples) and columns (species,
taxa). This allows that one can easily subset the relational data object without separately
manipulating 2–3 pieces of R objects. By doing so, the chances of errors are reduced.

As ecological data sets are increasing in size, it is necessary to find more efficient ways of data
storage and manipulation. To this end, it was in the air for some time to redesign the mefa
package and take advantages of sparse matrices from the Matrix package. This is done at the
costs of some old functionalities not being available for S4 classes at the time being. Here
I give an overview so the user can decide how to use the parallel availability of old S3 and
newer S4 classes.

2. Comparison of S3 and S4 classes

The S3 classes defined in mefa were stcs and mefa. stcs is a data frame with several
attributes:

R> library(mefa)

R> x <- data.frame(

+ sample = paste("Sample", c(1,1,2,2,3,4), sep="."),

+ species = c(paste("Species", c(1,1,1,2,3), sep="."), "zero.pseudo"),

+ count = c(1,2,10,3,4,0),

+ segment = letters[c(6,13,6,13,6,6)])

mailto:solymos@ualberta.ca

2 mefa4 Design Decisions and Performance

R> s <- stcs(x)

R> attributes(s)

$names

[1] "samp" "taxa" "count" "segm"

$row.names

[1] 1 2 3 4 5 6

$class

[1] "stcs" "data.frame"

$call

stcs(dframe = x)

$expand

[1] FALSE

$zero.count

[1] TRUE

$zero.pseudo

[1] "zero.pseudo"

These attributes ensure that the cross-tab made by the function mefa() creates a proper
cross-tab by eliminating the column that is only a placeholder for empty samples, etc.:

R> samp <- data.frame(samples=levels(x$sample), var1=1:2)

R> taxa <- data.frame(specnames=levels(x$species), var2=c("b","a"))

R> rownames(samp) <- samp$samples

R> rownames(taxa) <- taxa$specnames

R> (m <- mefa(s, samp, taxa))

An object of class 'mefa' containing

$ xtab: 20 individuals of 3 taxa in 4 samples,

$ segm: 2 (non-nested) segments:

f, m,

$ samp: table for samples provided (2 variables),

$ taxa: table for taxa provided (2 variables).

R> m$xtab

taxa

samp Species.1 Species.2 Species.3

Sample.1 3 0 0

Sample.2 10 3 0

Péter Sólymos 3

Sample.3 0 0 4

Sample.4 0 0 0

The stcs step is almost redundant, and inefficient relative to the stats::xtabs function with
sparse = TRUE. This function is adapted to some extent, so it can subset the cross-tabulated
results before returning the value (rdrop and cdrop arguments, that is available as the Xtab

function in the mefa4 package). This takes a formula, and can be applied directly on a data
frame. The formula can have a left-hand side, or the left-hand side can be missing. The
right-hand side can contain 2–3 factors, and the result will be a sparse matrix or a list of
sparse matrices, respectively:

R> library(mefa4)

R> x0 <- Xtab(~ sample + species, x)

R> x1 <- Xtab(count ~ sample + species, x)

R> x11 <- Xtab(count ~ sample + species + segment, x)

Dropping some rows/columns can be done in several ways. A logical statement implies that
all empty rows/columns are dropped, but indices (numeric or character) can also be used:

R> x2 <- Xtab(count ~ sample + species, x, cdrop=FALSE, rdrop=TRUE)

R> x21 <- Xtab(count ~ sample + species, x, cdrop=TRUE, rdrop=FALSE)

R> (x22 <- Xtab(count ~ sample + species, x, cdrop="zero.pseudo"))

4 x 3 sparse Matrix of class "dgCMatrix"

Species.1 Species.2 Species.3

Sample.1 3 . .

Sample.2 10 3 .

Sample.3 . . 4

Sample.4 . . .

The results here are sparse matrices in compact mode, this means that redundant indices are
only kept once, so it is more compact than a long formatted database representation stored
in an stcs object or in the original data frame, or a triplet representation of a sparse matrix.
See vignettes in the Matrix package for more details on S4 sparse matrix classes.

The S4 class "Mefa" is defined in the mefa4 package. It can be created by the Mefa() function,
and the result has 4 slots:

R> (x3 <- Mefa(x1, samp, taxa))

Object of class "Mefa"

..@ xtab: 4 x 4 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: left

The xtab slot stores the cross-tab in sparse matrix format. The samp slot stores the row
attributes for xtab as data frame or can be NULL. The taxa slot stores the column attributes

4 mefa4 Design Decisions and Performance

for xtab as data frame or can be NULL. Validity checks are done to ensure proper object classes
to be used and matching dimnames. The option that a column in the attribute tables can be
specified to find matching names is not available in the new implementation. Corresponding
rownames of the data frames has to match dimnames of xtab. The join slot can be "left" (all
rows/columns in the xtab are kept, matching attributes are selected, non-matching attributes
are excluded, and missing attributes are filled up with NA) or "inner" (only the intersection
of corresponding dimnames are used to form the return value).

The call in Mefa() can take any matrix or sparse matrix as argument, but it will be stored
in a sparse mode. Here we use a matrix as input, and samp has missing values ("left" join
is used by default):

R> (x4 <- Mefa(as.matrix(x1), samp[1:2,]))

Object of class "Mefa"

..@ xtab: 4 x 4 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: NULL

..@ join: left

The effect of "inner" join is as follows:

R> (x5 <- Mefa(x2, samp, taxa, join="inner"))

Object of class "Mefa"

..@ xtab: 3 x 4 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: inner

R> (x51 <- Mefa(x2, samp[1:2,], taxa, join="inner"))

Object of class "Mefa"

..@ xtab: 2 x 4 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: inner

A "Mefa" object with only xtab can also be defined:

R> (x6 <- Mefa(x1))

Object of class "Mefa"

..@ xtab: 4 x 4 sparse Matrix

..@ samp: NULL

..@ taxa: NULL

..@ join: left

Péter Sólymos 5

The equivalent of the melt method of the mefa package is the Melt function in mefa4. It can
be used to reverse the side effects of the cross-tabulation, thus making a data frame from a
matrix, sparse matrix, list of sparse matrices, a mefa or a Mefa object:

R> Melt(x1)

rows cols value

1 Sample.1 Species.1 3

2 Sample.2 Species.1 10

3 Sample.2 Species.2 3

4 Sample.3 Species.3 4

R> Melt(x11)

rows cols segm value

1 Sample.1 Species.1 f 1

2 Sample.2 Species.1 f 10

3 Sample.3 Species.3 f 4

4 Sample.1 Species.1 m 2

5 Sample.2 Species.2 m 3

The structure of the S3 and S4 classes are very similar, and even the accessor methods
(xtab(), samp(), taxa(), segm()) work properly on both types. The S4 class does not have
a slot for a call, and there is no segm element/slot either. This means that a "Mefa" object
cannot have 3 dimensions, only 2. Xtab can create 3-dimensional sparse array-like objects
(list of sparse matrices of the same dimensions), but there is no formal S4 class that can
handle sparse matrix lists as part of a "Mefa" object. The as.mefa method can convert such
a list of sparse matrices into an S3 "mefa" object with segments.

3. Back and forth

Coercion methods are defined in both the mefa and mefa4 packages to ensure that S3 and S4
objects are interchangeable:

R> as.stcs(x1)

R> as.mefa(x1)

R> as.stcs(x3)

R> a <- as.mefa(x3)

R> xtab(a)

R> samp(a)

R> taxa(a)

R> segm(a)

R> segm(x3)

R> as.Mefa(a)

R> as.Xtab(a)

R> s <- melt(a)

6 mefa4 Design Decisions and Performance

R> as.Xtab(s)

R> as.Mefa(s)

R> melt(x1)

R> melt(x3)

4. Subsetting and replacement

Accessing and replacing parts of the "Mefa" object is conveniently done by methods xtab,
samp, and taxa (the segm S3 method only returns the codextab slot of an S4 "Mefa" object):

R> xtab(x3)

4 x 4 sparse Matrix of class "dgCMatrix"

Species.1 Species.2 Species.3 zero.pseudo

Sample.1 3 . . .

Sample.2 10 3 . .

Sample.3 . . 4 .

Sample.4

R> x1[3,1] <- 999

R> xtab(x3) <- x1

R> xtab(x3)

4 x 4 sparse Matrix of class "dgCMatrix"

Species.1 Species.2 Species.3 zero.pseudo

Sample.1 3 . . .

Sample.2 10 3 . .

Sample.3 999 . 4 .

Sample.4

Attribute tables can be set to NULL, or replaced:

R> samp(x3)

samples var1

Sample.1 Sample.1 1

Sample.2 Sample.2 2

Sample.3 Sample.3 1

Sample.4 Sample.4 2

R> samp(x3) <- NULL

R> samp(x3)

NULL

Péter Sólymos 7

R> samp(x3) <- samp[1:3,]

R> samp(x3)

samples var1

Sample.1 Sample.1 1

Sample.2 Sample.2 2

Sample.3 Sample.3 1

Sample.4 <NA> NA

R> taxa(x3)

R> taxa(x3) <- NULL

R> taxa(x3)

R> taxa(x3) <- taxa[1:3,]

R> taxa(x3)

Replacing parts of these attribute tables can be done as

R> samp(x3)[1,]

samples var1

Sample.1 Sample.1 1

R> samp(x3)[1,2] <- 3

R> samp(x3)[1,]

samples var1

Sample.1 Sample.1 3

Subsetting the whole "Mefa" object is done via the [method:

R> x3[3:2, 1:2]

Object of class "Mefa"

..@ xtab: 2 x 2 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: left

R> x3[3:2,]

Object of class "Mefa"

..@ xtab: 2 x 4 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: left

R> x3[,1:2]

8 mefa4 Design Decisions and Performance

Object of class "Mefa"

..@ xtab: 4 x 2 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: left

5. Methods for S4 classes

Simple methods are provided for convenience:

R> dim(x5)

[1] 3 4

R> dimnames(x5)

[[1]]

[1] "Sample.1" "Sample.2" "Sample.3"

[[2]]

[1] "Species.1" "Species.2" "Species.3" "zero.pseudo"

R> dn <- list(paste("S", 1:dim(x5)[1], sep=""),

+ paste("SPP", 1:dim(x5)[2], sep=""))

R> dimnames(x5) <- dn

R> dimnames(x5)[[1]] <- paste("S", 1:dim(x5)[1], sep="_")

R> dimnames(x5)[[2]] <- paste("SPP", 1:dim(x5)[2], sep="_")

R> t(x5)

Object of class "Mefa"

..@ xtab: 4 x 3 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: data frame with 2 variables

..@ join: inner

6. Grouping rows and columns

The aggregate method was defined for S3 mefa objects. Its equivalent (although it cannot
sum the cells simultaneously for rows and columns, but it was done in 2 subsequent steps
anyway) is the groupSums method. The MARGIN argument indicates if rows (MARGIN = 1) or
columns (MARGIN = 2) are to be added together:

R> groupSums(as.matrix(x2), 1, c(1,1,2))

Péter Sólymos 9

Species.1 Species.2 Species.3 zero.pseudo

1 13 3 0 0

2 0 0 4 0

R> groupSums(as.matrix(x2), 2, c(1,1,2,2))

1 2

Sample.1 3 0

Sample.2 13 0

Sample.3 0 4

R> groupSums(x2, 1, c(1,1,2))

2 x 4 sparse Matrix of class "dgCMatrix"

Species.1 Species.2 Species.3 zero.pseudo

1 13 3 . .

2 . . 4 .

R> groupSums(x2, 2, c(1,1,2,2))

3 x 2 sparse Matrix of class "dgCMatrix"

1 2

Sample.1 3 .

Sample.2 13 .

Sample.3 . 4

R> groupSums(x5, 1, c(1,1,2))

Object of class "Mefa"

..@ xtab: 2 x 4 sparse Matrix

..@ samp: NULL

..@ taxa: data frame with 2 variables

..@ join: inner

R> groupSums(x5, 2, c(1,1,2,2))

Object of class "Mefa"

..@ xtab: 3 x 2 sparse Matrix

..@ samp: data frame with 2 variables

..@ taxa: NULL

..@ join: inner

A simple extension of this is the groupMeans method:

10 mefa4 Design Decisions and Performance

R> groupMeans(as.matrix(x2), 1, c(1,1,2))

R> groupMeans(as.matrix(x2), 2, c(1,1,2,2))

R> groupMeans(x2, 1, c(1,1,2))

R> groupMeans(x2, 2, c(1,1,2,2))

R> groupMeans(x5, 1, c(1,1,2))

R> groupMeans(x5, 2, c(1,1,2,2))

7. Combining objects

mbind can be used to combine 2 matrices (dense or sparse). The 2 input objects are combined
in a left join manner, which means that all the elements in the first object are retained, and
only non-overlapping elements in the second object are used. Elements of the returning
object that are not part of either objects (outer set) are filled up with value provided as fill
argument.

R> x=matrix(1:4,2,2)

R> rownames(x) <- c("a", "b")

R> colnames(x) <- c("A", "B")

R> y=matrix(11:14,2,2)

R> rownames(y) <- c("b", "c")

R> colnames(y) <- c("B", "C")

R> mbind(x, y)

A B C

a 1 3 NA

b 2 4 13

c NA 12 14

R> mbind(x, y, fill=0)

A B C

a 1 3 0

b 2 4 13

c 0 12 14

R> mbind(as(x, "sparseMatrix"), as(y, "sparseMatrix"))

3 x 3 sparse Matrix of class "dgCMatrix"

A B C

a 1 3 NA

b 2 4 13

c NA 12 14

"Mefa" objects can be combined in a similar way, where attribute tables are combined in a
left join fashion (S3 "mefa" objects have to be coerced by the as.Mefa method beforehand
– this is so because the S3 class does not allow NA values in $xtab, and it is safer to avoid
unnecessary complications):

Péter Sólymos 11

R> sampx <- data.frame(x1=1:2, x2=2:1)

R> rownames(sampx) <- rownames(x)

R> sampy <- data.frame(x1=3:4, x3=10:11)

R> rownames(sampy) <- rownames(y)

R> taxay <- data.frame(x1=1:2, x2=2:1)

R> rownames(taxay) <- colnames(y)

R> taxax <- NULL

R> mbind(Mefa(x, sampx), Mefa(y, sampy, taxay))

Object of class "Mefa"

..@ xtab: 3 x 3 sparse Matrix

..@ samp: data frame with 3 variables

..@ taxa: data frame with 2 variables

..@ join: left

8. Performance comparisons

We compare the performance of the mefa and mefa4 packages. We are using a long format-
ted raw data file from the Alberta Biodiversity Monitoring Institute database (available at
http://www.abmi.ca):

R> data(abmibirds)

This is the processing with mefa and S3 object classes (we are storing the results and pro-
cessing times):

R> b3 <- abmibirds

R> b3 <- b3[!(b3$Scientific.Name %in% c("VNA", "DNC", "PNA")),]

R> levels(b3$Scientific.Name)[levels(b3$Scientific.Name)

+ %in% c("NONE", "SNI")] <- "zero.pseudo"

R> b3$Counts <- ifelse(b3$Scientific.Name == "zero.pseudo", 0, 1)

R> b3$Label <- with(b3, paste(ABMI.Site, Year,

+ Point.Count.Station, sep="_"))

R> x3 <- b3[!duplicated(b3$Label), c("Label",

+ "ABMI.Site", "Year", "Field.Date",

+ "Point.Count.Station", "Wind.Conditions", "Precipitation")]

R> rownames(x3) <- x3$Label

R> z3 <- b3[!duplicated(b3$Scientific.Name), c("Common.Name",

+ "Scientific.Name", "Taxonomic.Resolution",

+ "Unique.Taxonomic.Identification.Number")]

R> rownames(z3) <- z3$Scientific.Name

R> z3 <- z3[z3$Scientific.Name != "zero.pseudo",]

R> t31 <- system.time(s3 <- suppressWarnings(stcs(b3[,

+ c("Label","Scientific.Name","Counts")])))

R> t32 <- system.time(m30 <- mefa(s3))

R> t33 <- system.time(m31 <- mefa(s3, x3, z3))

http://www.abmi.ca

12 mefa4 Design Decisions and Performance

R> y30 <- m30$xtab

R> t34 <- system.time(m32 <- mefa(y30, x3, z3))

R> m32

An object of class 'mefa' containing

$ xtab: 59098 individuals of 214 taxa in 3534 samples,

$ segm: 1 (all inclusive) segment,

$ samp: table for samples provided (7 variables),

$ taxa: table for taxa provided (4 variables).

The equivalent processing with mefa4 and S4 object classes:

R> b4 <- abmibirds

R> b4$Label <- with(b4, paste(ABMI.Site, Year,

+ Point.Count.Station, sep="_"))

R> x4 <- b4[!duplicated(b4$Label), c("Label", "ABMI.Site",

+ "Year", "Field.Date", "Point.Count.Station",

+ "Wind.Conditions", "Precipitation")]

R> rownames(x4) <- x4$Label

R> z4 <- b4[!duplicated(b4$Scientific.Name), c("Common.Name",

+ "Scientific.Name", "Taxonomic.Resolution",

+ "Unique.Taxonomic.Identification.Number")]

R> rownames(z4) <- z4$Scientific.Name

R> t41 <- system.time(s4 <- Xtab(~ Label + Scientific.Name,

+ b4, cdrop = c("NONE", "SNI"),

+ subset = !(b4$Scientific.Name %in% c("VNA", "DNC", "PNA")),

+ drop.unused.levels = TRUE))

R> t42 <- system.time(m40 <- Mefa(s4))

R> t43 <- system.time(m41 <- Mefa(s4, x4, z4))

R> y40 <- as.matrix(m40@xtab)

R> t44 <- system.time(m42 <- Mefa(y40, x4, z4))

R> m42

Object of class "Mefa"

..@ xtab: 3534 x 214 sparse Matrix

..@ samp: data frame with 7 variables

..@ taxa: data frame with 4 variables

..@ join: left

R> sum(m42@xtab)

[1] 59098

Let us compare object sizes and processing times, stars indicate similar S3 (*=3) and S4 (*=4)
objects:

Péter Sólymos 13

SIZE, *=3 SIZE, *=4 TIME, *=3 TIME, *=4 SIZE TIME

b* 6149312 5439944 NA NA 0.88464270 NA

s* 1351840 598668 0.88 0.03 0.44285418 0.03409091

y*0 6217976 6217824 NA NA 0.99997555 NA

m*0 6218828 599280 1.87 0.02 0.09636542 0.01069519

m*1 6670428 1050680 1.80 0.00 0.15751313 0.00000000

m*2 6670428 1050680 0.08 0.03 0.15751313 0.37500000

The compressed sparse matrix representation is 44.3% of the stcs object in size. "Mefa"

object sizes are maximum of 15.8% of their S3 representatives. Processing time speed-up is
enormous with sparse matrices (0.5%), and still quite high by standard matrices (37.5%).

Check that objects are the same:

R> stopifnot(identical(dim(y30), dim(y40)))

R> stopifnot(identical(setdiff(rownames(y30), rownames(y40)), character(0)))

R> stopifnot(identical(setdiff(rownames(y40), rownames(y30)), character(0)))

R> stopifnot(identical(setdiff(colnames(y30), colnames(y40)), character(0)))

R> stopifnot(identical(setdiff(colnames(y40), colnames(y30)), character(0)))

The aggregation also improved quite a bit with sparse matrices:

R> system.time(xx3 <- aggregate(m31, "ABMI.Site"))

user system elapsed

2.13 0.00 2.15

R> system.time(xx4 <- groupSums(m41, 1, m41@samp$ABMI.Site))

user system elapsed

0 0 0

9. Conclusions

The redesign of the old S3 classes into S4 ones resulted in large savings in computing time
and object sizes. Old features are still available due to the free conversion between the two
implementations.

10. Session Info

� R version 3.0.2 (2013-09-25), i386-w64-mingw32

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: Matrix 1.0-14, lattice 0.20-23, mefa 3.2-3, mefa4 0.3-0

14 mefa4 Design Decisions and Performance

� Loaded via a namespace (and not attached): grid 3.0.2, tools 3.0.2

Affiliation:

Péter Sólymos
Alberta Biodiversity Monitoring Institute
and Boreal Avian Modelling project
Department of Biological Sciences
CW 405, Biological Sciences Bldg
University of Alberta
Edmonton, Alberta, T6G 2E9, Canada
E-mail: solymos@ualberta.ca

mailto:solymos@ualberta.ca

	Introduction
	Comparison of S3 and S4 classes
	Back and forth
	Subsetting and replacement
	Methods for S4 classes
	Grouping rows and columns
	Combining objects
	Performance comparisons
	Conclusions
	Session Info

