Mixed Data Sampling Regression


[Up] [Top]

Documentation for package ‘midasr’ version 0.2

Help Pages

midasr-package Estimating and testing MIDAS regression
+.lws_table Combine 'lws_table' objects
agk.test Andreou, Ghysels, Kourtellos LM test
AICc Compute AICc
almonp Almon polynomial MIDAS weights specification
almonp.gradient Gradient function for Almon polynomial MIDAS weights
amidas_table Weight and lag selection table for aggregates based MIDAS regression model
amweights Weights for aggregates based MIDAS regressions
average_forecast Average forecasts of MIDAS models
checkARstar Check whether the MIDAS model is MIDAS-AR* model
check_mixfreq Check data for MIDAS regression
deriv_tests Check whether non-linear least squares restricted MIDAS regression problem has converged
deriv_tests.midas_r Check whether non-linear least squares restricted MIDAS regression problem has converged
deviance.midas_r MIDAS regression model deviance
dmls MIDAS lag structure for unit root processes
expand_amidas Create table of weights, lags and starting values for Ghysels weight schema
expand_weights_lags Create table of weights, lags and starting values
fmls Full MIDAS lag structure
forecast Forecast MIDAS regression
forecast.midas_r Forecast MIDAS regression
get_estimation_sample Get the data which was used to etimate MIDAS regression
gompertzp Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification
gompertzp.gradient Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.
hAh.test Test restrictions on coefficients of MIDAS regression
hAhr.test Test restrictions on coefficients of MIDAS regression using robust version of the test
hf_lags_table Create a high frequency lag selection table for MIDAS regression model
imidas_r Restricted MIDAS regression with I(1) regressors
imidas_r.default Restricted MIDAS regression with I(1) regressors
imidas_r.imidas_r Restricted MIDAS regression with I(1) regressors
lcauchyp Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification
lcauchyp.gradient Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.
lf_lags_table Create a low frequency lag selection table for MIDAS regression model
midas.auto.sim Simulate autoregressive MIDAS model
midas.sim Simulate MIDAS regression response variable
midasr Estimating and testing MIDAS regression
midas_coef Return the coefficients of MIDAS regression
midas_r Restricted MIDAS regression
midas_r.default Restricted MIDAS regression
midas_r.fit Fit restricted MIDAS regression
midas_r.midas_r Restricted MIDAS regression
midas_r_fast Restricted MIDAS regression
midas_r_ic_table Create a weight and lag selection table for MIDAS regression model
midas_r_ic_table.default Create a weight and lag selection table for MIDAS regression model
midas_u Estimate unrestricted MIDAS regression
mls MIDAS lag structure
mls_coef Return the coefficients for fmls variables
modsel Select the model based on given information criteria
nakagamip Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification
nakagamip.gradient Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.
nbeta Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification
nbeta.gradient Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
nbetaMT Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.
nbetaMT.gradient Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
nealmon Normalized Exponential Almon lag MIDAS coefficients
nealmon.gradient Gradient function for normalized exponential Almon lag weights
polystep Step function specification for MIDAS weights
polystep.gradient Gradient of step function specification for MIDAS weights
predict.midas_r Predict method for MIDAS regression fit
prepmidas_r Prepare necessary objects for fitting of the MIDAS regression
prep_hAh Calculate data for hAh.test and hAhr.test
rvsp500 Realized volatility of S&P500 index
select_and_forecast Create table for different forecast horizons
simplearma.sim Simulate AR(1) or MA(1) model
split_data Split mixed frequency data into in-sample and out-of-sample
USrealgdp US annual gross domestic product in billions of chained 2005 dollars
USunempr US monthly unemployment rate
weights_table Create a weight function selection table for MIDAS regression model
weight_coef Return the restricted coefficients generated by restriction function(s)
weight_names Return the names of restriction function(s)
weight_param Return the estimated hyper parameters of the weight function(s)