midasr-package |
Estimating and testing MIDAS regression |
+.lws_table |
Combine 'lws_table' objects |
agk.test |
Andreou, Ghysels, Kourtellos LM test |
AICc |
Compute AICc |
almonp |
Almon polynomial MIDAS weights specification |
almonp.gradient |
Gradient function for Almon polynomial MIDAS weights |
amidas_table |
Weight and lag selection table for aggregates based MIDAS regression model |
amweights |
Weights for aggregates based MIDAS regressions |
average_forecast |
Average forecasts of MIDAS models |
checkARstar |
Check whether the MIDAS model is MIDAS-AR* model |
check_mixfreq |
Check data for MIDAS regression |
deriv_tests |
Check whether non-linear least squares restricted MIDAS regression problem has converged |
deriv_tests.midas_r |
Check whether non-linear least squares restricted MIDAS regression problem has converged |
deviance.midas_r |
MIDAS regression model deviance |
dmls |
MIDAS lag structure for unit root processes |
expand_amidas |
Create table of weights, lags and starting values for Ghysels weight schema |
expand_weights_lags |
Create table of weights, lags and starting values |
fmls |
Full MIDAS lag structure |
forecast |
Forecast MIDAS regression |
forecast.midas_r |
Forecast MIDAS regression |
get_estimation_sample |
Get the data which was used to etimate MIDAS regression |
gompertzp |
Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification |
gompertzp.gradient |
Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights. |
hAh.test |
Test restrictions on coefficients of MIDAS regression |
hAhr.test |
Test restrictions on coefficients of MIDAS regression using robust version of the test |
hf_lags_table |
Create a high frequency lag selection table for MIDAS regression model |
imidas_r |
Restricted MIDAS regression with I(1) regressors |
imidas_r.default |
Restricted MIDAS regression with I(1) regressors |
imidas_r.imidas_r |
Restricted MIDAS regression with I(1) regressors |
lcauchyp |
Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification |
lcauchyp.gradient |
Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights. |
lf_lags_table |
Create a low frequency lag selection table for MIDAS regression model |
midas.auto.sim |
Simulate autoregressive MIDAS model |
midas.sim |
Simulate MIDAS regression response variable |
midasr |
Estimating and testing MIDAS regression |
midas_coef |
Return the coefficients of MIDAS regression |
midas_r |
Restricted MIDAS regression |
midas_r.default |
Restricted MIDAS regression |
midas_r.fit |
Fit restricted MIDAS regression |
midas_r.midas_r |
Restricted MIDAS regression |
midas_r_fast |
Restricted MIDAS regression |
midas_r_ic_table |
Create a weight and lag selection table for MIDAS regression model |
midas_r_ic_table.default |
Create a weight and lag selection table for MIDAS regression model |
midas_u |
Estimate unrestricted MIDAS regression |
mls |
MIDAS lag structure |
mls_coef |
Return the coefficients for fmls variables |
modsel |
Select the model based on given information criteria |
nakagamip |
Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification |
nakagamip.gradient |
Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights. |
nbeta |
Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification |
nbeta.gradient |
Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights. |
nbetaMT |
Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox. |
nbetaMT.gradient |
Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights. |
nealmon |
Normalized Exponential Almon lag MIDAS coefficients |
nealmon.gradient |
Gradient function for normalized exponential Almon lag weights |
polystep |
Step function specification for MIDAS weights |
polystep.gradient |
Gradient of step function specification for MIDAS weights |
predict.midas_r |
Predict method for MIDAS regression fit |
prepmidas_r |
Prepare necessary objects for fitting of the MIDAS regression |
prep_hAh |
Calculate data for hAh.test and hAhr.test |
rvsp500 |
Realized volatility of S&P500 index |
select_and_forecast |
Create table for different forecast horizons |
simplearma.sim |
Simulate AR(1) or MA(1) model |
split_data |
Split mixed frequency data into in-sample and out-of-sample |
USrealgdp |
US annual gross domestic product in billions of chained 2005 dollars |
USunempr |
US monthly unemployment rate |
weights_table |
Create a weight function selection table for MIDAS regression model |
weight_coef |
Return the restricted coefficients generated by restriction function(s) |
weight_names |
Return the names of restriction function(s) |
weight_param |
Return the estimated hyper parameters of the weight function(s) |