
Mixed stock analysis in R: getting started with the

mixstock package

Ben Bolker

February 29, 2012

1 Introduction1

The mixstock package is a set of routines written in the R language R2

Development Core Team (2005) for doing mixed stock analysis using data3

on markers gathered from source populations and from one or more mixed4

populations. The package was developed for analyzing mitochondrial DNA5

(mtDNA) markers from sea turtle populations, but should be applicable6

to any case with discrete sources, discrete mixed populations, and discrete7

markers. (However, I do refer to sources as “rookeries” and markers as8

“haplotypes” throughout this document, and you will see other echoes of its9

origins, e.g. the number of markers is internally stored as variable H and10

the number of sources is stored as R.) The package is intended to be self-11

contained, but some familiarity with R or S-PLUS will definitely be helpful.12

(Some familiarity with your computer’s operating system, which is probably13

Microsoft Windows, is also assumed.) The statistical methods implemented14

in the package are described in Bolker et al. (2003) and Pella and Masuda15

(2001).16

This package is in the public domain (GNU General Public17

License), is©2008 Ben Bolker and Toshinori Okuyama, and comes18

with NO WARRANTY. Please suggest improvements to me (Ben19

Bolker) at bolker@mcmaster.ca.20

If you are feeling impatient and confident, turn to “Quick Start” (sec-21

tion 6).22

2 Installation23

You can skip this section if you are reading this file via the vignette() com-24

mand in R— that means you’ve already successfully installed the package.25

1

To get started, you will have to download and install the R package,26

a general-purpose statistics and graphics package, from CRAN (the “Com-27

prehensive R Archive Network”); go to http://www.r-project.org and28

navigate from there129

The following installation instructions assume you are using a “modern”30

Microsoft Windows system (tested on 2000 and XP); it is possible to use R,31

and the mixstock package, on other operating systems — please contact the32

authors for more information. (The package has been developed under Linux33

and runs under Windows; most of it should run under MacOS as well, but it34

is not as well supported and you will have to build the package from sources.35

To run hierarchical models using WinBUGS, you need to have WINE set36

up on Linux; I’m not sure about MacOS.) The setup file is about 17M,37

and R takes up about 40M of disk space. If you are running an antivirus38

package that is configured to check the signatures of executable files before39

they run, make sure you turn it off or register the new files installed by R40

before proceeding. You may also have some difficulty downloading packages41

if you have a firewall running on your computer — if you have trouble, you42

may want to (temporarily, at your own risk!) disable it.43

Once you have downloaded and installed R, start the R program. The44

setup program should have asked whether you want to add a shortcut to45

the desktop or the Start menu: if you didn’t, you will have to search for46

a file called Rgui.exe, which probably lives somewhere (on Windows) like47

Program Files\R\R-2.14.1\bin depending on what version of R you are48

using and where you decided to install it. R will open up a window for you49

with a command prompt (>), at which you can type R commands. (Don’t50

panic.)51

You can exit R by selecting File/Exit from the menus, or by typing52

q() at the command prompt. In general, if you want help on a particular53

command (e.g. uml) you can type a question mark followed by the command54

name (e.g. ?uml)55

You will next need to install the mixstock package and two other aux-56

iliary packages, over the WWW, from within R (you will need to maintain57

a connection to the internet for this piece, although it is also possible to do58

1if you are in the US and using Windows, you can go directly to http://cran.us.

r-project.org/bin/windows/base/: you will need to download a file called R-x.y.z-

win32.exe which will install R for you, when executed; x.y.z stands for the current
version of R (2.14.1 as of February 29, 2012). Otherwise, see http://www.r-project.org/

mirrors.html for a list of alternative “mirror sites” closer to you and navigate through
the web pages to find a version to install (if you are not using Unix and/or an expert, you
will want to look for a binary version of R).

2

http://www.r-project.org
http://cran.us.r-project.org/bin/windows/base/
http://cran.us.r-project.org/bin/windows/base/
http://www.r-project.org/mirrors.html
http://www.r-project.org/mirrors.html

this step off-line). Within R, at the command prompt, type the following59

commands:60

> install.packages(c("mixstock","plotrix","coda","abind","R2WinBUGS"))

In each case, answer y to whether you want to delete the source files;61

you shouldn’t need them again.62

(If you don’t have a convenient internet connection, you can also down-63

load the .zip files corresponding to the different packages and install them by64

going to the Packages menu within R and choosing Install from local65

zip file.)66

3 Loading the mixstock package and reading in67

data68

Start every session with the mixstock package by typing69

> library(mixstock)

at the command prompt; this loads the mixstock and auxiliary packages.70

The package can read plain text data files that are separated by white71

space (spaces and/or tabs) or commas. If your data are in Microsoft Excel,72

you should export them as a comma-separated (CSV) file. If they are in73

Word, save them as plain text. The expected data format is that each row of74

data represents a haplotype, each column except the last represents samples75

from a particular rookery, and the last column is the samples from the mixed76

population. Each row and column should be named; your life will be simpler77

if the names do not have spaces or punctuation other than periods in them78

(a common R convention is to replace spaces with periods, e.g. North.FL79

for “North FL”). Do not label the haplotype column; R detects the presence80

of column names by checking whether the first row has one fewer item than81

the rest of the rows in the file.82

For example, a plain text file (with haplotype labels H1 and H2 and83

rookery labels R1–R3) could look like this:84

R1 R2 R3 mix85

H1 1 2 3 486

H2 3 4 5 687

Or a comma-separated file could look like this (note that the first line has88

only 4 elements while subsequent lines have 5).89

3

R1,R2,R3,mix90

H1,1,2,3,491

H2,3,4,5,692

If you have data from multiple mixed stocks, either put those data in a93

separate file or run them all together as columns of the same table (you will94

get a chance to specify how many sources and how many mixed populations95

there are):96

R1,R2,R3,mix1,mix297

H1,1,2,3,4,798

H2,3,4,5,6,099

To read in your data, you first need to make sure that R knows how100

to find them. The easiest thing to do is to use the menu options2 to move101

to a directory (i.e., folder) you will use for analysis, which should contain102

the data files you want to use and will contain R’s working files. You can103

use the getwd() (get working directory) command to see where you are,104

and list.files() to list the files in the current directory. Once you have105

changed to the appropriate directory, you can read in your data files and106

assign the data to a variable. For example, if you had a file with space-107

separated data called mydata.dat, you could it read it in by typing108

> mydata = read.table("mydata.dat",header=TRUE)

and if you have a comma-separated file called mydata.csv you can use109

> mydata = read.csv("mydata.csv")

(1) header=TRUE is required with read.table to specify that there is a110

header line in the file; it is part of the default settings for read.csv. Make111

sure there are no extra lines at the top of your data file, although you can112

use the skip argument (see ?read.table for details) if necessary. (2) You113

must specify the extension of the file — the letters after the dot. Sometimes114

your operating system will hide that information from you.115

If you have your own data you can read it in now and follow along, or you116

can use the lahanas98raw data set that comes with the package Lahanas117

et al. (1998):118

> data(lahanas98raw)

> mydata = lahanas98raw

2File/Change working directory on Windows, Misc/Change working directory or
Apple-D on MacOS

4

To make sure that everything came out OK, type the name of the variable119

alone at the command prompt: e.g.120

> mydata

to print out the data, or121

> head(mydata)

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR feed

I 11 7 0 0 0 0 0 0 0 2

II 1 0 0 0 0 0 0 0 0 0

III 12 5 40 3 0 0 0 0 0 62

IV 0 0 1 0 0 0 0 0 0 0

V 0 1 0 27 13 0 0 0 0 10

VI 0 0 0 0 1 0 0 0 0 0

to print out just the first few lines, as shown above.122

Next, use the as.mixstock.data command to convert your data to a123

form that the package can use:124

> mydata = as.mixstock.data(mydata)

Once your data are converted in this way, you can use plot(mydata) to125

produce a summary plot of the data (Figure 1).126

The default plot is a barplot, with the proportions of each haplotype127

sampled in each rookery represented by a separate bar; the mixed population128

data are shown as the rightmost bar.3129

Before proceeding, you will need to “condense” your data set by (1) ex-130

cluding any haplotype samples that are found only in the mixed population131

(such “singleton” haplotypes will break some estimation methods, and pro-132

vide no useful information on turtle origins) and (2) lumping together all133

haplotypes that are found only in a single rookery and the mixed population134

(distinguishing among such haplotypes provides no extra information in our135

analyses, and may slow down estimation). You can do this by typing136

> mydata = markfreq.condense(mydata)

3you can change from the default colors by specifying a colors= argument: e.g. if you
have 10 haplotypes, colors=topo.colors(10) or colors=gray((0:9)/9). See ?gray or
?rainbow for more information.

5

Haplotype frequency

FL

MEXI

CR

AVES

SURI

BRAZ

ASCE

AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI

Figure 1: Basic plot of turtle mtDNA haplotype data, using
plot(mydata,mix.off=2) (mix.off=2 leaves a slightly larger space between
the rookery and mixed stock data)

6

(To examine the condensed form of the data, you can print them by typing137

mydata at the command prompt, head(mydata) to see just the first few138

lines, or plot(mydata) to see the graphical summary [Figure 2].)139

Some data are already entered in the package in the condensed format;140

you can access them using the data() command.141

> data(lahanas98)

makes the haplotype frequency data from Lahanas et al. 1998 Lahanas et al.142

(1998) available as variable lahanas98, while143

> data(bolten98)

makes the loggerhead data from Bolten et al. 1998 Bolten et al. (1998)144

available as bolten98, already converted and condensed: bolten98raw gives145

you the raw table.146

4 Stock analysis147

You can use the mixstock package to run various mixed-stock analyses on148

your data.149

4.1 Conditional and unconditional maximum likelihood150

You can do standard conditional maximum likelihood (CML) analysis using151

cml(mydata). to do: citations If you want to save the results, you can152

save them as a variable that you can then print, plot, etc. (Figure 3)153

> mydata.cml = cml(mydata)

> mydata.cml

Estimated input contributions:

FL MEXI CR AVES SURI BRAZ

5.463021e-02 9.453698e-05 7.833919e-01 1.485493e-01 1.333410e-06 1.333277e-06

ASCE AFRI CYPR

1.333144e-06 1.332877e-02 1.333010e-06

Estimated marker frequencies in sources:

(cml: no estimate)

method: cml

7

Haplotype frequency

FL

MEXI

CR

AVES

SURI

BRAZ

ASCE

AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI/VII
VIII
IX
X
XI/XII
XIII/XIV
XV/XVI/XVII/XVIII

Figure 2: Condensed haplotype data from Lahanas 1998 (plot(lahanas98,
mix.off=2, leg.space=0.4); leg.space=0.4 leaves more room for the leg-
end)

8

●

●

●

●

● ● ●
●

●

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

0.
0

0.
2

0.
4

0.
6

0.
8

FL MEXI CR AVES BRAZ AFRI

Figure 3: CML estimates for Lahanas 1998 data; plot(mydata.cml)

Assigning the results of cml to a variable doesn’t produce any output;154

you need to type the name of the variable to get the answers to print out.155

Plotting the data produces a simple plot of the estimated contributions156

from each source (with no error bars): see Figure 3.157

> plot(mydata.cml)

When you print CML results, R will tell you there is no estimate for the158

rookery frequencies, because CML assumes that the true rookery frequencies159

are equal to the sample rookery frequencies, rather than estimating the160

rookery frequencies independently.161

The default plot for estimation results plots points specifying the esti-162

mated proportions of the mixed population contributed by each rookery (to163

plot this with a logarithmic scale for the vertical axis, use plot(mydata.cml,log="y")).164

Standard unconditional maximum likelihood analysis (UML) takes a lit-165

tle longer, but is equally straightforward Smouse et al. (1990):166

9

> mydata.uml = uml(mydata)

UML estimates also include estimates of the true haplotype frequencies167

in each rookery, which are printed with the contribution estimates (as be-168

fore, print these results by typing mydata.uml on a line by itself). As with169

CML, you can plot the results with plot(mydata.uml); by default this plot170

includes just the rookery contribution information. You can include the es-171

timated haplotype frequencies in the rookeries in the graphical summary as172

follows:173

> par(ask=TRUE)

> plot(mydata.uml,plot.freqs=TRUE)

> par(ask=FALSE)

(par(ask=TRUE) tells R to wait for user input between successive plots).174

4.2 Confidence intervals: CML and UML bootstrapping175

> mydata.umlboot = genboot(mydata,"uml")

will generate standard (nonparametric) bootstrap confidence intervals for a176

UML fit to mydata, by resampling the data with replacement 1000 times177

(by default). This is slow with a realistic size data set: it took 2.2 minutes178

to run 1000 bootstrap samples on my laptop. (You can ignore warnings about179

singular matrix, returning equal contribs, Error in qr.solve, etc..)180

You can find out the results by typing181

> confint(mydata.umlboot)

2.5% 97.5%

contrib.FL 1.000000e-04 1.853967e-01

contrib.MEXI 8.255739e-05 9.999000e-05

contrib.CR 6.349666e-01 8.915403e-01

contrib.AVES 6.152913e-02 2.417467e-01

contrib.SURI 1.079622e-09 2.764224e-02

contrib.BRAZ 5.715238e-10 1.844699e-05

contrib.ASCE 1.628700e-13 3.672277e-05

contrib.AFRI 1.232938e-13 3.999982e-02

contrib.CYPR 1.719070e-13 2.407764e-05

10

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

● ● ●
●

●0.
0

0.
2

0.
4

0.
6

0.
8

FL MEXI CR AVES BRAZ AFRI

Figure 4: UML estimates with bootstrap confidence limits for Lahanas 1998
data: plot(mydata.umlboot)

11

4.3 Markov Chain Monte Carlo estimation182

> mydata.mcmc = tmcmc(mydata)

> mydata.mcmc

Estimated input contributions:

contrib.FL contrib.MEXI contrib.CR contrib.AVES contrib.SURI contrib.BRAZ

0.055518267 0.009706668 0.777704826 0.105769897 0.036445990 0.003427765

contrib.ASCE contrib.AFRI contrib.CYPR

0.004219192 0.005680010 0.001527386

Estimated marker frequencies in sources:

NULL

method: mcmc

prior strength: 0.1147742

> confint(mydata.mcmc)

2.5% 97.5%

contrib.FL 2.009853e-11 0.23823757

contrib.MEXI 1.726347e-17 0.07512486

contrib.CR 5.956080e-01 0.89165907

contrib.AVES 3.616006e-10 0.22608667

contrib.SURI 7.363441e-16 0.17303709

contrib.BRAZ 1.664703e-16 0.02785796

contrib.ASCE 8.067783e-17 0.03001117

contrib.AFRI 3.820586e-15 0.03642586

contrib.CYPR 9.118769e-18 0.01506706

> plot(mydata.mcmc)

do the standard things: print the results, show confidence intervals, plot183

the results. (By default the information on haplotype frequencies in rookeries184

is not saved — it tends to be voluminous — and so this does not show up185

in the MCMC results.)186

4.4 Convergence diagnostics for MCMC187

When you are running MCMC analyses, you have to check that the Markov188

chains have converged (i.e. that you’ve run everything long enough for a189

reliable estimate).190

12

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

●

● ● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

contrib.FL contrib.CR contrib.SURI contrib.AFRI

Figure 5: MCMC estimates with confidence limits for Lahanas 1998 data

13

4.4.1 Raftery and Lewis191

The command192

> diag1=calc.RL.0(mydata)

(The final character is the numeral 0, not the letter O).193

runs Raftery and Lewis diagnostics on your data set: these criteria at-194

tempt to determine how long a single chain has to be in order for it to195

give “sufficiently good” estimates. This function actually runs an iterative196

procedure, repeating the chain until the R&L criterion is satisfied.197

The results consist of two parts:198

� diag1$current gives the diagnostics for the last chain evaluated. These199

diagnostics consist of the predicted required length of the “burn-in”200

period (a transient that is discarded); the total number of iterations201

required; a lower bound on the total number required; and a “depen-202

dence factor” that tells how much correlation there is between subse-203

quent values in the chain (see ?raftery.diag for more information).204

Here are the first few lines of diag1$current:205

> head(diag1$current)

Burn-in Total Lower bound Dependence factor

contrib.FL 18 1521 235 6.47

contrib.MEXI 14 926 235 3.94

contrib.CR 28 1804 235 7.68

contrib.AVES 4 312 235 1.33

contrib.SURI 15 1230 235 5.23

contrib.BRAZ 5 367 235 1.56

� diag1$suggested gives the history of how long each suggested chain206

was as we went along: the iterations stop once suggested >current,207

but note that there is a lot of variability in the results.208

> diag1$history

iteration Current Suggested

1 500 647

2 647 3882

3 3882 1804

14

4.4.2 Gelman and Rubin209

The command210

> diag2=calc.GR(mydata)

tests the Gelman-Rubin criterion, which starts multiple chains from widely211

spaced starting points and tests to ensure that the chains “overlap” — i.e.,212

that between-chain variance is small relative to within-chain variance. The213

general rule of thumb is that the criterion should be below 1.2 for all pa-214

rameters in order for the chain to be judged to have converged properly.215

Gelman et al. (1996).216

5 Hierarchical models217

To run hierarchical models, you will need to use either WinBUGS (on Win-218

dows, or on Linux or MacOS via a program called WINE, or some sort of219

Windows emulator) or JAGS (a newer, less well-tested program, but one that220

runs more easily on a variety of platforms).221

Brief installation instructions for these programs:222

� WinBUGS: go to http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.223

shtml and follow the instructions there to download and install WinBUGS224

version 1.4 and get a license key. Then make sure that you’ve installed225

the R2WinBUGS package (install.packages("R2WinBUGS"))226

� JAGS: go to http://www-fis.iarc.fr/~martyn/software/jags/ and227

download the appropriate version for your computer. Then install228

R2jags (install.packages("R2jags"))229

You can use the pm.wbugs() command (with the same syntax as tmcmc230

above) to run basic mixed stock analysis (although tmcmc will in general be231

much more convenient and efficient: pm.wbugs is included for completeness232

and testing of WinBUGS methods). Use mm.wbugs() to run many-to-many233

analyses, with R2WinBUGS (default, pkg="WinBUGS") or JAGS (pkg="JAGS").234

5.1 Many-to-many analysis235

The simmixstock2 command does basic simulation of multiple-mixed-stock236

systems. At its simplest, it simply generates random uniform values for the237

haplotype frequencies in each rookery and the proportional contributions of238

each rookery to each mixed stock:239

15

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www-fis.iarc.fr/~martyn/software/jags/

> Z = simmixstock2(nsource=4,nmark=5,nmix=3,

sourcesize=c(4,2,1,1),

sourcesampsize=rep(25,4),

mixsampsize=rep(30,3),rseed=1001)

> Z

4 sources, mixed stock(s), 5 distinct markers

Sample data:

R1 R2 R3 R4 M1 M2 M3

H1 14 8 5 14 12 6 9

H2 2 0 0 0 3 4 1

H3 2 2 11 5 3 6 3

H4 2 2 7 0 4 6 10

H5 5 13 2 6 8 8 7

> plot(Z)

Haplotype frequency

R1

R2

R3

R4

M1

M2

M3

0.0 0.2 0.4 0.6 0.8 1.0

H1
H2
H3
H4
H5

240

Now try to fit this via mm.wbugs:241

Or, keeping the run in BUGS format for diagnostic purposes:242

16

> Zfit0 = mm.wbugs(Z,sourcesize=c(4,2,1,1),returntype="bugs")

This takes about 18.3 minutes to run with the default settings, which run243

4 chains (equal to the number of sources) for 20,000 steps each. (There are244

two different versions of the BUGS code that can be used with mm.wbugs;245

in this particular case they give relatively similar answers and take about246

the same amount of time (bugs.code="BB" took 9.2 minutes), but if you’re247

having trouble you might try switching from the default bugs.code="TO"248

to bugs.code="BB".249

Other important options when running mm.wbugs are:250

� n.iter: the default is 20,000 iterations per chain, with the first half251

used as burn-in (n.burnin=floor(n.iter/2)); this may be conserva-252

tive, and could take a long time with realistically large data sets. Use253

CODA’s diagnostics as described above (raftery.diag, gelman.diag,254

etc.) to figure out an appropriate number of iterations.255

� n.chains: equal to the number of sources by default, which may again256

be overkill. (Bolker et al. (2007) used three chains for an 11-source257

problem.)258

� inittype: "dispersed" starts the chains from a starting point where259

95% of the contributions are assumed to come from a single source;260

"random" starts the chains from random starting points. If which.init261

is specified, these sources will be used as the dominant starting points:262

for example, mm.wbugs(...,n.chains=3,inittype="dispersed",which.init=c(1,5,7))263

will start 3 chains with dominant contributions from sources 1, 5, and264

7. If which.init is unspecified and n.chains is less than the number265

of sources, dominant sources will be picked at random.266

� returntype: specifies what format to use for the answer. The de-267

fault is a mixstock.est object that can be plotted or summarized268

like the results from any other mixed-stock analysis. However, for269

diagnostic purposes, it may be worth running the code initially with270

returntype="bugs" and using as.mcmc.bugs and as.mixstock.est.bugs271

to convert the result to either CODA format or mixstock format. Plot-272

ting bugs format and CODA format gives different diagnostic plots;273

CODA format can also be used to run convergence diagnostics such as274

raftery.diag or gelman.diag.275

Plots from many-to-many runs:276

Plot BUGS format diagnostics (plot not shown):277

17

> plot(Zfit0)

Plot CODA diagnostics (plot not shown):278

> plot(as.mcmc.bugs(Zfit0))

Plot results:279

> print(plot(Zfit))

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

R1 R2 R3 R4

●

●

●

●

M1

R1 R2 R3 R4

●

●
●

●

M2

0.0

0.2

0.4

0.6

0.8

●

●

●

●

M3

280

Source-centric form:281

> print(plot(Zfit,sourcectr=TRUE))

18

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

M1 M2 M3 Unk

●

●

●
●

R1

M1 M2 M3 Unk

●
●

● ●

R2

●

●
●

●

R3

0.0

0.2

0.4

0.6

0.8

●

● ●

●

R4

282

Summary/confidence intervals:283

> summary(Zfit)

4 sources, 3 mixed stock(s), 5 distinct markers

Sample data:

R1 R2 R3 R4 M1 M2 M3

H1 14 8 5 14 12 6 9

H2 2 0 0 0 3 4 1

H3 2 2 11 5 3 6 3

H4 2 2 7 0 4 6 10

H5 5 13 2 6 8 8 7

Estimates:

Mixed-stock-centric:

2.5% 97.5%

M1.R1 0.5473780 0.201795000 0.8366150

M1.R2 0.2235784 0.017553250 0.5286050

19

M1.R3 0.0850429 0.003377650 0.2590050

M1.R4 0.1440014 0.007369775 0.3941075

M2.R1 0.5043251 0.171260000 0.8346125

M2.R2 0.2178163 0.014860500 0.5255300

M2.R3 0.1712309 0.011442625 0.4215025

M2.R4 0.1066277 0.004133800 0.3124100

M3.R1 0.4046099 0.047320750 0.7818925

M3.R2 0.2877887 0.018549000 0.6452925

M3.R3 0.2017308 0.015441500 0.4913425

M3.R4 0.1058681 0.002893225 0.3213625

Source-centric:

2.5% 97.5%

R1.M1 0.3171615 0.052617250 0.7088300

R1.M2 0.2584727 0.038580500 0.6387150

R1.M3 0.1997042 0.012389250 0.5542900

R1.Unk 0.2246619 0.008175600 0.6225700

R2.M1 0.2492528 0.013269500 0.6460600

R2.M2 0.2118914 0.011240250 0.6314400

R2.M3 0.2626997 0.013295500 0.7239800

R2.Unk 0.2761556 0.010689750 0.7348300

R3.M1 0.1740109 0.005432050 0.5149200

R3.M2 0.2972163 0.020928500 0.6983675

R3.M3 0.3223322 0.026362250 0.7219875

R3.Unk 0.2064394 0.005509450 0.6473575

R4.M1 0.2988757 0.011309500 0.7524525

R4.M2 0.2004035 0.007036625 0.6351050

R4.M3 0.1847740 0.004338375 0.6272475

R4.Unk 0.3159484 0.015142750 0.7827350

(check this!)284

6 Quick start285

� Download and install R from CRAN (find the site closest to you at286

http://cran.r-project.org/mirrors.html; go to “Precompiled bi-287

nary distributions” and from there to the base package; pick your288

operating system; download the setup program; and run the setup289

program).290

20

http://cran.r-project.org/mirrors.html

� Start R.291

� From within R, download and install the mixstock package and aux-292

iliary packages:293

> install.packages("mixstock")

> install.packages("plotrix")

> install.packages("coda")

> install.packages("abind")

> install.packages("R2WinBUGS") ## or

> install.packages("R2jags")

(This installation procedure needs to be done only once, although the294

library command below, loading the package, needs to be done for295

every new R session.)296

� Load the package: library(mixstock)297

� Load data from a comma-separated value (CSV) file, convert to proper298

format, and condense haplotypes:299

> mydata = hapfreq.condense(as.mixstock.data(read.csv("myfile.dat")))

� analyze, e.g:300

> mydata.mcmc = tmcmc(mydata)

> mydata.mcmc

> intervals(mydata.mcmc)

> plot(mydata.mcmc)

7 To do301

� read.csv/read.table + as.mixstock.data combined into a single read.mixstock.data302

command? (also incorporate hapfreq.condense as a default option)303

� print.mixstock.est could print sample frequencies instead of saying304

“no estimate” for CML305

� MCMC section could be cleaned up considerably, explained better,306

R&L parameters not hard-coded, more efficient — don’t re-run chains307

every time308

� incorporate rookery sizes in data309

21

� keep CODA objects or potential for CODA plots in MCMC results310

� make MCMC convergence process more efficient: more explanation311

� add hierarchical models????312

� describe fuzz and bounds parameters on CML/UML, E-M algorithm313

� plot(...,legend=TRUE) doesn’t work for CML. add unstacked/beside=TRUE314

option to plot.mixstock.est315

� incorporate source size data as part of data object316

� some functions don’t work with uncondensed data: fix or issue warning317

� use HPDinterval from CODA for confidence intervals, rather than318

quantiles?319

References320

Bolker, B., T. Okuyama, K. Bjorndal, and A. Bolten (2003). Stock esti-321

mation for sea turtle populations using genetic markers: accounting for322

sampling error of rare genotypes. Ecological Applications 13 (3), 763–775.323

Bolker, B. M., T. Okuyama, K. A. Bjorndal, and A. B. Bolten (2007). Incor-324

porating multiple mixed stocks in mixed stock analysis: ’many-to-many’325

analyses. Molecular Ecology . in press.326

Bolten, A. B., K. A. Bjorndal, H. R. Martins, T. Dellinger, M. J. Biscotio,327

S. E. Encalada, and B. W. Bowen (1998). Transatlantic developmental328

migrations of loggerhead sea turtles demonstrated by mtDNA sequence329

analysis. Ecological Applications 8 (1), 1–7.330

Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin (1996). Bayesian data331

analysis. New York, New York, USA: Chapman and Hall.332

Lahanas, P. N., K. A. Bjorndal, A. B. Bolten, S. E. Encalada, M. M.333

Miyamoto, R. A. Valverde, and B. W. Bowen (1998). Genetic composition334

of a green turtle (Chelonia mydas) feeding ground population: evidence335

for multiple origins. Marine Biology 130, 345–352.336

Pella, J. and M. Masuda (2001). Bayesian methods for analysis of stock337

mixtures from genetic characters. Fisheries Bulletin 99, 151–167.338

22

R Development Core Team (2005). R: A language and environment for339

statistical computing. Vienna, Austria: R Foundation for Statistical Com-340

puting. ISBN 3-900051-07-0.341

Smouse, P. E., R. S. Waples, and J. A. Tworek (1990). A genetic mix-342

ture analysis for use with incomplete source population data. Canadian343

Journal of Fisheries and Aquatic Sciences 47, 620–634.344

23

	Introduction
	Installation
	Loading the mixstock package and reading in data
	Stock analysis
	Conditional and unconditional maximum likelihood
	Confidence intervals: CML and UML bootstrapping
	Markov Chain Monte Carlo estimation
	Convergence diagnostics for MCMC
	Raftery and Lewis
	Gelman and Rubin

	Hierarchical models
	Many-to-many analysis

	Quick start
	To do

