A quick guide to PLANOR, an R package for the automatic
generation of regular factorial designs

Monod H., Bouvier A., Kobilinsky A.

INRA, UR 341, Unité MIA-Jouy
Mathématiques et Informatique Appliquées
F78352 Jouy en Josas Cedex
France

September 20, 2013

Contents
1 Introduction 1

2 Construction and randomization of orthogonal designs : one-step examples 2
2.1 Full factorial design . . . . . . . . . . 2
2.2 Complete block design . . . . . . . ... L 4
2.3 Latinsquare. . . . . . .. .. 6
2.4 Fractional factorial design of resolution 5 . . . . . .. .. ... L. 8

3 Construction of regular factorial designs through the search for a design key 11

3.1 A very short technical point . . . . . . . ... . oL oL 11
3.2 Fractional designs with 2-level factors . . . . . . . .. ... . 0oL 12
3.2.1 Search foradesignkey. . . . .. .. ... ... o 12
3.2.2 Design-key properties . . . . . ... 13
3.2.3 Design generation . . . . ... ..o 14
3.3 Fractional designs with 3-level factors . . . . . . . . ... ... ... 15
3.4 Asymmetric fractional factorial designs . . . . . . . . ..o oL 15
3.5 Split-plot designs . . . . . . .. 18
3.6 Fractional designs with nested factors and a complex block structure . . . . . . .. 20

1 Introduction

The PLANOR R package generates regular factorial designs for a wide and flexible range of user
specifications. The main motivation for its creation was to generate full and fractional factorial
designs, but PLANOR can also be used to construct and randomize complete block designs, Latin
squares, split-plot designs, etc. The main limitation is that PLANOR generates orthogonal designs
only, which excludes most incomplete block designs and diverges from an optimal design approach.

PLANOR is based on algebraic methods of construction and more specifically on the key matrix
method [1],[6],[15], described in detail in [7], [11], [12], and illustrated in [4]. This method produces
so-called regular designs in which factorial effects are either estimable independently or completely
confounded. The PLANOR R package originates from the PLANOR software which was written in
the APL language by André Kobilinsky. The initial PLANOR manual [8] has been adapted to the
PLANOR R package [10] and gives more details on the theory than this short guide.



To generate a design with PLANOR , the user provides information on the design factors, on the
anova model to be used when analysing the results, and on the design size. He or she then asks
PLANOR to search for one or more designs meeting the requirements. One PLANOR function gives
a design solution directly. The design can be randomized at once according to a block structure
formula given by the user or it can be randomized later by a specific function. Alternatively,
the solutions, if any, can be obtained as a list of design key matrices. Several specific functions
then allow to investigate the solutions’ properties and to print and store the resulting designs.
PLANOR can manage factors with different numbers of levels. It can take into account hierarchical
relationships among factors. It is also possible to control the confounding of treatments effects
with block effects, like in split-plot or criss-cross experiments.

This vignette presents the basic usage of PLANOR . A more comprehensive presentation is under
preparation, as well as additional package functions. More details are also available through the
help functions of the PLANOR package. For an introduction to the design of experiments, many
textbooks are available in the statistics literature. For the PLANOR user, we particularly recommend
[2] and [7] (in French).

Please note that PLANOR is still under construction. We advise to check that the designs
obtained by PLANOR behave as expected before using them for a real experiment, by inspecting
them and conducting analysis on simulated data, for example.

2 Construction and randomization of orthogonal designs :
one-step examples

In PLANOR , the experiment requirements are specified in three parts : (i) the factors ; (i) the
model and (optionally) the subset of factorial effects to estimate ; (44) the design size. All this
information can be provided to the regular.design or to the planor.designkey functions. The
function regular.design is simpler to use because it integrates all the steps included in PLANOR
for design construction. Indeed it gives the factorial design directly as a ready-to-use dataframe,
if it finds a solution to the user’s specifications. We illustrate this function by the construction of
a few well known classes of orthogonal designs.

2.1 Full factorial design

Suppose we want to construct a full factorial design for three factors A, B, C" at 2, 2, 3 levels
respectively. Then the R code is:

> library("planor")
> ABCfull <- regular.design(factors=1ist(A=1:2,B=1:2,C=1:3),

+ model="A*Bx*(C,

+ nunits=2*2+*3,

+ randomize="UNITS)

The search is closed: max.sol = 1 solution(s) found

> print (ABCfull)

An object of class "planordesign"
Slot "design":
ABC

DO WN =
NN =N =N
BN RPN - N
WNWFLNDW



7 123
8§ 211
9 212
10111
11122
12121

Slot "factors":
An object of class "designfactors"
Slot "fact.info":

nlev block ordered model basic dummy
A 2 FALSE FALSE TRUE FALSE FALSE
B 2 FALSE FALSE TRUE FALSE FALSE
C 3 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":
parent nlev block ordered model basic dummy

A 1 2 FALSE FALSE TRUE FALSE FALSE
B 2 2 FALSE FALSE TRUE FALSE FALSE
C 3 3 FALSE FALSE TRUE FALSE FALSE

Slot "levels":
$A
[1] 1 2

$B
(1112

$C
[1] 123

Slot "model":
list()

Slot "designkey":
(f111

An object of class keymatrix

sfxkrckkkkk Prime 2 design skkkkkkkkk

A B
*Ux 1 0
*Ux 0 1

[[2]]
An object of class keymatrix

wkkkkkkkkk Prime 3 design skkkkkkkkk

*Ux 1



Slot "nunits":
[1] 12

Slot "recursive":
[1] FALSE

The first argument describes the factors. To get a full factorial design, the model formula
includes all interactions and the size of the experiment is the product of the numbers of levels of
all factors. We assume that the user wants a completely randomized design, so the randomization
formula is limited to the UNITS level. The result is a dataframe. Based here on simulated data,
the analysis gives:

set.seed(123)

dataABCfull= as.data.frame (ABCfull)
dataABCfull$Y <- runif (2%2%3)

ABCfull.aov <- aov(Y A*B*C, data=dataABCfull)
summary (ABCfull.aov)

vV V. Vv Vv Vv

Df Sum Sq Mean Sq

A 1 0.07360 0.07360
B 1 0.00015 0.00015
C 2 0.29155 0.14578
A:B 1 0.00948 0.00948
A:C 2 0.27126 0.13563
B:C 2 0.13998 0.06999
A:B:C 2 0.14940 0.07470

2.2 Complete block design

From a combinatorial point of view, the complete block design is a special case of the full factorial
design. From a statistical point of view, the main differences are that treatment and block effects
are usually assumed to be additive (no interaction) and that the randomization takes into account
the blocks.

Suppose there are 5 treatments and 4 blocks. The R code becomes:

> CBD <- regular.design(factors=list(

+ Block=1:4, Treatment=c("T1","T2","T3","T4", "T5")),
+ model="Block+Treatment,

+ nunits=4x*5,

+ randomize="Block/UNITS)

The search is closed: max.sol = 1 solution(s) found

> print (CBD)

An object of class "planordesign"
Slot "design":
Block Treatment

1 1 T4
2 1 T5
3 1 T2
4 1 T3
5 1 T1



6 2 T3
7 2 T2
8 2 T1
9 2 T4
10 2 T5
11 3 T4
12 3 T3
13 3 T1
14 3 T2
15 3 T5
16 4 T1
17 4 T2
18 4 T3
19 4 T4
20 4 T5

Slot "factors":
An object of class "designfactors"
Slot "fact.info":

nlev block ordered model basic dummy
Block 4 FALSE FALSE TRUE FALSE FALSE
Treatment 5 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":
parent nlev block ordered model basic dummy

Block_1 1 2 FALSE FALSE TRUE FALSE FALSE
Block_2 1 2 FALSE FALSE TRUE FALSE FALSE
Treatment 2 5 FALSE FALSE TRUE FALSE FALSE

Slot "levels":
$Block
[11 1 23 4

$Treatment
[1] |IT1|I |IT2|I IIT3II IIT4II |IT5|I

Slot "model":
list()

Slot "designkey":
(0111

An object of class keymatrix

sofkkrckkckxk Prime 2 design skkkkkkkkk

Block_1 Block_2

*Ux 1 0
*Ux 0 1
(211

An object of class keymatrix



sokskskkkkkkk Prime

Treatment
*Uk 1

Slot "nunits":
[1] 20

Slot "recursive":
[1] FALSE

5 design >k 3k 3k 5k % >k 5k 5k %k K

Based on simulated data again, the analysis gives:

> dataCBD= as.data.frame (CBD)

> dataCBD$Y <- runif (20)

> CBD.aov <- aov(Y“Block+Treatment, data=dataCBD)

> summary (CBD.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Block 3 0.0456 0.01521 0.325 0.807
Treatment 4 0.4384 0.10960 2.343 0.114
Residuals 12 0.5614 0.04678

2.3 Latin square

The Latin square involves three factors at n levels in n? units, with all three factors being pairwise
orthogonal. From a combinatorial point of view, the Latin square is a fractional factorial design.
From a statistical point of view, it is often used to study a treatment factor of interest and to

control two block factors that are completely crossed.

Suppose that in a sensory experiment, there are 4 products to compare and 4 judges. Each
judge tastes the four products during four consecutive periods. The design must ensure that the
main effects of the product, judge and period factors are estimable and orthogonal, assuming the
interactions are negligible. The appropriate randomization consists in permuting the judge and

period labels at random, independently.

The R code is:

> LS <- regular.design(factors=1list(

+
+
+
+

The search is closed: max.sol =

> print (LS)

Judge=c("J1","Jj2","j3","j4"), Period=1:4, Product=c("P1",6"P2",6"P3", 6 "P4")),

model= “Judge + Period + Product,
nunits=4+*4,
randomize="Judge+Period)

1 solution(s) found

An object of class "planordesign"

Slot "design":
Judge Period Product

1 J1 1 P3
2 J1 2 P1
3 J1 3 P4
4 J1 4 P2



5 J2 1 P1
6 J2 2 P3
7 J2 3 P2
8 J2 4 P4
9 J3 1 P4
10 J3 2 P2
11 J3 3 P3
12 J3 4 P1
13 J4 1 P2
14 J4 2 P4
15 J4 3 P1
16 J4 4 P3

Slot "factors":
An object of class "designfactors"
Slot "fact.info":

nlev block ordered model basic dummy
Judge 4 FALSE FALSE TRUE FALSE FALSE
Period 4 FALSE FALSE TRUE FALSE FALSE
Product 4 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":
parent nlev block ordered model basic dummy

Judge_1 1 2 FALSE FALSE TRUE FALSE FALSE
Judge_2 1 2 FALSE FALSE TRUE FALSE FALSE
Period_1 2 2 FALSE FALSE TRUE FALSE FALSE
Period_2 2 2 FALSE FALSE TRUE FALSE FALSE
Product_1 3 2 FALSE FALSE TRUE FALSE FALSE
Product_2 3 2 FALSE FALSE TRUE FALSE FALSE

Slot "levels":
$Judge
[1] IIJ1II IIJ2II IIJ3II IIJ4II

$Period
[11 1 2 3 4

$Product
[1] |IP1|I |IP2|I IIP3II IIP4II

Slot "model":
list()

Slot "designkey":
[[11]

An object of class keymatrix

okkkkkkkkk Prime 2 design skkkkkkkkk

Judge_1 Judge_2 Period_1 Period_2 Product_1 Product_2
*Uok 1 0 0 0 1 0
*U* 0 1 0 0 0 1



*Uk 0 0 1 0 1
*Uk 0 0 0 1 0 1

Slot "nunits":
[1] 16

Slot "recursive":
[1] FALSE

The analysis gives:

> datalLS=as.data.frame(LS)

> dataLS$Y <- runif(16)

> LS.aov <- aov(Y"Judge + Period + Product, data=datalS)
> summary (LS.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Judge 3 0.4454 0.14848 4.314 0.0607 .
Period 3 0.2271 0.07571 2.199 0.1890
Product 3 0.1525 0.05084 1.477 0.3125

Residuals 6 0.2065 0.03442

Signif. codes: 0 &AY***3AZ 0.001 aAY**aAZ 0.01 aA¥*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

2.4 Fractional factorial design of resolution 5

For the last example in this section, we consider the type of design for which PLANOR was originally
conceived: a highly fractionated factorial design. Such designs allow to cope with a large number
of factors in (much) fewer units than required by a full factorial design. They have been used for
real experiments for a long time [3] and, more recently, for computer experiments (e.g. [5], [14]).

A fractional design of resolution 5 is generated below for 10 factors at 4 levels, assuming that
210 — 1024 units are available instead of 4'° = 1 048 576 for a full factorial design. A fraction
of resolution 5 guarantees that all terms can be estimated from a model with main effects and
two-factor interactions. It can be generated as follows :

> FFD <- regular.design(factors=LETTERS[1:10], nlevels=4,

+ resolution=5,
+ nunits=2"10)
The search is closed: max.sol = 1 solution(s) found

> print (dim(FFD))
NULL
> print(FFD[1:5,])

An object of class "planordesign"
Slot "design":

ABCDEFGHTIJ
11111111111
21111122222
31111133333
41111144444



51112211224

Slot "factors":
An object of class "designfactors"
Slot "fact.info":

nlev

GCHEOQOTHM@MU QW >
O NN N N N N N R

block ordered model

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

Slot "pseudo.info":
parent nlev

CoHHTZQOmmEEDOQQwm ==
R CREN OIS OIS VRSN O S SIS CR SN SIS SRS

Slot "levels":

$A

1

© © 000NN OO D> WWNNN-

=
o O

[1] 1234

$B

[1] 1234

$C

[1] 1234

$D

[1] 1234

$E

NDDNDNNNDNDNDNNDNDNDNNDNDNDNNDNDDNDNDNDDND

block
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

basic dummy

TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE
TRUE FALSE FALSE

ordered model basic

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE
TRUE FALSE

dummy
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE



[1] 1234

$F

[1] 1234

$G

[1] 1234

$H

[1] 1234

$1

[1] 1234

$J

[1] 1234

"model":

Slot
1list ()

Slot "designkey":

[[1]1]

An object of class keymatrix

2 design >k 5k 3k 3k %k >k 3k 3k %k K

sokskskkkkkkk Prime

A1 A2B1B2C1C2D1D2E1E2F1F2G1G2H1H2I1I2J_1

*U i o0 o0 o o o0 0 O i 0 o0 0 O 1 i1 0 0 O 1
*Ux*
*Ux*
* U
* U
* U
*Ux*
*Ux*

*U
*U

* Uk
* Uk
* Uk
*Usk
*Usk
* Uk
* Uk
* Uk
*Usk
*Usk

"nunits":

Slot

10



[1] 1024

Slot "recursive":
[1] FALSE

Note that in PLANOR syntax, it is equivalent, but shorter, to specify resolution = 5 rather than

model = (A+B+C+D+E+F+G+H+I+J) 2.

3 Construction of regular factorial designs through the search
for a design key

We now adopt a more progressive way to construct the design. For this reason, we focus on
the planor.designkey function rather than regular.design. In that case, design construction
involves two main steps :

1. the search for key matrices (function planor.designkey);
2. then the design generation and randomization (function planor.design).

We start by a short technical subsection. It cannot go into details, but we hope it helps to make
a link with other approaches to the construction of regular factorial designs.

3.1 A very short technical point

A key matrix of base p in PLANOR is a matrix of integers modulo p, where p is a prime. It encodes
the information required to construct a regular factorial design for factors at p levels.

Consider for example a design for 4 factors A, B, C, D at p = 2 levels in 2% = 8 units, whereas
a full factorial design would require 2 = 16 units. It is possible to construct a design which allows
to estimate the main effects of the factors assuming the three- and four-factor interactions are
negligible. The solution is explained in many books on factorial designs (e.g. [3]) :

e assimilate the factors’ levels to 0,1 mod 2;
e make a full factorial design on A, B, C,

e add the level of D on each unit by the equation D = A + B + C' mod 2, called the defining
relationship of the design.

Then it can be shown that the interaction A.B.C.D is confounded with the general mean, the
main effect A is confounded with the interaction B.C.D, etc.
In PLANOR , this construction is encoded in the following key matrix of base 2 :

1 0 0 1
K= 01 01
0 0 1 1

The rows of K are associated with three factors Uy, Us, Us which are called the units factors. The
idea is that the set of units can be identified to the full factorial design on these units factors.
The columns of K are associated with the treatment factors A, B, C, D. Here the first column
of K means that in the design, we must have A = U; (modulo 2). The second, third and fourth
columns mean B = Uy, C' = Us and D = U; + Us 4 Us, respectively. It follows that the defining
relationship D = A + B + C' mod 2 will be satisfied.

The core algorithm in PLANOR basically constructs K by searching for its columns successively,
using a backtrack algorithm. However, there is also much pre-processing to turn the factors and
model specifications into appropriate constraints on the columns of K. In particular, all factors

11



are automatically decomposed into pseudofactors which all have a prime number of levels, and the
whole problem is decomposed according to the different prime numbers involved.

A detailed presentation of the methodology implemented in PLANOR is under preparation [9].
See also the references given in the introduction or [16] for the extension of regular factorial designs
to the case when different primes are involved.

3.2 Fractional designs with 2-level factors
3.2.1 Search for a design key

Consider an experiment to study four treatment factors A, B, C, D at two levels, using two blocks
of size four. A full factorial design on the treatment factors would require 16 units. Only eight
are available so that a fractional design must be used. In addition, some treatment effects are
necessarily confounded with the block effect.

At first, we may look for a design adapted to the model that includes the main effects of the
block and treatment factors, as well as the interactions between pairs of treatment factors :

> exl1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),
+ model="block+(A+B+C+D) "2,
+ nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 2 to 5
first visit to column 2
first visit to column 3
first visit to column 4
first visit to column 5
The search is closed: O solutions found

It turns out that PLANOR fails to find a solution. There is indeed no solution to the problem.

For the second try, we keep the same model but relax the implicit constraint to estimate all fac-
torial terms in the model. This is done by using the estimate argument of the planor.designkey
function. This argument is optional : by default, it is considered that all terms in the model for-
mula must be estimated. In contrast, we only require below that the main effects of the treatment
factors be estimable. It follows that we now allow for designs in which two-factor interactions are
mutually confounded.

> ex1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),

+ model="block+(A+B+C+D) "2,
+ estimate="A+B+C+D,
+ nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 2 to 5
first visit to column 2
first visit to column 3
first visit to column 4
first visit to column 5
The search is closed: max.sol = 1 solution(s) found

During the search, the backtrack algorithm looks successively for new columns to add to the
key matrix. Succinct information is given to check the algorithm progress (default argument

12



verbose=TRUE). The search stops as soon as all columns of the key matrix have been found
(default argument max.sol=1).

An alternative to using planor.designkey directly is to provide the information on the exper-
iment step by step with the functions planor.factors and planor.model. The idea is to store
the results of these functions in R objects and use them as arguments to planor.designkey. This
may be convenient, for example, when one wants to explore several possible models and design
sizes with the same set of factors.

> exl1Fac <- planor.factors(factors=c("block","A","B","C","D"), nlevels=rep(2,5),
+ block="block)

> ex1Mod <- planor.model( model="block+(A+B+C+D) 2, estimate="A+B+C+D )

> ex1Key <- planor.designkey(factors=ex1Fac, model=ex1Mod, nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 2 to 5
first visit to column 2
first visit to column 3
first visit to column 4
first visit to column 5
The search is closed: max.sol = 1 solution(s) found

3.2.2 Design-key properties

In both cases, the key matrix solution is stored in the object ex1Key. Its detailed properties can be
obtained by two different functions. The summary function prints the key matrix and the defining
relationships associated with this key matrix. More detailed information on the aliasing between
factorial effects is given by the function alias.

Note that we have used the optional block argument of planor.factors (also available in
planor.designkey). It specifies the factors that should be considered as block (or nuisance)
factors. In PLANOR , the distinction between treatment and block factors is taken into account
when studying confounding and aliasing properties.

> summary (ex1Key, show="dtb")

wkkkkkkkkk Prime 2 design skkkkkkkkk
--- Solution 1 for prime 2 ---

DESIGN KEY MATRIX
block ABCD

*Uk 10101
*Uk 01100
*U* 00011

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1=ABCD

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = block A B
1 = block CD

> alias(ex1Key)

13



okkkkkkkkk Prime 2 design skkkkkkkkk
--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS
A ;B ;C;D

ALTIASED TREATMENT EFFECTS
A:C = B:D

A:D = B:C

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS
block = A:B = C:D

UNALTASED BLOCK EFFECTS

nil

--— Synthesis on the aliased treatment effects for prime 2 ---
unaliased trt.aliased blc.aliased

[1,] 4 4 2

3.2.3 Design generation

Last but not least, a design can be generated by the function planor.design. The design itself
is the object in slot design of the more complex object generated by planor.design. An option
allows the design to be randomized, according to a block structure formula that the user must
specify (option randomize).

> ex1Des <- planor.design(exlKey)
> print(getDesign(ex1Des))

block AB CD

1 11111

2 11122

3 12211

4 12222

5 21212

6 21221

7 22112

8 22121

> ex1Rand <- planor.design(ex1Key, randomize="block/UNITS)

> print(getDesign(ex1Rand))
block AB CD

1 11212

2 11221

3 12112

4 12121

5 21111

6 22211

7 22222

8 21122

14



3.3 Fractional designs with 3-level factors

We keep the same example but with 3-level factors and a few more options. The results are not
shown for sake of brevity.

#oRRRRRRRRRRRRR KRRk EXAMPLE 2 Ak kkk ko ko dk ko ko ko ke kK Kok

# Four 3-level treatment factors and one 3-level block factor

# Model: block+(A+B+C+D)"2 -  Estimate: A+B+C+D

# N = 3°3 = 27 units

#

ex2Key <- planor.designkey(factors=c(LETTERS[1:4],"block"),
nlevels=rep(3,5),
block="block,
model="block+(A+B+C+D) "2,
estimate="A+B+C+D,
nunits=3"3, base="A+B+C, max.sol=2)

summary (ex2Key)

summary (ex2Key)

ex2Des <- planor.design(ex2Key[2])

VVYV+ + + 4+ +VVVYVVYV

Two optional arguments of planor.designkey have been used, first to specify that A, B and
C should be used as basic factors, and second to ask for two solutions whereas the default is one.
Both solutions are examined by summary and the second one, say, is chosen by the user to generate
a factorial design. When basic factors are specified, they are identified to the units factors U; [8].
As a consequence, all combinations of the basic factors are guaranteed to be included in the design.
When relevant, using basic factors is recommended because it can speed up the search.

The following lines also work; they illustrate that the basic factors need not be part of the
model but they must have been declared in planor.factors.

> ex2Fac <- planor.factors(factors=c(LETTERS[1:4], "block", "BASE"),
+ nlevels=rep(3,6) )

> ex2Mod <- planor.model (model="block+(A+B+C+D) "2,

+ estimate="A+B+C+D )

> ex2Key <- planor.designkey(factors=ex2Fac,

+ model=ex2Mod,

+ nunits=3-3,

+ base="A+B+BASE,

+ max.sol=2)

3.4 Asymmetric fractional factorial designs

A regular fractional factorial design is called mixed or asymmetric when the numbers of levels
of the factors involve several different prime numbers. The asymmetric designs constructed in
PLANOR consist of the cross products of designs based on each prime. This does not allow for
a great flexibility in terms of confounding, but it enlarges the scope of situations that can be
addressed.

> # Four treatment factors at 6, 6, 4, 2 levels and one 6-level block factor
> # Model: block+(A+B+C+D) "2 ; Estimate: A+B+C+D\n")

> # N = 144 = 274 x 372 experimental units

> mixKey <- planor.designkey(factors=c( LETTERS[1:4], "block"),

+ nlevels=c(6,6,4,2,6),

block="block,

model="block+(A+B+C+D) "2,

estimate="A+B+C+D,

+ + +
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+ nunits=144,
+ base="A+B+D, max.sol=2)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 4 to 6
first visit to column 4
first visit to column 5
first visit to column 6
The search is closed: max.sol = 2 solution(s) found
Main step for prime p = 3 : key-matrix search
=> search for column 3 .
first visit to column 3
The search is closed: max.sol = 2 solution(s) found

> summary (mixKey)

wkkkkkkkkk Prime 2 design skkkkkkkkk
--- Solution 1 for prime 2 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1=A1B_1DC_1

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 =A_1 B_1 block_1
1 =D C_1 block_1

WEIGHT PROFILES

Treatment effects confounded with the mean: 471

Treatment effects confounded with block effects: 272
Treatment pseudo-effects confounded with the mean: 471
Treatment pseudo-effects confounded with block effects: 272

--— Solution 2 for prime 2 --—-

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1=A1B_1DC_1

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 =A_10D block_1
1 =B_1 C_1 block_1

WEIGHT PROFILES

Treatment effects confounded with the mean: 471

Treatment effects confounded with block effects: 272
Treatment pseudo-effects confounded with the mean: 471
Treatment pseudo-effects confounded with block effects: 272

okkkkkkkkk Prime 3 design skkkkkkkkk

--- Solution 1 for prime 3 ---
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TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 =A_2"2 B_2"2 block_2

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 271
Treatment pseudo-effects confounded with the mean: none
Treatment pseudo-effects confounded with block effects: 271

--— Solution 2 for prime 3 --—-

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 =A_2B_2"2 block_2

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 271
Treatment pseudo-effects confounded with the mean: none
Treatment pseudo-effects confounded with block effects: 271

> mixPlan <- planor.design(key=mixKey, select=c(1,1), randomize="block/UNITS)
> print(getDesign(mixPlan)[1:25,])

A B D C block
1 6 612 1
6 1212 1
8 4511 1
10 66 23 1
15 3324 1
17 2123 1
19 5423 1
24 3312 1
26 2112 1
28 5424 1
33 5412 1
35 4524 1
1092111 1
114 6 6 2 4 1
116 21 2 4 1
1181 22 3 1
123451 2 1
126 3 3 2 3 1
127 4 5 2 3 1
1326 611 1
134 3311 1
136 1 2 2 4 1
141 5411 1
1431211 1
2 3422 2
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The algorithm starts by decomposing the factors into pseudofactors that all have a prime
number of levels. Then it performs a similar decomposition of the model and estimate terms.
After these initial steps, separate key-matrix searches are performed, one for each prime involved
in the problem. The prime decompositions are automatic and transparent to the user. The
recomposition when generating a design is transparent too. In contrast, most information on the
search process and on the fraction properties are given according to the prime decompositions.

3.5 Split-plot designs

In a split-plot experiment, there are two treatment factors variety and fert, say, at m and n
levels respectively. The block structure consists of 7 blocks each containing m sub-blocks of size
n and the factor variety is constrained to be constant within sub-blocks.

In an orthogonal split-plot design, each variety occupies one sub-block of each block, and each
sub-block contains the n distinct levels of factor fert. In PLANOR , this design can be constructed
by defining the block structure as a cross between a block and a subblock factor. The hierarchy
argument is used to specify that variety must be constant within the combinations of block
and subblock. Two model-estimate pairs are given to the listofmodels argument. First, the
main effect of fert and the interaction between fert and variety must be estimable when blocks
and sub-blocks are included in the model. Second, the main effect of variety must be estimable
between sub-blocks, that is, when blocks but not sub-blocks are included in the model. The
command below calculates the design key of a split-plot design with r =2, n =2, m = 2.

> splitKey <- planor.designkey(factors=list(block=1:2,

+ subblock=1:2,

+ variety=LETTERS[1:2],

+ fert=c("organic", "mineral")),

+ block="block+subblock,

+ hierarchy=1ist(“variety/(block*subblock)),

+ listofmodels=

+ list(c( “block*subblock+variety*fert, ~“fert+fert:variety),
+ c( "block+variety, “variety)),
+ nunits=2+*2+*2,

+ base="block+subblock)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 3 to 4
first visit to column 3
first visit to column 4
The search is closed: max.sol = 1 solution(s) found

> summary (splitKey)
sokkkkdkookk Prime 2 design kskskskskokskskoksk

--- Solution 1 for prime 2 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 = subblock variety

WEIGHT PROFILES
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Treatment effects confounded with the mean: none
Treatment effects confounded with block effects: 171
Treatment pseudo-effects confounded with the mean: none
Treatment pseudo-effects confounded with block effects: 171

> alias(splitKey)
sokkkkkookk Prime 2 design kskskskskokskskoksk

--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS
nil

ALTIASED TREATMENT EFFECTS
nil

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS
nil

UNALTASED BLOCK EFFECTS
block ; subblock

--— Synthesis on the aliased treatment effects for prime 2 ---

unaliased trt.aliased blc.aliased
[1,] 0 0 0

> print(getDesign(planor.design(splitKey, randomize="block/subblock/UNITS)))

block subblock variety fert

1 1 1 A organic
2 1 1 A mineral
3 1 2 B organic
4 1 2 B mineral
5 2 1 B organic
6 2 1 B mineral
7 2 2 A mineral
8 2 2 A organic

An alternative command to get the split-plot is given below. The main difference is that the
subblock factor now takes rm levels and is considered as nested in block rather than crossed with

> splitKey <- planor.designkey(factors=list(block=1:2,

+ subblock=1:4,

+ variety=LETTERS[1:2],

+ fert=c("organic", "mineral")),

+ block="block+subblock,

+ hierarchy=1ist( “block/subblock, ~“variety/subblock),
+ listofmodels=

+ list(c( “subblock+variety*fert, ~“fert+fert:variety),
+ c( “block+variety, “variety)),

+ nunits=2+*2+*2,

+ base="subblock)
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Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search
=> search for columns 3 to 5
first visit to column 3
first visit to column 4
first visit to column 5
The search is closed: max.sol = 1 solution(s) found

> print(getDesign(planor.design(splitKey, randomize="block/subblock/UNITS)))

subblock block variety fert

1 1 1 B organic
2 1 1 B mineral
3 2 1 A mineral
4 2 1 A organic
5 3 2 B mineral
6 3 2 B organic
7 4 2 A organic
8 4 2 A mineral

3.6 Fractional designs with nested factors and a complex block structure

We now consider an experiment with concrete and more complex specifications. This example
stems from an experiment to study the cleaning of surfaces by a robot, see [8], example 3 on
page 3. There are five treatment factors at 2 levels. The block structure consists of four plates
with 2 rows and 4 columns per plate, resulting in 32 experimental units. In addition, the design
must cope with experimental constraints between treatment and block factors. The treatment
factors concentration (conc) and temperature (Tact) must remain constant within a plate. The
treatment factors denoted by nsoil and gsoil must remain constant within each column of each
plate. Ounly treatment factor rugosity (Rug) can be modified freely between experimental units.

To begin with, we show how to specify user-defined factor levels, by providing a list to the
factors argument of planor.factors. Then, experimental constraints are specified through the
hierarchy argument of planor.factors.

> # sxkkkkkkxkkk ROBOT1A EXAMPLE skskskkokokokskskkkkk

> # Block structure: 4 plates / (2 rows x 4 columns)

> # Treatments: 4 2-level factors

> # Hierarchy 1: conc constant in plate

> # Hierarchy 2: Tact constant in plate

> # Hierarchy 3: nsoil constant in plate x column

> # Hierarchy 4: gsoil constant in plate x column

> # N = 32 units

> #

> robotFac <- planor.factors( factors=list(

+ conc=c(1,3),

+ Tact=c(15,30),

+ nsoil=c("curd", "Saint-Paulin"),
+ gsoil=c("0.01g","0.10g"),
+ Rug=c(0.25,0.73),

+ plate=1:4,

+ row=1:2,

+ col=1:4),

+ hierarchy=1ist(~conc/plate,
+ “Tact/plate,
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+ “nsoil/(plate*col),
" ~gsoil/(plate*col)))

This example requires several model-estimate combinations. The main model-estimate pair
contains all the treatment factorial effects but no block effect. It guarantees that all treatment
combinations will be present in the design, since all treatment factorial effects are required to
be estimable in the model with no block effect. The second model-estimate pair (1istofmodels
argument) ensures that the Rug factor is orthogonal to block factors.

> robotMod <- planor.model( model="nsoil*qsoil*Rug*conc*Tact,
+ listofmodels=1ist(c("plate+row+col+Rug, “Rug)) )

The base option of the planor.designkey function is used here to impose that experimental
units be associated with the combinations of the block factors.

> robotKey <- planor.designkey(factors=robotFac, model=robotMod,
+ nunits=32, base="plate+row+col)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 10

first visit to column
first visit to column
first visit to column
first visit to column
first visit to column 10

The search is closed: max.sol = 1 solution(s) found

© 00 N O

> summary (robotKey[1])

sofxkrckkckxk Prime 2 design skkkkkkkkk

DESIGN KEY MATRIX
plate_1 plate_2 row col_1 col_2 conc Tact nsoil gsoil Rug

plate_1 1 0 O 0 0 1 0 0 0 1
plate_2 0 1 0 0 0 0 1 0 0 O
row 0 0 1 0 0 0 0 0 0 1
col_1 0 0 0 1 0 0 0 1 0 0
col_2 0 0 O 0 1 0 0 0 1 0

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 = plate_1 conc

= plate_2 Tact

= col_1 nsoil

col_2 gsoil

= plate_1 plate_2 conc Tact

= col_1 col_2 nsoil gsoil

= plate_1 row Rug

row conc Rug

= plate_1 col_1 conc nsoil

= plate_2 col_1 Tact nsoil

= plate_1 col_2 conc gsoil

= plate_2 col_2 Tact gsoil

= plate_1 plate_2 row Tact Rug

= plate_1 plate_2 col_1 conc Tact nsoil

I e T = T T S S S e S S Y
]
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= plate_1 plate_2 col_2 conc Tact gsoil
= plate_1 col_1 col_2 conc nsoil gsoil
= plate_2 col_1 col_2 Tact nsoil gsoil
= plate_2 row conc Tact Rug

= plate_1 row col_1 nsoil Rug

= row col_1 conc nsoil Rug

N e

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

WEIGHT PROFILES

Treatment effects confounded with the mean: 274 374 475 579 675 773 871

Treatment effects confounded with block effects: none

Treatment pseudo-effects confounded with the mean: 274 476 372 576 674 871 776 972
Treatment pseudo-effects confounded with block effects: none

> robotDes <- planor.design(robotKey[1], randomize="plate/(row*col))
> print(getDesign (robotDes))

plate row col conc Tact nsoil gsoil Rug
1 1 1 1 1 15 curd 0.01g 0.25
2 1 1 2 1 15 curd 0.10g 0.25
3 1 1 3 1 15 Saint-Paulin 0.01g 0.25
4 1 1 4 1 15 Saint-Paulin 0.10g 0.25
5 1 2 1 1 15 curd 0.01g 0.73
6 1 2 2 1 15 curd 0.10g 0.73
7 1 2 3 1 15 Saint-Paulin 0.01g 0.73
8 1 2 4 1 15 Saint-Paulin 0.10g 0.73
9 2 1 1 3 15 Saint-Paulin 0.10g 0.73
10 2 1 2 3 15 curd 0.10g 0.73
11 2 1 3 3 15 curd 0.01g 0.73
12 2 1 4 3 15 Saint-Paulin 0.01g 0.73
13 2 2 1 3 15 Saint-Paulin 0.10g 0.25
14 2 2 2 3 15 curd 0.10g 0.25
15 2 2 3 3 15 curd 0.01g 0.25
16 2 2 4 3 15 Saint-Paulin 0.01g 0.25
17 3 1 1 1 30 curd 0.01g 0.25
18 3 1 2 1 30 Saint-Paulin 0.10g 0.25
19 3 1 3 1 30 curd 0.10g 0.25
20 3 1 4 1 30 Saint-Paulin 0.01g 0.25
21 3 2 1 1 30 curd 0.01g 0.73
22 3 2 2 1 30 Saint-Paulin 0.10g 0.73
23 3 2 3 1 30 curd 0.10g 0.73
24 3 2 4 1 30 Saint-Paulin 0.01g 0.73
25 4 1 1 3 30 Saint-Paulin 0.10g 0.73
26 4 1 2 3 30 curd 0.01g 0.73
27 4 1 3 3 30 Saint-Paulin 0.01g 0.73
28 4 1 4 3 30 curd 0.10g 0.73
29 4 2 1 3 30 Saint-Paulin 0.10g 0.25
30 4 2 2 3 30 curd 0.01g 0.25
31 4 2 3 3 30 Saint-Paulin 0.01g 0.25
32 4 2 4 3 30 curd 0.10g 0.25
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