
A quick guide to PLANOR, an R package for the automatic

generation of regular factorial designs

Monod H., Bouvier A., Kobilinsky A.

INRA, UR 341, Unité MIA-Jouy

Mathématiques et Informatique Appliquées

F78352 Jouy en Josas Cedex

France

September 20, 2013

Contents

1 Introduction 1

2 Construction and randomization of orthogonal designs : one-step examples 2

2.1 Full factorial design . 2
2.2 Complete block design . 4
2.3 Latin square . 6
2.4 Fractional factorial design of resolution 5 . 8

3 Construction of regular factorial designs through the search for a design key 11

3.1 A very short technical point . 11
3.2 Fractional designs with 2-level factors . 12

3.2.1 Search for a design key . 12
3.2.2 Design-key properties . 13
3.2.3 Design generation . 14

3.3 Fractional designs with 3-level factors . 15
3.4 Asymmetric fractional factorial designs . 15
3.5 Split-plot designs . 18
3.6 Fractional designs with nested factors and a complex block structure 20

1 Introduction

The PLANOR R package generates regular factorial designs for a wide and flexible range of user
specifications. The main motivation for its creation was to generate full and fractional factorial
designs, but PLANOR can also be used to construct and randomize complete block designs, Latin
squares, split-plot designs, etc. The main limitation is that PLANOR generates orthogonal designs
only, which excludes most incomplete block designs and diverges from an optimal design approach.

PLANOR is based on algebraic methods of construction and more specifically on the key matrix
method [1],[6],[15], described in detail in [7], [11], [12], and illustrated in [4]. This method produces
so-called regular designs in which factorial effects are either estimable independently or completely
confounded. The PLANOR R package originates from the PLANOR software which was written in
the APL language by André Kobilinsky. The initial PLANOR manual [8] has been adapted to the
PLANOR R package [10] and gives more details on the theory than this short guide.

1

To generate a design with PLANOR , the user provides information on the design factors, on the
anova model to be used when analysing the results, and on the design size. He or she then asks
PLANOR to search for one or more designs meeting the requirements. One PLANOR function gives
a design solution directly. The design can be randomized at once according to a block structure
formula given by the user or it can be randomized later by a specific function. Alternatively,
the solutions, if any, can be obtained as a list of design key matrices. Several specific functions
then allow to investigate the solutions’ properties and to print and store the resulting designs.
PLANOR can manage factors with different numbers of levels. It can take into account hierarchical
relationships among factors. It is also possible to control the confounding of treatments effects
with block effects, like in split-plot or criss-cross experiments.

This vignette presents the basic usage of PLANOR . A more comprehensive presentation is under
preparation, as well as additional package functions. More details are also available through the
help functions of the PLANOR package. For an introduction to the design of experiments, many
textbooks are available in the statistics literature. For the PLANOR user, we particularly recommend
[2] and [7] (in French).

Please note that PLANOR is still under construction. We advise to check that the designs
obtained by PLANOR behave as expected before using them for a real experiment, by inspecting
them and conducting analysis on simulated data, for example.

2 Construction and randomization of orthogonal designs :

one-step examples

In PLANOR , the experiment requirements are specified in three parts : (i) the factors ; (ii) the
model and (optionally) the subset of factorial effects to estimate ; (iii) the design size. All this
information can be provided to the regular.design or to the planor.designkey functions. The
function regular.design is simpler to use because it integrates all the steps included in PLANOR

for design construction. Indeed it gives the factorial design directly as a ready-to-use dataframe,
if it finds a solution to the user’s specifications. We illustrate this function by the construction of
a few well known classes of orthogonal designs.

2.1 Full factorial design

Suppose we want to construct a full factorial design for three factors A, B, C at 2, 2, 3 levels
respectively. Then the R code is:

> library("planor")

> ABCfull <- regular.design(factors=list(A=1:2,B=1:2,C=1:3),

+ model=~A*B*C,

+ nunits=2*2*3,

+ randomize=~UNITS)

The search is closed: max.sol = 1 solution(s) found

> print(ABCfull)

An object of class "planordesign"

Slot "design":

A B C

1 2 2 3

2 1 1 2

3 2 2 1

4 1 1 3

5 2 2 2

6 2 1 3

2

7 1 2 3

8 2 1 1

9 2 1 2

10 1 1 1

11 1 2 2

12 1 2 1

Slot "factors":

An object of class "designfactors"

Slot "fact.info":

nlev block ordered model basic dummy

A 2 FALSE FALSE TRUE FALSE FALSE

B 2 FALSE FALSE TRUE FALSE FALSE

C 3 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":

parent nlev block ordered model basic dummy

A 1 2 FALSE FALSE TRUE FALSE FALSE

B 2 2 FALSE FALSE TRUE FALSE FALSE

C 3 3 FALSE FALSE TRUE FALSE FALSE

Slot "levels":

$A

[1] 1 2

$B

[1] 1 2

$C

[1] 1 2 3

Slot "model":

list()

Slot "designkey":

[[1]]

An object of class keymatrix

********** Prime 2 design **********

A B

U 1 0

U 0 1

[[2]]

An object of class keymatrix

********** Prime 3 design **********

C

U 1

3

Slot "nunits":

[1] 12

Slot "recursive":

[1] FALSE

The first argument describes the factors. To get a full factorial design, the model formula
includes all interactions and the size of the experiment is the product of the numbers of levels of
all factors. We assume that the user wants a completely randomized design, so the randomization
formula is limited to the UNITS level. The result is a dataframe. Based here on simulated data,
the analysis gives:

> set.seed(123)

> dataABCfull= as.data.frame(ABCfull)

> dataABCfull$Y <- runif(2*2*3)

> ABCfull.aov <- aov(Y~A*B*C, data=dataABCfull)

> summary(ABCfull.aov)

Df Sum Sq Mean Sq

A 1 0.07360 0.07360

B 1 0.00015 0.00015

C 2 0.29155 0.14578

A:B 1 0.00948 0.00948

A:C 2 0.27126 0.13563

B:C 2 0.13998 0.06999

A:B:C 2 0.14940 0.07470

2.2 Complete block design

From a combinatorial point of view, the complete block design is a special case of the full factorial
design. From a statistical point of view, the main differences are that treatment and block effects
are usually assumed to be additive (no interaction) and that the randomization takes into account
the blocks.

Suppose there are 5 treatments and 4 blocks. The R code becomes:

> CBD <- regular.design(factors=list(

+ Block=1:4, Treatment=c("T1","T2","T3","T4", "T5")),

+ model=~Block+Treatment,

+ nunits=4*5,

+ randomize=~Block/UNITS)

The search is closed: max.sol = 1 solution(s) found

> print(CBD)

An object of class "planordesign"

Slot "design":

Block Treatment

1 1 T4

2 1 T5

3 1 T2

4 1 T3

5 1 T1

4

6 2 T3

7 2 T2

8 2 T1

9 2 T4

10 2 T5

11 3 T4

12 3 T3

13 3 T1

14 3 T2

15 3 T5

16 4 T1

17 4 T2

18 4 T3

19 4 T4

20 4 T5

Slot "factors":

An object of class "designfactors"

Slot "fact.info":

nlev block ordered model basic dummy

Block 4 FALSE FALSE TRUE FALSE FALSE

Treatment 5 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":

parent nlev block ordered model basic dummy

Block_1 1 2 FALSE FALSE TRUE FALSE FALSE

Block_2 1 2 FALSE FALSE TRUE FALSE FALSE

Treatment 2 5 FALSE FALSE TRUE FALSE FALSE

Slot "levels":

$Block

[1] 1 2 3 4

$Treatment

[1] "T1" "T2" "T3" "T4" "T5"

Slot "model":

list()

Slot "designkey":

[[1]]

An object of class keymatrix

********** Prime 2 design **********

Block_1 Block_2

U 1 0

U 0 1

[[2]]

An object of class keymatrix

5

********** Prime 5 design **********

Treatment

U 1

Slot "nunits":

[1] 20

Slot "recursive":

[1] FALSE

Based on simulated data again, the analysis gives:

> dataCBD= as.data.frame(CBD)

> dataCBD$Y <- runif(20)

> CBD.aov <- aov(Y~Block+Treatment, data=dataCBD)

> summary(CBD.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Block 3 0.0456 0.01521 0.325 0.807

Treatment 4 0.4384 0.10960 2.343 0.114

Residuals 12 0.5614 0.04678

2.3 Latin square

The Latin square involves three factors at n levels in n2 units, with all three factors being pairwise
orthogonal. From a combinatorial point of view, the Latin square is a fractional factorial design.
From a statistical point of view, it is often used to study a treatment factor of interest and to
control two block factors that are completely crossed.

Suppose that in a sensory experiment, there are 4 products to compare and 4 judges. Each
judge tastes the four products during four consecutive periods. The design must ensure that the
main effects of the product, judge and period factors are estimable and orthogonal, assuming the
interactions are negligible. The appropriate randomization consists in permuting the judge and
period labels at random, independently.

The R code is:

> LS <- regular.design(factors=list(

+ Judge=c("J1","J2","J3","J4"), Period=1:4, Product=c("P1","P2","P3","P4")),

+ model= ~Judge + Period + Product,

+ nunits=4*4,

+ randomize=~Judge+Period)

The search is closed: max.sol = 1 solution(s) found

> print(LS)

An object of class "planordesign"

Slot "design":

Judge Period Product

1 J1 1 P3

2 J1 2 P1

3 J1 3 P4

4 J1 4 P2

6

5 J2 1 P1

6 J2 2 P3

7 J2 3 P2

8 J2 4 P4

9 J3 1 P4

10 J3 2 P2

11 J3 3 P3

12 J3 4 P1

13 J4 1 P2

14 J4 2 P4

15 J4 3 P1

16 J4 4 P3

Slot "factors":

An object of class "designfactors"

Slot "fact.info":

nlev block ordered model basic dummy

Judge 4 FALSE FALSE TRUE FALSE FALSE

Period 4 FALSE FALSE TRUE FALSE FALSE

Product 4 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":

parent nlev block ordered model basic dummy

Judge_1 1 2 FALSE FALSE TRUE FALSE FALSE

Judge_2 1 2 FALSE FALSE TRUE FALSE FALSE

Period_1 2 2 FALSE FALSE TRUE FALSE FALSE

Period_2 2 2 FALSE FALSE TRUE FALSE FALSE

Product_1 3 2 FALSE FALSE TRUE FALSE FALSE

Product_2 3 2 FALSE FALSE TRUE FALSE FALSE

Slot "levels":

$Judge

[1] "J1" "J2" "J3" "J4"

$Period

[1] 1 2 3 4

$Product

[1] "P1" "P2" "P3" "P4"

Slot "model":

list()

Slot "designkey":

[[1]]

An object of class keymatrix

********** Prime 2 design **********

Judge_1 Judge_2 Period_1 Period_2 Product_1 Product_2

U 1 0 0 0 1 0

U 0 1 0 0 0 1

7

U 0 0 1 0 1 0

U 0 0 0 1 0 1

Slot "nunits":

[1] 16

Slot "recursive":

[1] FALSE

The analysis gives:

> dataLS=as.data.frame(LS)

> dataLS$Y <- runif(16)

> LS.aov <- aov(Y~Judge + Period + Product, data=dataLS)

> summary(LS.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Judge 3 0.4454 0.14848 4.314 0.0607 .

Period 3 0.2271 0.07571 2.199 0.1890

Product 3 0.1525 0.05084 1.477 0.3125

Residuals 6 0.2065 0.03442

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

2.4 Fractional factorial design of resolution 5

For the last example in this section, we consider the type of design for which PLANOR was originally
conceived: a highly fractionated factorial design. Such designs allow to cope with a large number
of factors in (much) fewer units than required by a full factorial design. They have been used for
real experiments for a long time [3] and, more recently, for computer experiments (e.g. [5], [14]).

A fractional design of resolution 5 is generated below for 10 factors at 4 levels, assuming that
210 = 1024 units are available instead of 410 = 1 048 576 for a full factorial design. A fraction
of resolution 5 guarantees that all terms can be estimated from a model with main effects and
two-factor interactions. It can be generated as follows :

> FFD <- regular.design(factors=LETTERS[1:10], nlevels=4,

+ resolution=5,

+ nunits=2^10)

The search is closed: max.sol = 1 solution(s) found

> print(dim(FFD))

NULL

> print(FFD[1:5,])

An object of class "planordesign"

Slot "design":

A B C D E F G H I J

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 2 2 2 2 2

3 1 1 1 1 1 3 3 3 3 3

4 1 1 1 1 1 4 4 4 4 4

8

5 1 1 1 2 2 1 1 2 2 4

Slot "factors":

An object of class "designfactors"

Slot "fact.info":

nlev block ordered model basic dummy

A 4 FALSE FALSE TRUE FALSE FALSE

B 4 FALSE FALSE TRUE FALSE FALSE

C 4 FALSE FALSE TRUE FALSE FALSE

D 4 FALSE FALSE TRUE FALSE FALSE

E 4 FALSE FALSE TRUE FALSE FALSE

F 4 FALSE FALSE TRUE FALSE FALSE

G 4 FALSE FALSE TRUE FALSE FALSE

H 4 FALSE FALSE TRUE FALSE FALSE

I 4 FALSE FALSE TRUE FALSE FALSE

J 4 FALSE FALSE TRUE FALSE FALSE

Slot "pseudo.info":

parent nlev block ordered model basic dummy

A_1 1 2 FALSE FALSE TRUE FALSE FALSE

A_2 1 2 FALSE FALSE TRUE FALSE FALSE

B_1 2 2 FALSE FALSE TRUE FALSE FALSE

B_2 2 2 FALSE FALSE TRUE FALSE FALSE

C_1 3 2 FALSE FALSE TRUE FALSE FALSE

C_2 3 2 FALSE FALSE TRUE FALSE FALSE

D_1 4 2 FALSE FALSE TRUE FALSE FALSE

D_2 4 2 FALSE FALSE TRUE FALSE FALSE

E_1 5 2 FALSE FALSE TRUE FALSE FALSE

E_2 5 2 FALSE FALSE TRUE FALSE FALSE

F_1 6 2 FALSE FALSE TRUE FALSE FALSE

F_2 6 2 FALSE FALSE TRUE FALSE FALSE

G_1 7 2 FALSE FALSE TRUE FALSE FALSE

G_2 7 2 FALSE FALSE TRUE FALSE FALSE

H_1 8 2 FALSE FALSE TRUE FALSE FALSE

H_2 8 2 FALSE FALSE TRUE FALSE FALSE

I_1 9 2 FALSE FALSE TRUE FALSE FALSE

I_2 9 2 FALSE FALSE TRUE FALSE FALSE

J_1 10 2 FALSE FALSE TRUE FALSE FALSE

J_2 10 2 FALSE FALSE TRUE FALSE FALSE

Slot "levels":

$A

[1] 1 2 3 4

$B

[1] 1 2 3 4

$C

[1] 1 2 3 4

$D

[1] 1 2 3 4

$E

9

[1] 1 2 3 4

$F

[1] 1 2 3 4

$G

[1] 1 2 3 4

$H

[1] 1 2 3 4

$I

[1] 1 2 3 4

$J

[1] 1 2 3 4

Slot "model":

list()

Slot "designkey":

[[1]]

An object of class keymatrix

********** Prime 2 design **********

A_1 A_2 B_1 B_2 C_1 C_2 D_1 D_2 E_1 E_2 F_1 F_2 G_1 G_2 H_1 H_2 I_1 I_2 J_1

U 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1

U 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0

U 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0

U 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0

U 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

U 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0

U 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0

U 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1

U 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1

U 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

J_2

U 0

U 1

U 0

U 0

U 0

U 1

U 1

U 1

U 0

U 1

Slot "nunits":

10

[1] 1024

Slot "recursive":

[1] FALSE

Note that in PLANOR syntax, it is equivalent, but shorter, to specify resolution = 5 rather than

model = (A+B+C+D+E+F+G+H+I+J)^2.

3 Construction of regular factorial designs through the search

for a design key

We now adopt a more progressive way to construct the design. For this reason, we focus on
the planor.designkey function rather than regular.design. In that case, design construction
involves two main steps :

1. the search for key matrices (function planor.designkey);

2. then the design generation and randomization (function planor.design).

We start by a short technical subsection. It cannot go into details, but we hope it helps to make
a link with other approaches to the construction of regular factorial designs.

3.1 A very short technical point

A key matrix of base p in PLANOR is a matrix of integers modulo p, where p is a prime. It encodes
the information required to construct a regular factorial design for factors at p levels.

Consider for example a design for 4 factors A, B, C, D at p = 2 levels in 23 = 8 units, whereas
a full factorial design would require 24 = 16 units. It is possible to construct a design which allows
to estimate the main effects of the factors assuming the three- and four-factor interactions are
negligible. The solution is explained in many books on factorial designs (e.g. [3]) :� assimilate the factors’ levels to 0, 1 mod 2;� make a full factorial design on A, B, C;� add the level of D on each unit by the equation D = A + B + C mod 2, called the defining

relationship of the design.

Then it can be shown that the interaction A.B.C.D is confounded with the general mean, the
main effect A is confounded with the interaction B.C.D, etc.

In PLANOR , this construction is encoded in the following key matrix of base 2 :

K =

1 0 0 1
0 1 0 1
0 0 1 1

The rows of K are associated with three factors U1, U2, U3 which are called the units factors. The
idea is that the set of units can be identified to the full factorial design on these units factors.
The columns of K are associated with the treatment factors A, B, C, D. Here the first column
of K means that in the design, we must have A = U1 (modulo 2). The second, third and fourth
columns mean B = U2, C = U3 and D = U1 + U2 + U3, respectively. It follows that the defining
relationship D = A + B + C mod 2 will be satisfied.

The core algorithm in PLANOR basically constructs K by searching for its columns successively,
using a backtrack algorithm. However, there is also much pre-processing to turn the factors and
model specifications into appropriate constraints on the columns of K. In particular, all factors

11

are automatically decomposed into pseudofactors which all have a prime number of levels, and the
whole problem is decomposed according to the different prime numbers involved.

A detailed presentation of the methodology implemented in PLANOR is under preparation [9].
See also the references given in the introduction or [16] for the extension of regular factorial designs
to the case when different primes are involved.

3.2 Fractional designs with 2-level factors

3.2.1 Search for a design key

Consider an experiment to study four treatment factors A, B, C, D at two levels, using two blocks
of size four. A full factorial design on the treatment factors would require 16 units. Only eight
are available so that a fractional design must be used. In addition, some treatment effects are
necessarily confounded with the block effect.

At first, we may look for a design adapted to the model that includes the main effects of the
block and treatment factors, as well as the interactions between pairs of treatment factors :

> ex1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),

+ model=~block+(A+B+C+D)^2,

+ nunits=2^3)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

first visit to column 3

first visit to column 4

first visit to column 5

The search is closed: 0 solutions found

It turns out that PLANOR fails to find a solution. There is indeed no solution to the problem.
For the second try, we keep the same model but relax the implicit constraint to estimate all fac-

torial terms in the model. This is done by using the estimate argument of the planor.designkey
function. This argument is optional : by default, it is considered that all terms in the model for-
mula must be estimated. In contrast, we only require below that the main effects of the treatment
factors be estimable. It follows that we now allow for designs in which two-factor interactions are
mutually confounded.

> ex1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),

+ model=~block+(A+B+C+D)^2,

+ estimate=~A+B+C+D,

+ nunits=2^3)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

first visit to column 3

first visit to column 4

first visit to column 5

The search is closed: max.sol = 1 solution(s) found

During the search, the backtrack algorithm looks successively for new columns to add to the
key matrix. Succinct information is given to check the algorithm progress (default argument

12

verbose=TRUE). The search stops as soon as all columns of the key matrix have been found
(default argument max.sol=1).

An alternative to using planor.designkey directly is to provide the information on the exper-
iment step by step with the functions planor.factors and planor.model. The idea is to store
the results of these functions in R objects and use them as arguments to planor.designkey. This
may be convenient, for example, when one wants to explore several possible models and design
sizes with the same set of factors.

> ex1Fac <- planor.factors(factors=c("block","A","B","C","D"), nlevels=rep(2,5),

+ block=~block)

> ex1Mod <- planor.model(model=~block+(A+B+C+D)^2, estimate=~A+B+C+D)

> ex1Key <- planor.designkey(factors=ex1Fac, model=ex1Mod, nunits=2^3)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

first visit to column 3

first visit to column 4

first visit to column 5

The search is closed: max.sol = 1 solution(s) found

3.2.2 Design-key properties

In both cases, the key matrix solution is stored in the object ex1Key. Its detailed properties can be
obtained by two different functions. The summary function prints the key matrix and the defining
relationships associated with this key matrix. More detailed information on the aliasing between
factorial effects is given by the function alias.

Note that we have used the optional block argument of planor.factors (also available in
planor.designkey). It specifies the factors that should be considered as block (or nuisance)
factors. In PLANOR , the distinction between treatment and block factors is taken into account
when studying confounding and aliasing properties.

> summary(ex1Key, show="dtb")

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

DESIGN KEY MATRIX

block A B C D

U 1 0 1 0 1

U 0 1 1 0 0

U 0 0 0 1 1

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A B C D

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = block A B

1 = block C D

> alias(ex1Key)

13

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS

A ; B ; C ; D

ALIASED TREATMENT EFFECTS

A:C = B:D

A:D = B:C

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

block = A:B = C:D

UNALIASED BLOCK EFFECTS

nil

--- Synthesis on the aliased treatment effects for prime 2 ---

unaliased trt.aliased blc.aliased

[1,] 4 4 2

3.2.3 Design generation

Last but not least, a design can be generated by the function planor.design. The design itself
is the object in slot design of the more complex object generated by planor.design. An option
allows the design to be randomized, according to a block structure formula that the user must
specify (option randomize).

> ex1Des <- planor.design(ex1Key)

> print(getDesign(ex1Des))

block A B C D

1 1 1 1 1 1

2 1 1 1 2 2

3 1 2 2 1 1

4 1 2 2 2 2

5 2 1 2 1 2

6 2 1 2 2 1

7 2 2 1 1 2

8 2 2 1 2 1

> ex1Rand <- planor.design(ex1Key, randomize=~block/UNITS)

> print(getDesign(ex1Rand))

block A B C D

1 1 1 2 1 2

2 1 1 2 2 1

3 1 2 1 1 2

4 1 2 1 2 1

5 2 1 1 1 1

6 2 2 2 1 1

7 2 2 2 2 2

8 2 1 1 2 2

14

3.3 Fractional designs with 3-level factors

We keep the same example but with 3-level factors and a few more options. The results are not
shown for sake of brevity.

> # ***************** EXAMPLE 2 *****************

> # Four 3-level treatment factors and one 3-level block factor

> # Model: block+(A+B+C+D)^2 - Estimate: A+B+C+D

> # N = 3^3 = 27 units

> #

> ex2Key <- planor.designkey(factors=c(LETTERS[1:4],"block"),

+ nlevels=rep(3,5),

+ block=~block,

+ model=~block+(A+B+C+D)^2,

+ estimate=~A+B+C+D,

+ nunits=3^3, base=~A+B+C, max.sol=2)

> summary(ex2Key)

> summary(ex2Key)

> ex2Des <- planor.design(ex2Key[2])

Two optional arguments of planor.designkey have been used, first to specify that A, B and
C should be used as basic factors, and second to ask for two solutions whereas the default is one.
Both solutions are examined by summary and the second one, say, is chosen by the user to generate
a factorial design. When basic factors are specified, they are identified to the units factors Ui [8].
As a consequence, all combinations of the basic factors are guaranteed to be included in the design.
When relevant, using basic factors is recommended because it can speed up the search.

The following lines also work; they illustrate that the basic factors need not be part of the
model but they must have been declared in planor.factors.

> ex2Fac <- planor.factors(factors=c(LETTERS[1:4], "block", "BASE"),

+ nlevels=rep(3,6))

> ex2Mod <- planor.model(model=~block+(A+B+C+D)^2,

+ estimate=~A+B+C+D)

> ex2Key <- planor.designkey(factors=ex2Fac,

+ model=ex2Mod,

+ nunits=3^3,

+ base=~A+B+BASE,

+ max.sol=2)

3.4 Asymmetric fractional factorial designs

A regular fractional factorial design is called mixed or asymmetric when the numbers of levels
of the factors involve several different prime numbers. The asymmetric designs constructed in
PLANOR consist of the cross products of designs based on each prime. This does not allow for
a great flexibility in terms of confounding, but it enlarges the scope of situations that can be
addressed.

> # Four treatment factors at 6, 6, 4, 2 levels and one 6-level block factor

> # Model: block+(A+B+C+D)^2 ; Estimate: A+B+C+D\n")

> # N = 144 = 2^4 x 3^2 experimental units

> mixKey <- planor.designkey(factors=c(LETTERS[1:4], "block"),

+ nlevels=c(6,6,4,2,6),

+ block=~block,

+ model=~block+(A+B+C+D)^2,

+ estimate=~A+B+C+D,

15

+ nunits=144,

+ base=~A+B+D, max.sol=2)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 4 to 6

first visit to column 4

first visit to column 5

first visit to column 6

The search is closed: max.sol = 2 solution(s) found

Main step for prime p = 3 : key-matrix search

=> search for column 3 .

first visit to column 3

The search is closed: max.sol = 2 solution(s) found

> summary(mixKey)

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 B_1 D C_1

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 B_1 block_1

1 = D C_1 block_1

WEIGHT PROFILES

Treatment effects confounded with the mean: 4^1

Treatment effects confounded with block effects: 2^2

Treatment pseudo-effects confounded with the mean: 4^1

Treatment pseudo-effects confounded with block effects: 2^2

--- Solution 2 for prime 2 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 B_1 D C_1

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 D block_1

1 = B_1 C_1 block_1

WEIGHT PROFILES

Treatment effects confounded with the mean: 4^1

Treatment effects confounded with block effects: 2^2

Treatment pseudo-effects confounded with the mean: 4^1

Treatment pseudo-effects confounded with block effects: 2^2

********** Prime 3 design **********

--- Solution 1 for prime 3 ---

16

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_2^2 B_2^2 block_2

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 2^1

Treatment pseudo-effects confounded with the mean: none

Treatment pseudo-effects confounded with block effects: 2^1

--- Solution 2 for prime 3 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_2 B_2^2 block_2

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 2^1

Treatment pseudo-effects confounded with the mean: none

Treatment pseudo-effects confounded with block effects: 2^1

> mixPlan <- planor.design(key=mixKey, select=c(1,1), randomize=~block/UNITS)

> print(getDesign(mixPlan)[1:25,])

A B D C block

1 6 6 1 2 1

6 1 2 1 2 1

8 4 5 1 1 1

10 6 6 2 3 1

15 3 3 2 4 1

17 2 1 2 3 1

19 5 4 2 3 1

24 3 3 1 2 1

26 2 1 1 2 1

28 5 4 2 4 1

33 5 4 1 2 1

35 4 5 2 4 1

109 2 1 1 1 1

114 6 6 2 4 1

116 2 1 2 4 1

118 1 2 2 3 1

123 4 5 1 2 1

125 3 3 2 3 1

127 4 5 2 3 1

132 6 6 1 1 1

134 3 3 1 1 1

136 1 2 2 4 1

141 5 4 1 1 1

143 1 2 1 1 1

2 3 4 2 2 2

17

The algorithm starts by decomposing the factors into pseudofactors that all have a prime
number of levels. Then it performs a similar decomposition of the model and estimate terms.
After these initial steps, separate key-matrix searches are performed, one for each prime involved
in the problem. The prime decompositions are automatic and transparent to the user. The
recomposition when generating a design is transparent too. In contrast, most information on the
search process and on the fraction properties are given according to the prime decompositions.

3.5 Split-plot designs

In a split-plot experiment, there are two treatment factors variety and fert, say, at m and n

levels respectively. The block structure consists of r blocks each containing m sub-blocks of size
n and the factor variety is constrained to be constant within sub-blocks.

In an orthogonal split-plot design, each variety occupies one sub-block of each block, and each
sub-block contains the n distinct levels of factor fert. In PLANOR , this design can be constructed
by defining the block structure as a cross between a block and a subblock factor. The hierarchy
argument is used to specify that variety must be constant within the combinations of block

and subblock. Two model-estimate pairs are given to the listofmodels argument. First, the
main effect of fert and the interaction between fert and variety must be estimable when blocks
and sub-blocks are included in the model. Second, the main effect of variety must be estimable
between sub-blocks, that is, when blocks but not sub-blocks are included in the model. The
command below calculates the design key of a split-plot design with r = 2, n = 2, m = 2.

> splitKey <- planor.designkey(factors=list(block=1:2,

+ subblock=1:2,

+ variety=LETTERS[1:2],

+ fert=c("organic","mineral")),

+ block=~block+subblock,

+ hierarchy=list(~variety/(block*subblock)),

+ listofmodels=

+ list(c(~block*subblock+variety*fert, ~fert+fert:variety),

+ c(~block+variety, ~variety)),

+ nunits=2*2*2,

+ base=~block+subblock)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 3 to 4

first visit to column 3

first visit to column 4

The search is closed: max.sol = 1 solution(s) found

> summary(splitKey)

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

nil

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = subblock variety

WEIGHT PROFILES

18

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 1^1

Treatment pseudo-effects confounded with the mean: none

Treatment pseudo-effects confounded with block effects: 1^1

> alias(splitKey)

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS

nil

ALIASED TREATMENT EFFECTS

nil

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

nil

UNALIASED BLOCK EFFECTS

block ; subblock

--- Synthesis on the aliased treatment effects for prime 2 ---

unaliased trt.aliased blc.aliased

[1,] 0 0 0

> print(getDesign(planor.design(splitKey, randomize=~block/subblock/UNITS)))

block subblock variety fert

1 1 1 A organic

2 1 1 A mineral

3 1 2 B organic

4 1 2 B mineral

5 2 1 B organic

6 2 1 B mineral

7 2 2 A mineral

8 2 2 A organic

An alternative command to get the split-plot is given below. The main difference is that the
subblock factor now takes rm levels and is considered as nested in block rather than crossed with
it.

> splitKey <- planor.designkey(factors=list(block=1:2,

+ subblock=1:4,

+ variety=LETTERS[1:2],

+ fert=c("organic","mineral")),

+ block=~block+subblock,

+ hierarchy=list(~block/subblock, ~variety/subblock),

+ listofmodels=

+ list(c(~subblock+variety*fert, ~fert+fert:variety),

+ c(~block+variety, ~variety)),

+ nunits=2*2*2,

+ base=~subblock)

19

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 3 to 5

first visit to column 3

first visit to column 4

first visit to column 5

The search is closed: max.sol = 1 solution(s) found

> print(getDesign(planor.design(splitKey, randomize=~block/subblock/UNITS)))

subblock block variety fert

1 1 1 B organic

2 1 1 B mineral

3 2 1 A mineral

4 2 1 A organic

5 3 2 B mineral

6 3 2 B organic

7 4 2 A organic

8 4 2 A mineral

3.6 Fractional designs with nested factors and a complex block structure

We now consider an experiment with concrete and more complex specifications. This example
stems from an experiment to study the cleaning of surfaces by a robot, see [8], example 3 on
page 3. There are five treatment factors at 2 levels. The block structure consists of four plates
with 2 rows and 4 columns per plate, resulting in 32 experimental units. In addition, the design
must cope with experimental constraints between treatment and block factors. The treatment
factors concentration (conc) and temperature (Tact) must remain constant within a plate. The
treatment factors denoted by nsoil and qsoil must remain constant within each column of each
plate. Only treatment factor rugosity (Rug) can be modified freely between experimental units.

To begin with, we show how to specify user-defined factor levels, by providing a list to the
factors argument of planor.factors. Then, experimental constraints are specified through the
hierarchy argument of planor.factors.

> # ************ ROBOT1A EXAMPLE *************

> # Block structure: 4 plates / (2 rows x 4 columns)

> # Treatments: 4 2-level factors

> # Hierarchy 1: conc constant in plate

> # Hierarchy 2: Tact constant in plate

> # Hierarchy 3: nsoil constant in plate x column

> # Hierarchy 4: qsoil constant in plate x column

> # N = 32 units

> #

> robotFac <- planor.factors(factors=list(

+ conc=c(1,3),

+ Tact=c(15,30),

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("0.01g","0.10g"),

+ Rug=c(0.25,0.73),

+ plate=1:4,

+ row=1:2,

+ col=1:4),

+ hierarchy=list(~conc/plate,

+ ~Tact/plate,

20

+ ~nsoil/(plate*col),

+ ~qsoil/(plate*col)))

This example requires several model-estimate combinations. The main model-estimate pair
contains all the treatment factorial effects but no block effect. It guarantees that all treatment
combinations will be present in the design, since all treatment factorial effects are required to
be estimable in the model with no block effect. The second model-estimate pair (listofmodels
argument) ensures that the Rug factor is orthogonal to block factors.

> robotMod <- planor.model(model=~nsoil*qsoil*Rug*conc*Tact,

+ listofmodels=list(c(~plate+row+col+Rug, ~Rug)))

The base option of the planor.designkey function is used here to impose that experimental
units be associated with the combinations of the block factors.

> robotKey <- planor.designkey(factors=robotFac, model=robotMod,

+ nunits=32, base=~plate+row+col)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 10

first visit to column 6

first visit to column 7

first visit to column 8

first visit to column 9

first visit to column 10

The search is closed: max.sol = 1 solution(s) found

> summary(robotKey[1])

********** Prime 2 design **********

DESIGN KEY MATRIX

plate_1 plate_2 row col_1 col_2 conc Tact nsoil qsoil Rug

plate_1 1 0 0 0 0 1 0 0 0 1

plate_2 0 1 0 0 0 0 1 0 0 0

row 0 0 1 0 0 0 0 0 0 1

col_1 0 0 0 1 0 0 0 1 0 0

col_2 0 0 0 0 1 0 0 0 1 0

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = plate_1 conc

1 = plate_2 Tact

1 = col_1 nsoil

1 = col_2 qsoil

1 = plate_1 plate_2 conc Tact

1 = col_1 col_2 nsoil qsoil

1 = plate_1 row Rug

1 = row conc Rug

1 = plate_1 col_1 conc nsoil

1 = plate_2 col_1 Tact nsoil

1 = plate_1 col_2 conc qsoil

1 = plate_2 col_2 Tact qsoil

1 = plate_1 plate_2 row Tact Rug

1 = plate_1 plate_2 col_1 conc Tact nsoil

21

1 = plate_1 plate_2 col_2 conc Tact qsoil

1 = plate_1 col_1 col_2 conc nsoil qsoil

1 = plate_2 col_1 col_2 Tact nsoil qsoil

1 = plate_2 row conc Tact Rug

1 = plate_1 row col_1 nsoil Rug

1 = row col_1 conc nsoil Rug

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

nil

WEIGHT PROFILES

Treatment effects confounded with the mean: 2^4 3^4 4^5 5^9 6^5 7^3 8^1

Treatment effects confounded with block effects: none

Treatment pseudo-effects confounded with the mean: 2^4 4^6 3^2 5^6 6^4 8^1 7^6 9^2

Treatment pseudo-effects confounded with block effects: none

> robotDes <- planor.design(robotKey[1], randomize=~plate/(row*col))

> print(getDesign(robotDes))

plate row col conc Tact nsoil qsoil Rug

1 1 1 1 1 15 curd 0.01g 0.25

2 1 1 2 1 15 curd 0.10g 0.25

3 1 1 3 1 15 Saint-Paulin 0.01g 0.25

4 1 1 4 1 15 Saint-Paulin 0.10g 0.25

5 1 2 1 1 15 curd 0.01g 0.73

6 1 2 2 1 15 curd 0.10g 0.73

7 1 2 3 1 15 Saint-Paulin 0.01g 0.73

8 1 2 4 1 15 Saint-Paulin 0.10g 0.73

9 2 1 1 3 15 Saint-Paulin 0.10g 0.73

10 2 1 2 3 15 curd 0.10g 0.73

11 2 1 3 3 15 curd 0.01g 0.73

12 2 1 4 3 15 Saint-Paulin 0.01g 0.73

13 2 2 1 3 15 Saint-Paulin 0.10g 0.25

14 2 2 2 3 15 curd 0.10g 0.25

15 2 2 3 3 15 curd 0.01g 0.25

16 2 2 4 3 15 Saint-Paulin 0.01g 0.25

17 3 1 1 1 30 curd 0.01g 0.25

18 3 1 2 1 30 Saint-Paulin 0.10g 0.25

19 3 1 3 1 30 curd 0.10g 0.25

20 3 1 4 1 30 Saint-Paulin 0.01g 0.25

21 3 2 1 1 30 curd 0.01g 0.73

22 3 2 2 1 30 Saint-Paulin 0.10g 0.73

23 3 2 3 1 30 curd 0.10g 0.73

24 3 2 4 1 30 Saint-Paulin 0.01g 0.73

25 4 1 1 3 30 Saint-Paulin 0.10g 0.73

26 4 1 2 3 30 curd 0.01g 0.73

27 4 1 3 3 30 Saint-Paulin 0.01g 0.73

28 4 1 4 3 30 curd 0.10g 0.73

29 4 2 1 3 30 Saint-Paulin 0.10g 0.25

30 4 2 2 3 30 curd 0.01g 0.25

31 4 2 3 3 30 Saint-Paulin 0.01g 0.25

32 4 2 4 3 30 curd 0.10g 0.25

22

Acknowledgements

This vignette was typed using the Sweave package (Leisch, 2002[13]).

References

[1] R. Bailey – “Factorial design and abelian groups”, Linear Algebra Appl. 70 (1985), no. 349-
368.

[2] — , Design of comparative experiments, Cambridge Series in Statistical and Probabilistic
Mathematics, Cambridge University Press, 2008.

[3] G. Box, W. Hunter & J. Hunter – Statistics for experimenters, Wiley, 1978.

[4] S. Cliquet, C. Durier & A. Kobilinsky – “Principle of a fractional factorial design
for qualitative and quantitative factors: application to the production of Bradyrhizobium
japonicum in culture media”, Agronomie 14 (1994), p. 569–587.

[5] A. Courcoul, H. Monod, M. Nielen, D. Klinkenberg, L. Hogerwerf, F. Beaudeau

& E. Vergu – “Modelling the effect of heterogeneity of shedding on the within herd Cox-
iella burnetii spread and identification of key parameters by sensitivity analysis”, Journal of
Theoretical Biology 284 (2011), p. 130–141.

[6] M. Franklin – “Selecting defining contrasts and confounded effects in pn−m factorial exper-
iments”, Technometrics 27 (1985), p. 165–172.

[7] A. Kobilinsky – “Les plans factoriels”, in Plans d’expériences: applications à l’entreprise
(J. Droesbeke, J. Fine & G. Saporta, éds.), Technip, Paris, 1997, p. 69–209 (Chapter 3).

[8] — ,“PLANOR : program for the automatic generation of regular experimental designs. version
2.2 for Windows”, Tech. report, MIA Unit, INRA Jouy en Josas, 2005.

[9] A. Kobilinsky, R. Bailey & H. Monod – “Automatic generation of generalised regular
factorial designs”, In prep. x (2012), p. x.

[10] A. Kobilinsky, A. Bouvier & H. Monod – “PLANOR : an R package for the automatic
generation of regular fractional factorial designs. Version 1.0”, Tech. report, MIA Unit, INRA
Jouy en Josas, 2011.

[11] A. Kobilinsky & H. Monod – “Experimental design generated by group morphisms: an
introduction”, Scand. J. Statist. 18 (1991), p. 119–134.

[12] — ,“Juxtaposition of regular factorial designs and the complex linear model”, Scand. J. Statist
22 (1995), p. 223–254.

[13] F. Leisch – “Sweave: Dynamic generation of statistical reports using literate data analysis”,
in Compstat 2002 — Proceedings in Computational Statistics (W. Härdle & B. Rönz, éds.),
Physica Verlag, Heidelberg, 2002, ISBN 3-7908-1517-9, p. 575–580.

[14] A. Lurette, S. Touzeau, M. Lamboni & H. Monod –“Sensitivity analysis to identify key
parameters influencing Salmonella infection dynamics in a pig batch”, Journal of Theoretical
Biology 258 (2009), no. 1, p. 43–52.

[15] H. Patterson & R. Bailey – “Design keys for factorial experiments”, Appl. Statist. 27

(1978), p. 335–343.

[16] G. Pistone & M.-P. Rogantin – “Indicator function and complex coding for mixed frac-
tional factorial designs”, Journal of Statistical Planning and Inference 138 (2008), no. 3,
p. 787 – 802.

23

