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Abstract

Rasch mixture models can be a useful tool when checking the assumption of measure-
ment invariance for a single Rasch model. They provide advantages compared to manifest
DIF tests when the DIF groups are only weakly correlated with the manifest covariates
available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive
to the specification of the ability distribution even when the conditional maximum likeli-
hood approach is used. It is demonstrated in a simulation study how differences in ability
can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection,
it is not of interest to uncover such ability differences as one is only interested in a latent
group structure regarding the item difficulties. To avoid any confounding effect of ability
differences (or impact), a score distribution for the Rasch mixture model is introduced
here which is restricted to be equal across latent classes. This causes the estimation of the
Rasch mixture model to be independent of the ability distribution and thus restricts the
mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is
demonstrated in a simulation study and its application is illustrated in a study of verbal
aggression.

Keywords: mixed Rasch model, Rasch mixture model, DIF detection, score distribution.

1. Introduction

Based on the Rasch model (Rasch 1960), Rost (1990) introduced what he called the “mixed
Rasch model”, a combination of a latent class approach and a latent trait approach to model
qualitative and quantitative ability differences. As suggested by Rost (1990), it can also be
used to examine the fit of Rasch model and check for violations of measurement invariance
such as differential item functioning (DIF). It has since been extended by Rost and von Davier
(1995) to different score distributions and by Rost (1991) and von Davier and Rost (1995)
to polytomous responses. The so-called “mixed ordinal Rasch model” is a mixture of partial
credit models (PCM, Masters 1982) and includes a mixture of rating scale models (RSM,
Andrich 1978) as a special case.

The original dichotomous model – here called Rasch mixture model to avoid confusion with
mixed (effects) models and instead highlight its relation to mixture models – as well as its
polytomous version have been applied in a variety of fields. Zickar, Gibby, and Robie (2004)
use a mixture PCM to detect faking in personality questionnaires, while Hong and Min (2007)
identify three types/classes of depressed behavior by applying a mixture RSM to a self-rating
depression scale. Another vast field of application are tests in educational measurement.
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Baghaei and Carstensen (2013) identify different reader types from a reading comprehension
test using a Rasch mixture model. Maij-de Meij, Kelderman, and van der Flier (2010) also
apply a Rasch mixture model to identify latent groups in a vocabulary test. Cohen and Bolt
(2005) use a Rasch mixture model to detect DIF in a mathematics placement test.

Rasch mixture models constitute a legitimate alternative to manifest DIF tests, as Maij-de
Meij et al. (2010) show that mixture models are more suitable to detect DIF if the“true source
of bias” is a latent grouping variable. The simulation study by Preinerstorfer and Formann
(2011) suggests that parameter recovery works reasonably well for Rasch mixture models.
While they did not study in detail the influence of DIF effect size or the effect of different
ability distributions, they deem such differences relevant for practical concern but leave it to
further research to establish just how strongly they influence estimation accuracy.

As the Rasch model is based on two aspects, subject ability and item difficulty, Rasch mixture
models are sensitive not only to differences in the item difficulties – as in DIF – but also to dif-
ferences in abilities. Such differences in abilities are usually called impact and do not infringe
on measurement invariance (Ackerman 1992). In practice, when developing a psychological
test, one often follows two main steps. First, the item parameters are estimated, e.g., by
means of the conditional maximum likelihood (CML) approach, checked for model violations
and problematic items are possibly excluded or modified. Second, the final set of items is used
to estimate person abilities. The main advantage of the CML approach is that, for a single
Rasch model, the estimation and check of item difficulties are (conditionally) independent of
the abilities and their distribution. However, in a Rasch mixture model, the estimation of
the item difficulties is not independent of this second aspect, even when employing the CML
approach. DeMars and Lau (2011) find that a difference in mean ability between DIF groups
affects the estimation of the DIF effect sizes. Similarly, inflated type I error rates also occur
in other DIF detection methods if impact is present, e.g., the Mantel-Haenszel and logistic
regression precedures (Li, Brooks, and Johanson 2012; DeMars 2010).

Here, a simulations study is conducted to illustrate how Rasch mixture models react to
impact, either alone or in combination with DIF. When using a Rasch mixture model for
DIF detection, an influence of sole impact on the mixture is undesirable as the goal is to
uncover DIF groups based on item difficulties, not impact groups based on abilities.

To avoid such confounding effects of impact, we propose a Rasch mixture model specifically
designed to detect DIF – regardless of whether or not impact is present and in which form.

In the following, we briefly discuss the Rasch model and Rasch mixture models to explain
why the latter are sensitive to the specification of the score distribution despite employing a
conditional maximum likelihood approach for estimation. This Section 2 is concluded with
our suggested score distribution. We illustrate and discuss the behavior of Rasch mixture
models with different options for the score distribution in a Monte Carlo study in Section 3.
The suggested approach for DIF detection via Rasch mixture models is illustrated through
an empirical application to a study on verbally aggressive behavior in Section 4. Concluding
remarks are provided in Section 5.
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2. Theory

2.1. The Rasch model

The Rasch model, introduced by Georg Rasch (1960), models the probability for a binary
response yij ∈ {0, 1} by subject i to item j as dependent on the subject’s ability θi and the
item’s difficulty βj . Assuming independence between items given the subject, the probability
for observing a vector yi = (yi1, . . . , yim)⊤ with responses to all m items by subject i can be
written as

P (Yi = yi|θi, β) =

m∏

j=1

exp{yij(θi − βj)}

1 + exp{θi − βj}
, (1)

depending on the subject’s ability θi and the vector of all item difficulties β = (β1, . . . , βm)⊤.
Capital letters denote random variables and lower case letters denote their realizations.

Since joint maximum likelihood (JML) estimation of all abilities and difficulties is not consis-
tent for a fixed number of items m (Molenaar 1995), conditional maximum likelihood (CML)
estimation is employed here. This exploits that the number of correctly scored items, the
so-called raw score Ri =

∑m
j=1 Yij , is a sufficient statistic for the ability θi (Molenaar 1995).

Therefore, the answer probability from Equation 1 can be split into two factors where the
first factor, is conditionally independent of θi:

P (Yi = yi|θi, β) = P (Yi = yi|ri, θi, β) P (Ri = ri|θi, β)

= P (Yi = yi|ri, β)
︸ ︷︷ ︸

h(yi|ri,β)

P (Ri = ri|θi, β)
︸ ︷︷ ︸

g(ri|θi,β)

Due to this separation, consistent estimates of the item parameters β can be obtained by
maximizing only the conditional part of the likelihood h(·):

h(yi|r, β) =
exp{−

∑m
j=1 yijβj}

γri(β)
, (2)

with γj(·) denoting the elementary symmetric function of order j. The resulting CML esti-

mates β̂ are consistent, asymptotically normal, and asymptotically efficient (Molenaar 1995).

If not only the conditional likelihood but the full likelihood is of interest – as in Rasch mixture
models – then the score distribution g(·) needs to be specified as well. The approach used
by Rost (1990) and Rost and von Davier (1995) is to employ some distribution for the raw
scores ri based on a set of auxiliary parameters δ. Then the probability density function for
yi can be written as:

f(yi|β, δ) = h(yi|ri, β) g(ri|δ). (3)

Based on this density, the following subsections first introduce mixture Rasch models in
general and then discuss several choices for g(·). CML estimation is used throughout for esti-
mating the Rasch model, i.e., the conditional likelihood h(·) is always specified by Equation 2.



4 Rasch Mixture Models for DIF Detection

2.2. Rasch mixture models

Mixture models are essentially a weighted sum over several components, i.e., here over several
Rasch models.Using the Rasch model density function from Equation 3 the likelihood L(·) of
a Rasch mixture model with K components for data from n respondents is given by

L(π(1), . . . , π(K), β(1), . . . , β(K), δ(1), . . . , δ(K)) =

n∏

i=1

K∑

k=1

π(k)f(yi|β
(k), δ(k))

=
n∏

i=1

K∑

k=1

π(k)h(yi|ri, β
(k)) g(ri|δ

(k)). (4)

where the (k)-superscript denotes the component-specific parameters: the component weight
π(k), the component-specific item parameters β(k), and the component-specific score param-
eters δ(k) for k = 1, . . . ,K.

This kind of likelihood can be maximized via the expectation-maximization (EM) algorithm
(Dempster, Laird, and Rubin 1977) which alternates between maximizing the component-
specific likelihoods for obtaining parameter estimates and computing expectations for each
observations belonging to each cluster.

More formally, given (initial) estimates for the model parameters π̂(k), β̂(k), δ̂(k) for all com-
ponents k = 1, . . . ,K, posterior probabilities of each observation i belonging to a component,
or latent class, k are calculated in the E-step. This is simply i’s relative contribution to
component k compared to the sum of all its contributions:

p̂ik =
π̂(k) f(yi|β̂

(k), δ̂(k))
∑K

ℓ=1 π̂
(ℓ) f(yi|β̂(ℓ), δ̂(ℓ))

=
π̂(k) h(yi|ri, β̂

(k)) g(ri|δ̂
(k))

∑K
ℓ=1 π̂

(ℓ) h(yi|ri, β̂(ℓ)) g(ri|δ̂(ℓ))
. (5)

In the M-step of the algorithm, these posterior probabilities are used as the weights in a
weighted ML estimation of the model parameters. This way, an observation deemed unlikely
to belong to a certain latent class does not contribute strongly to its estimation. Estimation
can be done separately for each latent class. Using CML estimation for the Rasch Model, the
estimation of item and score parameters can again be done separately. For all components
k = 1, . . . ,K:

(β̂(k), δ̂(k)) = argmax
β(k),δ(k)

n∑

i=1

p̂ik log f(yi|β
(k), δ(k))

=

{

argmax
β(k)

n∑

i=1

p̂ik log h(yi|ri, β
(k)); argmax

δ(k)

n∑

i=1

p̂ik log g(ri|δ
(k))

}

. (6)

Estimates of the class probabilities can be obtained from the posterior probabilities by aver-
aging:

π̂(k) =
1

n

n∑

i=1

p̂ik. (7)

The E-step (Equation 5) and M-step (Equations 6 and 7) are iterated until convergence,
always updating either the weights based on current estimates for the model parameters or
vice versa.
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Note that the above implicitly assumes that the number of latent classes K is given or known.
However, this is typically not the case in practice and K needs to be chosen based on the
data. As K is not a model parameter – regularity conditions for the likelihood ratio test are
not fulfilled (McLachlan and Peel 2000, Chapter 6.4) – it is often chosen via some information
criterion that balances goodness of fit (via the likelihood) with a penalty for the number of
model parameters. In the following, the BIC (Bayesian information criterion, Schwarz 1978)
is used, which Li, Cohen, Kim, and Cho (2009) found to be a suitable model selection method
for dichotomous mixture item response theory models.

2.3. Score distribution

In a single Rasch model, the estimation of the item parameters is invariant to the score
distribution because of the separation in Equation 3. In the mixture context, this invariance
property holds only given the weights in Equation 6. However, these posterior weights depend
on the full Rasch likelihood, including the score distribution (Equation 5). Therefore, the
estimation of the item parameters in a Rasch mixture model is not independent of the score
distribution for K > 1, even if the CML approach is employed. Hence, it is important to
consider the specification of the score distribution when estimating Rasch mixture models
and to assess the consequences of potential misspecifications.

Saturated and mean-variance specification

In his introduction of the Rasch mixture model, Rost (1990) suggests a discrete probability
distribution on the scores with a separate parameter for each possible score. This requires
m − 2 parameters per latent class as the probabilities need to sum to 1 (and the extreme
scores, r = 0 and r = m, do not contribute to the likelihood).

Realizing that this saturated specification requires a potentially rather large number of pa-
rameters, Rost and von Davier (1995) suggest a parametric distribution with one parameter
each for mean and variance.

Details on both specifications can be found in Rost (1990) and Rost and von Davier (1995),
respectively. Here, the notation of Frick, Strobl, Leisch, and Zeileis (2012) is adopted, which
expresses both specifications in a unified way through a conditional logit model for the score
r = 1, . . . ,m− 1:

g(r|δ(k)) =
exp{z⊤r δ

(k)}
∑m−1

j=1 exp{z⊤j δ
(k)}

,

with different choices for zr leading to the saturated and mean-variance specification, respec-
tively. For the former, the regressor vector is (m− 2)-dimensional with

zr = (0, . . . , 0, 1, 0, . . . , 0)⊤

and the 1 at position r − 1. Consequently, if r = 1, zr is a vector of zeros. For the mean-
variance specification, the regressor vector is 2-dimensional and given by

zr =

(
r

m
,
4r(m− r)

m2

)⊤

.

Restricted specification

To obtain independence of the item parameter estimates from the specification of the score
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distribution in the Rasch mixture model from Equation 4, we propose a novel specification of
the score distribution in the Rasch mixture model. We suggest restricting the score parameters
δ(k) to be equal across the latent classes:

g(r|δ(k)) = g(r|δ) (k = 1, . . . ,K).

The independence of the item parameter estimates can then be seen easily from the definition
of the posterior weights (Equation 5): g(·) can be moved out of the sum and then cancels
out. Thus, the p̂ik depend only on π̂(k) and β̂(k) but not δ̂(k). Therefore, the component
weights and component-specific item parameters can be estimated without any specification
of the score distribution. To complete the likelihood, a score distribution is simply fitted to
the full-sample scores.

Consequently, using a restricted score specification, the likelihood of the Rasch mixture model
(Equation 4) can be split into two factors: one depending on the general score parameters
δ and the other one depending on latent class-specific prior probabilities π(1), . . . , π(K) and
item difficulties β(1), . . . , β(K). The mixture is then only based on latent structure in the item
difficulties, not on latent structure in both difficulties and scores. Also, the selection of the
number of classes K is not affected by the specification of the score distribution g(·).

Overview

The different specifications of the score distribution vary in their properties and implications
for the whole Rasch mixture model.

❼ The saturated model is very flexible. It can model any shape and is thus never mis-
specified. However, it needs a potentially large number of parameters which can be
challenging in model estimation and selection.

❼ The mean-variance specification of the score model is more parsimonious as it only re-
quires two parameters per latent class. While this is convenient for model fit and selec-
tion, it also comes at a cost: since it can only model unimodal or U-shaped distributions
(see Rost and von Davier 1995), it is partially misspecified if the score distribution is
actually multimodal.

❼ A restricted score model is even more parsimonious. Therefore, the same advantages in
model fit and selection apply. Furthermore, it is invariant to the latent structure in the
score distribution. If a Rasch mixture model is used for DIF detection, this is favorable
as only differences in the item difficulties influence the mixture. However, it is partially
misspecified if the latent structure in the scores and item difficulties coincides.

3. Monte Carlo study

The simple question “DIF or no DIF?” leads to the question whether the Rasch mixture
model is suitable as a tool to detect such violations of measurement invariance. As the score
distribution influences the estimation of the Rasch mixture model in general, it is of particular
interest how it influences the estimation of the number of latent classes, the measure used to
determine Rasch scalability.
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Scenario Latent class I Latent class II
Abilities Difficulties Abilities Difficulties

No impact (Θ = 0)

1 no DIF (∆ = 0) {0} βI — —
2 DIF (∆ > 0) {0} βI {0} βII

Impact (Θ > 0)

3 no DIF (∆ = 0) {−Θ/2,+Θ/2} βI — —
4 DIF (∆ > 0), impact within {−Θ/2,+Θ/2} βI {−Θ/2,+Θ/2} βII

5 DIF (∆ > 0), impact between {−Θ/2} βI {+Θ/2} βII

Table 1: Simulation design. The latent-class-specific item parameters βI and βII differ by ∆
for two elements and thus coincide for ∆ = 0, leaving only a single latent class.

To illustrate how suitable the different score specifications are to detect DIF (or lack thereof) a
Monte Carlo study has been performed. The R system for statistical computing (R Core Team
2012) was used with the add-on packages psychomix (Frick et al. 2012) and clv (Nieweglowski.
2009).

3.1. Simulation design

The simulations included in Rost (1990) are the starting point for developing the design used
here. Similar to the original simulation study, the item parameters represent a test with
increasingly difficult items. Here, 20 items are employed with corresponding item parameters
βI which follow a sequence from −1.9 to 1.9 with increments of 0.2 and hence sum to zero.

βI = (−1.9,−1.7, . . . , 1.7, 1.9)⊤

βII = (−1.9,−1.7, . . . ,−1.1 + ∆, . . . , 1.1−∆, . . . , 1.7, 1.9)⊤

To introduce DIF, a second set of item parameters βII is considered where items 5 and 15
are changed by ±∆. This approach is similar in spirit to that of Rost (1990) – who reverses
the full sequence of item parameters to generate DIF – but allows for gradually changing
from small to large DIF effect sizes. As in Rost (1990), the abilities are drawn from a discrete
distribution. For simplicity, they are drawn with equal proportions from two values only,−Θ/2
and +Θ/2, thus creating a sample where half of the subjects have an ability of −Θ/2 and the
other half an abilty of +Θ/2. Such a difference in ability is often called impact (Ackerman
1992).

In the simulations below, the DIF effect size ∆ ranges from 0 to 4 in steps of 0.2

∆ ∈ {0, 0.2, . . . , 4}

while the impact Θ covers the same range in steps of 0.4:

Θ ∈ {0, 0.4, . . . , 4}.

Drawing abilities from two normal distributions with means −Θ/2 and +Θ/2 leads to quali-
tatively similar results which are not reported here.

Impact and DIF, or lack thereof, can be combined in several ways. Table 1 provides an
overview and Figures 1, 2, and 3 show illustrations:
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Figure 1: Scenario 2. Left: Item difficulties with DIF (∆ = 2). Right: Stacked histogram of
unimodal score distribution with homogeneous abilities (Θ = 0).
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Figure 2: Scenario 3. Left: Item difficulties without DIF (∆ = 0). Right: Histogram of
bimodal score distribution with impact (Θ = 2).
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Figure 3: Stacked histograms of score distributions for Scenarios 4 (left) and 5 (right) with
DIF (∆ = 2). Left: impact within groups (Θ = 2). Right: impact between groups (Θ = 2).
For item difficulties see Figure 1 (left).
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❼ If the simulation parameter ∆ for the DIF effect size is set to zero, both sets of item
parameters, βI and βII , are identical and no DIF is present. Since CML is employed,
model selection and parameter estimation is typically expected to be independent of
whether or not an impact is present (Scenario 1 and 3 in Table 1).

❼ If ∆ > 0, the item parameter set βII is different from βI . Hence, there is DIF and two
latent classes exist (Scenarios 2, 4, and 5). Both classes are chosen to be of equal size
in this case. For an illustration see the left panel of Figure 1.

❼ If the simulation parameter Θ for the impact is set to zero, abilities are homogeneous
across all subjects (Scenarios 1 and 2) and the resulting score distribution is unimodal.
For an illustration see the right panel of Figure 1. The histogram is shaded in light and
dark gray for the two DIF groups present in this example from Scenario 2 and thus to
be read like a “stacked histogram”.

❼ If Θ > 0, subject abilities are sampled from {−Θ/2,+Θ/2} with equal weights, thus
generating impact. When no DIF is included (Scenario 3), the resulting score distribu-
tion moves from being unimodal to being bimodal with increasing Θ. For the illustration
in Figure 2 only a medium gray is used to shade the histogram as no DIF groups are
present. However, if there is DIF (i.e., ∆ > 0), two combinations of DIF with impact
are considered: Impact can occur within each DIF group (Scenario 4) or between DIF
groups (Scenario 5). Illustrations of the resulting score distributions can be found in
Figure 3.

Note that Scenario 1 is a special case of Scenario 2 where ∆ is reduced to zero as well as a
special case of Scenario 3 where Θ is reduced to zero. Therefore, in the following, Scenario 1 is
not inspected separately but included in both the setting of No impact with DIF (Scenario 2)
and the setting of Impact without DIF (Scenario 3) as a reference point. Similarly, Scenarios 4
and 5 both can be reduced to Scenario 3 if ∆ is set to zero. It is therefore also included in
both the setting of Impact within DIF groups (Scenario 4) and the setting of Impact between

DIF groups (Scenario 5) as a reference point.

Also note that the Scenarios 3 and 4 essentially correspond to the designs 1 and 2 of Rost
(1990).

For each considered combination of ∆ and Θ, 500 datasets of 500 observations each are
generated. Observations with raw scores of 0 or m are removed from the dataset as they
do not contribute to the estimation of the Rasch mixture model (Rost 1990). For each
dataset, Rasch mixture models for each of the saturated, mean-variance, and restricted score
specifications are fitted for K = 1, 2, 3.

3.2. Type I error and power in DIF detection

The main objective here is to determine how suitable a Rasch mixture model, with various
choices for the score model, is to recognize DIF or the lack thereof.

For each dataset and type of score model, models with K = 1, 2, 3 latent classes are fitted
and the K̂ associated with the minimum BIC is selected. Choosing one latent class (K̂ = 1)
then corresponds to assuming measurement invariance while choosing more than one latent
class (K̂ > 1) corresponds to finding DIF in at least one item of the test. The empirical
proportion among the 500 datasets with K̂ > 1 then essentially corresponds to the power of
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Figure 4: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 2 (DIF
without impact, i.e., Θ = 0).

DIF detection if ∆ > 0 (and thus two true latent classes) and to the associated type I error
if ∆ = 0 (and thus only one true latent class).

Scenario 2: No impact with DIF

This scenario is investigated as it is a case of DIF that should be fairly simple to detect. There
is no impact as abilities are homogeneous across all subjects so the only latent structure to
detect is the group membership based on the two item profiles. This latent structure is made
increasingly easy to detect by increasing the difference between the item difficulties for both
latent groups. In the graphical representation of the item parameters (left panel of Figure 1)
this corresponds to enlarging the spikes in the item profile.

Figure 4 shows how the rate of choosing a model with more than one latent class (K̂ > 1)
increases along with the DIF effect size ∆. At ∆ = 0 this corresponds to the type I error rate
of DIF detection which is very close to zero for all three score distributions. With increasing
∆ > 0 the rate corresponds to the power of DIF detection and increases as well. For low
values of ∆ none of the three models is able to pick up the DIF but at around ∆ = 3 the two
more parsimonious versions of the Rasch mixture model (with mean-variance and restricted
score distribution) start to have increasing power which almost approaches 1 at ∆ = 4. Not
surprisingly, the restricted score specification performs somewhat better because in fact the
raw score distributions do not differ between the two latent classes. The saturated score
model, however, has almost no power over the range of ∆ considered. The reason is that it
requires 18 additional score parameters for an additional latent class which is “too costly” in
terms of BIC. Hence, K̂ = 1 is chosen for almost all Rasch mixture models using a saturated
score distribution.

Brief summary: The mean-variance and restricted model have a higher power than the sat-
urated model in the absense of impact.
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Figure 5: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 3 (impact
without DIF, i.e., ∆ = 0).

Scenario 3: Impact without DIF

Preferably, a Rasch mixture model should not only detect latent classes if the assumption
of measurement invariance is violated but it should also indicate a lack of latent structure
if indeed the assumption holds. In this scenario, the subjects all stem from the same class,
meaning each item is of the same difficulty for every subject. However, subject abilities are
simulated with impact resulting in a bimodal score distribution as illustrated in Figure 2.

Here, the rate of choosing more than one latent class can be interpreted as a false discovery or
false alarm rate (Figure 5). In the setting of a test this would correspond to the type I error
of the test. The restricted score model is invariant against any latent structure in the score
distribution and thus almost always suggests K̂ = 1 latent class based on the DIF-free item
difficulties. The saturated model also picks K̂ = 1 in most of the simulation. This might be
due to its general reluctance to choose more than one latent class as illustrated in Figure 4
or the circumstance that it can assume any shape (including bimodal patterns). However,
the mean-variance score distribution can only model unimodal or U-shaped distributions as
mentioned above. Hence, with increasing impact and thus increasingly well-separated modes
in the score distribution, the Rasch mixture model with this score specification often suggests
K̂ > 1 latent classes. Note, however, that these latent classes do not represent the DIF groups
(as there are none) but rather groups of subjects with high vs. low abilities. While this may
be acceptable (albeit unnecessarily complex) from a statistical mixture modeling perspective,
it is misleading from a psychometric point of view if the aim is DIF detection. Only one
Rasch model needs to be estimated for this type of data, consistent item parameter estimates
can be obtained via CML and all observations can be scaled in the same way.

Brief summary: If measurement invariance holds but ability differences are present, the mean-
variance model exhibits a high false alarm rate while the saturated and restricted model are
not affected.
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Figure 6: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 4 (impact
within DIF groups).

Scenario 4: Impact within DIF groups

In this scenario, there is DIF (and thus two true latent classes) if ∆ > 0. Again, Scenario 3
with ∆ = 0 (and thus without DIF) is included as a reference point. However, unlike in
Scenario 2 the abilities within the latent classes are not homogeneous but impact exists within
each DIF group. Nonetheless, the score distribution is the same across both latent classes
(illustrated in the left panel of Figure 3).

Figure 6 again shows the rate of choosing K̂ > 1 for increasing DIF effect size ∆ for different
levels of impact Θ = 0.4, 2.0, 3.6. If impact is small (left panel with Θ = 0.4), the rates are very
similar to the case of completely homogeneous abilities without impact (Figure 4 with Θ = 0).
While the rates for the restricted and the saturated score model do not change substantially
for an increased impact (Θ = 2.0 and 3.6), the mean-variance model is influenced by this
change in ability differences. While power is increased over the whole range of ∆, the type I
error (or false alarm rate) at ∆ = 0 is increased to the same extent. Moreover, the detection
rate only increases noticeably beyond the initial type I error rate at around ∆ = 3, i.e., the
same DIF effect size at which the restricted and mean-variance specifications have power given
homogeneous abilities without impact. Thus, given rather high impact (Θ = 3.6) the power
is not driven by the DIF detection but rather the model’s tendency to assign subjects with
high vs. low abilities into different groups (as already seen in Figure 5).

As Rasch mixture models with K = 1, 2, 3 classes are considered, selecting K̂ > 1 classes can
either mean selecting the correct number of K = 2 or overselecting K = 3 classes. For the
saturated and restricted specifications overselection is rare (occurring with rates of less than
5% or less than 1%, respectively). However, similar to Scenario 3 overselection is not rare
for the mean-variance specification. Figure 7 depicts the rates of selecting K̂ = 2 and K̂ = 3
classes, respectively, for increasing ∆ at Θ = 3.6 (hollow symbols for Scenario 4). The rate
for overselection (K̂ = 3) is already at around 30% for low values of ∆ and even increases
somewhat further starting from around ∆ = 3.

Brief summary: If impact is simulated within DIF groups, the mean-variance model has
higher power than the saturated and resticted models. However, the latent classes estimated
by the mean-variance model are mostly based on ability differences when the DIF effect size is
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Figure 7: Rates of choosing the correct number of classes (K̂ = 2) or overselecting the number
of classes (K̂ = 3) for the Rasch mixture model with mean-variance score specification in
Scenarios 4 (hollow, impact within DIF groups) and 5 (solid, impact between DIF groups).

low. If the DIF effect size is high, the mean-variance model tends to overestimate the number
of classes.

Scenario 5: Impact between DIF groups

In Scenario 5, there is also DIF (i.e., ∆ > 0) and impact. However, in contrast to Scenario 4
impact exists between the DIF groups but not within (see the right panel of Figure 3).
Furthermore, Scenario 3 is included also here as the reference point without DIF (∆ = 0).

Again, small ability differences do not strongly influence the rate of choosing more than one
latent class (compare left panel of Figure 8 and Figure 4). Both mean-variance and restricted
specification have comparable power for DIF detection starting from around ∆ = 3 while
the saturated specification has very lower power. As impact increases (middle and right
panels of Figure 8), the power of all models increases as well because the ability differences
contain information about the DIF groups: separating subjects with low and high abilities
also separates the two DIF groups (not separating subjects within each DIF group as in
the previous setting). However, for the mean-variance model this increased power is again
coupled with a drastically increased false alarm rate at ∆ = 0. The restricted score model,
on the other hand, is invariant to latent structure in the score distribution and thus performs
similarly as in previous DIF scenarios, suggesting more than one latent class past a certain
threshold of DIF intensity, albeit this threshold being a bit lower than in the case of impact
within DIF groups (around ∆ = 2). The saturated model detects more than one latent class
at a similarly low or lower rate than the other two models regardless of the level of impact.

Finally, the potential issue of overselection can be considered again. Figure 7 (solid symbols)
shows that this problem disappears for the mean-variance specification if both DIF effect size
∆ and impact are large and coincide. For the restricted model overselection is again very rare
throughout (occurring in less than 1% of all cases) while the saturated model overselects in
up to 25% of the datasets.
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Figure 8: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 5 (impact
between DIF groups).

Brief summary: If abilities differ between DIF groups, the mean-variance model detects the
violation of measurement invariance for smaller DIF effect sizes than the saturated and re-
stricted model. While the mean-variance model does not overselect the number of components
in this scenario, the high power is connected to a high false alarm rate when no DIF is present
but impact is high. This does not affect the other two score models.

3.3. Quality of estimation

Once the number of latent classes is established/estimated, it is of interest how well the
estimated model fits the data. In the context of Rasch mixture models with different score
distributions, the posterior probabilities p̂ik (Equation 5) are crucial as the estimation of the
item parameters depends on the score distribution only through these. Thus, if the p̂ik were
the same for all three score specifications, the estimated item difficulties were the same as
well. Hence, it needs to be assessed how close the estimated posterior probabilities are to the
true latent classes in the data. If the similarity between these is high, CML estimation of the
item parameters within the classes will also yield better results.

This is a standard task in the field of cluster analysis and we adopt the widely used Rand
index (Rand 1971) here: Each observation is assigned to the latent class for which its posterior
probability is highest and then pairs of observations are considered. Each pair can either be
in the same class in both the true and the estimated classification, in different classes for both
classifications or it can be in the same class for one but not the other classification. The Rand
index is the proportion of pairs for which both classifications agree. Thus, it can assume
values between 0 and 1, indicating total dissimilarity and similarity, respectively.

In the following, the Rand index for models with the true number of K = 2 latent classes in
Scenarios 4 and 5 (with DIF) is considered. Thus, the question of DIF detection (or model
selection) is not investigated again but only the quality of latent class recovery (assuming the
number of classes K to be known or correctly selected). Figure 9 depicts the average Rand
index for data from Scenario 4 (impact within DIF groups). Here, all three score specifications
find similarly well matching classifications, while the Rand index generally decreases with
increasing impact (left to right panel). In particular, while the mean-variance score model has
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Figure 9: Average Rand index for models with K = 2 latent classes for data from Scenario 4
(impact within DIF groups).

problems finding the correct number of latent classes in this scenario, it only performs slightly
worse than the other two specifications in determining the correct classes if the number were
known. Similarly, if it is provided with the correct number of classes, the saturated model
also identifies the correct classes equally well compared to the other models – while it hardly
ever chooses the correct number of classes in the first place.

However, in Scenario 5 where the score distribution contains information about the DIF
groups, the three score specifications perform very differently as Figure 10 shows. Given
the correct number of classes, the mean-variance model is most suitable to uncover the true
latent classes, yielding Rand indices close to 1 if both DIF effect size and impact are large.
The saturated specification follows a similar pattern albeit with poorer results. However, the
classifications obtained from the restricted score specification do not match the true groups
well in this scenario. The reason is that the restricted score model is partially misspecified as
the score distributions differ substantially across DIF groups.
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Figure 10: Average Rand index for models with K = 2 latent classes for data from Scenario 5
(impact between DIF groups).
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3.4. Summary and implications for practical use

Given various combinations of DIF and ability impact, the score models are differently suit-
able for the two tasks discussed here – DIF detection and estimation of item parameters in
subgroups. Starting with a summary of the results for DIF detection:

❼ The saturated score model has much lower power than the other two specifications, i.e.,
violation of measurement invariance remains too often undetected.

❼ The mean-variance model has much better power. However, if impact is present in the
abilities, this specification has highly inflated false alarm rates. Hence, if the mean-
variance model selects more than one latent class it is unclear whether this is due to
DIF or just varying subject abilities. Thus, measurement invariance might still hold
even if more than one latent class is detected.

❼ The restricted score model also has high power, comparable to the mean-variance model
if abilities are rather homogeneous. But unlike the mean-variance specification, its type
I error rate is not distorted by impact. Its performance is not influenced by the ability
distribution and detecting more than one latent class reliably indicates DIF, i.e., a
violation of measurement invariance.

Hence, if the Rasch mixture model is employed for assessing measurement invariance or de-
tecting DIF, then the restricted score specification appears to be most robust. Thus, the
selection of the number of latent classes should be based on this specification.

Given the correct number of classes, the different score models are all similarly suitable to
detect the true classification if ability impact does not contain any additional information
about the DIF groups. However, if ability impact is highly correlated with DIF groups in the
data, this information can be exploited by the unrestricted specifications while it distracts
the restricted model.

Thus, while the selection of the number of latent classes should be based only on the restricted
score specification, the unrestricted mean-variance and saturated specifications might still
prove useful for estimating the Rasch mixture model (after K̂ has been selected).

We therefore recommend a two step approach for DIF detection via a Rasch mixture model.
First, the number of latent classes is determined via the restricted score model. Second,
if furthermore the estimation of the item difficulties is of interest, the full selection of score
models can the be utilized. While the likelihood ratio test is not suitable to test for the number
of latent classes, it can be used to establish the best fitting score model, given the number
of latent classes. If this approach is applied to the full range of score models (saturated and
mean-variance, both unrestricted and restricted), the nesting structure of the models needs
to be kept in mind.

4. Empirical application: Verbal aggression

We illustrate this approach on a dataset on verbal aggression (De Boeck and Wilson 2004).
Participants are presented with one of two potentially frustrating situations (S1 and S2):



Hannah Frick, Carolin Strobl, Achim Zeileis 17

❼ S1: A bus fails to stop for me.

❼ S2: I miss a train because a clerk gave me faulty information.

and a verbally aggressive response (cursing, scolding, shouting). Combining each situation
and response with either “I want to” or “I do” leads to the following items:

S1WantCurse S1DoCurse S1WantScold S1DoScold S1WantShout S1DoShout
S2WantCurse S2DoCurse S2WantScold S2DoScold S2WantShout S2DoShout

First, we determine the number of latent classes K using the BIC for the Rasch mixture
model with a restricted score specification:

Classes 1 2 3 4
BIC 3874.6 3847.8 3841.4 3865.5

Thus, K̂ = 3 latent classes are selected. Given this selection of K, four different models
are conceivable: either using a restricted or unrestricted score model, and either using a
saturated or mean-variance specification. Note that the models with restricted saturated score
distribution and restricted mean-variance score distribution lead to identical item parameter
estimates. However, it is still of interest to fit them separately because each of the restricted
specifications is nested within the corresponding unrestricted specification. Furthermore, the
mean-variance distribution is nested within the saturated distribution.

As K = 3 is identical for all of these four models, standard likelihood ratio tests can be
used for comparing all nested models with each other. The results for the verbal aggression
data are shown in Figure 11. This shows that only the likelihood ratio test for restricted vs.
unrestricted saturated specification is significant at 5% level while all other comparisons are
(marginally) nonsignificant. Hence, the restricted mean-variance distribution is adopted here
which also has the lowest BIC.

Figure 12 shows the corresponding item profiles.

❼ The latent class in the right panel (with 108 observations) shows a very regular zig-zag-
pattern where for any type of verbally aggressive response actually “doing” the response
is considered more extreme than just “wanting” to respond a certain way as represented
by the higher item parameters for the second item, the “do-item”, than the first item,
the “want-item”, of each pair. The three types of response (cursing, scolding, shouting)
are considered increasingly aggressive, regardless of the situation (first six items vs. last
six items).

❼ The latent class in the middle panel (with 112 observations) distinguishes more strongly
between the types of response. However, the relationship between wanting and doing
is reversed for all responses except shouting. It is more difficult to agree to the item “I
want to curse/scold” than to the corresponding item “I do curse/scold”. This could be
interpreted as generally more aggressive behavior where one is quick to react a certain
way rather than just wanting to react that way. However, shouting is considered a very
aggressive response, both in wanting and doing.
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Figure 11: Likelihood ratio test p-values and BIC for Rasch mixture models with K = 3 latent
classes and different score distribution specifications for the verbal aggression data. (Arrows
denote the direction of nesting towards more restricted models.)

❼ The remaining latent class (with 53 observations considerably smaller), depicted in
the left panel, does not distinguish that clearly between response types, situations or
wanting vs. doing.

The respondents in this study are thus not scalable to one single Rasch-scale but instead need
several scales to represent them accurately. A Rasch mixture model with a restricted score
distribution is used to estimate the number of latent classes. Given that number of classes,
any type of score model is conceivable. Here, the various versions are all fairly similar and
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restricted mean-variance score distribution for the verbal aggression data.
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the restricted mean-variance specification is chosen based on likelihood ratio tests. Keep in
mind that the resulting fits can be substantially different from each other as shown in the
simulation study, in particular for the case of impact between DIF classes. The latent classes
estimated here differ mainly in their preception of the type and the “want/do”-relationship of
a verbally aggressive response.

5. Conclusion

Unlike in a single Rasch model, item parameter estimation is not independent of the score
distribtution in Rasch mixture models. The saturated and mean-variance specification of the
score model are both well-established. A further option is the new restricted score specification
introduced here. In the context of testing for DIF, only the restricted score specification
should be used as it prevents confounding effects of impact on DIF detection while exhibiting
detection power positively related to DIF effect size. Given the number of latent classes,
it may be useful to fit the other score models as well, as they might improve estimation of
group membership and therefore estimation of the item parameters. The best fitting model
can be selected via the likelihood ratio test or an information criterion such as the BIC. This
approach enhances the suitability of the Rasch mixture model as a tool for DIF detection as
additional infomation contained in the score distribution is only employed if it contributes to
the estimation of latent classes based on measurement invariance.

Computational details

An implementation of all versions of the Rasch mixture model mentioned here is freely avail-
able under the General Pulic License in the R package psychomix from the Comprehensive
R Archive Network. Accompanying the package at http://CRAN.R-project.org/package=
psychomix is a vignette containing the simulation results and a replication of the verbal
aggression example.
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