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Abstract

The runjags package provides a set of interface functions to facilitate running Markov
chain Monte Carlo models in JAGS from within R. Automated calculation of appropri-
ate convergence and sample length diagnostics, user-friendly access to commonly used
graphical outputs and summary statistics, and parallelised methods of running JAGS are
provided. The primary motivation is to provide automated methods of analysis of sim-
ulated data to facilitate model performance assessment and drop-k type cross-validation
studies using high performance computing clusters provided by snow. A module extension
for JAGS providing the Pareto family of distributions is also included within runjags. This
vignette is taken from the publication for the runjags package (Denwood [In Review]). It
outlines the primary functions of this package, and gives an illustration of a simulation
study to assess the sensitivity of a gamma-Poisson (negative binomial) distribution to
three different ‘minimally informative’ priors.
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1. Introduction

Over the last decade, the increase in availability of computing power has led to a substantial
increase in the availability and use of computationally intensive statistical methods; amongst
the most widely adopted of these are Bayesian Markov chain Monte Carlo (MCMC) methods
(Gilks, Richardson, and Spiegelhalter 1998). However, such methods have potential drawbacks
if used inappropriately, including difficulties identifying convergence (Toft, Innocent, Gettinby,
and Reid 2007; Brooks and Roberts 1998) and the potential for autocorrelation to decrease
the effective sample size of the numerical integration process (Kass, Carlin, Gelman, and Neal
1998).

Although writing customised MCMC sampling algorithms is relatively straightforward, par-
ticularly using the Metropolis-Hastings algorithm (Hastings 1970), it has become more com-
mon practice to employ more general Bayesian MCMC fitting software such as the Bayesian
analysis Using Gibbs Sampling (BUGS) software variants WinBUGS and OpenBUGS (Lunn,
Thomas, Best, and Spiegelhalter 2000). One alternative known as Just Another Gibbs Sam-
pler (JAGS) has more recently been made available by Plummer (2013a), and offers cross-
platform support, a direct interface to R using rjags (Plummer 2013b), as well as being
extendable with user specified modules written in C++ to add support for additional distri-
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butions and random number generators (Wabersich and Vandekerckhove 2013). Both JAGS
and WinBUGS/OpenBUGS use the BUGS syntax to allow arbitrary models to be more eas-
ily defined by the user, and provide sufficient flexibility to be used for the vast majority of
biological statistical problems. This flexibility and ease of use makes using the BUGS lan-
guage attractive and attainable for researchers who may be somewhat familiar with more
traditional frequentist modelling techniques, but are not aware of the potential issues with
MCMC analysis, hence the prominent warning that ‘MCMC sampling can be dangerous’ in
the WinBUGS user manual (Lunn et al. 2000). One way to reduce some of this potential
risk for inexperienced users would be to provide a wrapper for the model fitting software
that analyses the model output for common problems, such as failure to converge, parameter
auto-correlation and effective sample size, that may otherwise be missed by the end user.

Besides the potential problems associated with convergence and auto-correlation, one of the
most commonly criticised aspects of Bayesian MCMC is the requirement for prior belief
to be incorporated into the model. This is of course also a potentially huge advantage of
Bayesian methods, and many methods exist for the elicitation of prior distributions to improve
inference (Garthwaite, Kadane, and O’Hagan 2005), but the perceived lack of objectivity of
informative priors leads some authors to advocate minimally informative priors (Kass and
Wasserman 1996). There are a number of different recommendations for an appropriate
choice of prior distribution in various different circumstances, for example the half-Cauchy
distribution has been recommended as a reasonable choice for standard deviation parameters
within hierarchical models (Gelman 2006; Polson and Scott 2011), and DuMouchel (1994)
gives an argument for the use of π(τ) = s0

(s0+τ)2
as a prior for a variance parameter τ in

meta-analysis models. However, there are frequently several minimally informative priors
that could be equally justifiable in a given situation, and choice between these is known to
affect the shape of the posterior (Lele and Dennis 2009), particularly when the information
in the data is relatively sparse. For example, Tuyl, Gerlach, and Mengersen (2008) reviewed
the options for specifying a prior for Binomial events, and found that the Jeffreys prior in
this situation performed poorly. The choice of prior distribution can also adversely affect
model convergence and identifiability; particularly the Gamma(0.001,0.001) prior, which is
often used for precision parameters but is almost improper. In addition, the flexibility of
MCMC techniques and often complex structure of the data can lead to situations where
multiple syntactically different but conceptually equivalent models could be devised, which
also has the potential to affect the inference made. Validation of model formulation and prior
selection using simulated data is a pragmatic way of guarding against these problems, but is
rarely performed perhaps due to the computational effort required, and the requirement to
assess the convergence and effective sample size of repeated MCMC simulations. Although
assessment of these factors should always be performed manually in real-world situations, a
method of automating these procedures may be warranted for analysis of simulated data to
assess model performance.

This paper describes the runjags package for R which can be used to automate MCMC fitting
and summarisation procedures for JAGS models, particularly for a simulation study with an
arbitrary number of replicate datasets, and also provides additional distributions to extend
the core functionality of JAGS. An example of usage to assess the sensitivity of an over-
dispersed count observation model to various minimally informative prior distributions is also
provided. Some prior familiarity with the BUGS programming language and the underlying
MCMC algorithms is assumed.
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2. Package functions

2.1. Basic usage

The core functionality of the runjags package allows a model specified by the user to be run
using a variety of methods to call JAGS. This model can be specified in an external text file,
which is likely to be preferable for more complex model formulations, or as a character string
within R, which eliminates the need for multiple text files. External text files containing data
and initial value lists compatible with WinBUGS are also supported, and will be converted
to the required JAGS format (more details are given in the read.winbugs help page).

The model formulation can also contain three special inline statements which are interpreted
by the runjags package: #data#, which indicates that the comma separated variable names
to the right of the statement are to be included in the simulation as data, and similarly
#monitor# which indicates variable names to monitor, and #inits# which indicates variables
for which initial values are to be provided. Variables specified by #data# and #inits# will be
automatically retrieved from a named list provided using the ‘datalist’ and ‘initlist’ arguments,
or failing that from the parent environment for the function call. For initial values, a list of
length equal to the number of chains containing initial values to be used for each chain should
be provided; if only a single set of initial values is provided a warning will be given. The
#data# and #inits# variable names may also match a function returning an appropriate
vector, in the case of initial values this function may accept a single argument indicating the
chain that the initial values are to be used for. Multiple inline statements can be used, and
will simply be combined.

There are several options to the ‘run.jags’ function including explicit specification of monitors,
data and initial values, the required burn in period, sampling length and thinning interval,
the summary statistics to calculate from the chains, the method to use for calling the JAGS
executable, and options for ‘modules’ and ‘factories’ which allow a character vector of JAGS
extension modules and factories to be loaded. A basic model run with a fixed burn in period
(default 4000 iterations after 1000 adaptive iterations) and sampling period (default 10000
iterations) can be obtained as follows.

Specify a JAGS model as a character vector:

R> model <- "model {

+ for(i in 1 : N){ #data# N

+ Y[i] ~ dnorm(true.y[i], precision) #data# Y

+ true.y[i] <- (coef * X[i]) + int #data# X

+ }

+ coef ~ dunif(-1000,1000)

+ int ~ dunif(-1000,1000)

+ precision ~ dexp(1)

+ #inits# coef, int, precision, .RNG.seed, .RNG.name

+ #monitor# coef, int, precision

+ }"

Simulate the data:

R> set.seed(1)
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R> X <- 1:100

R> Y <- rnorm(length(X), 2*X + 10, 1)

R> N <- length(X)

A function to return initial values (including RNG seeds) for each chain:

R> coef <- function(chain)

+ return( switch(chain, "1"= -10, "2"= 10) )

R> int <- function(chain)

+ return( switch(chain, "1"= -10, "2"= 10) )

R> precision <- function(chain)

+ return( switch(chain, "1"= 0.01, "2"= 100) )

R> .RNG.seed <- function(chain)

+ return( switch(chain, "1"= 1, "2"= 2) )

R> .RNG.name <- function(chain)

+ return( switch(chain, "1" = "base::Super-Duper",

+ "2" = "base::Wichmann-Hill") )

Run the simulation:

R> results <- run.jags(model, n.chains = 2, method="interruptible")

Calling the simulation...

Welcome to JAGS 3.4.0 on Mon Nov 18 21:37:47 2013

JAGS is free software and comes with ABSOLUTELY NO WARRANTY

Loading module: basemod: ok

Loading module: bugs: ok

. . Reading data file data.txt

. Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 407

. Reading parameter file inits1.txt

. Reading parameter file inits2.txt

. Initializing model

. Adapting 1000

-------------------------------------------------| 1000

++++++++++++++++++++++++++++++++++++++++++++++++++ 100%

Adaptation successful

. Updating 4000

-------------------------------------------------| 4000

************************************************** 100%

. . . . Updating 10000

-------------------------------------------------| 10000

************************************************** 100%

. . . . Updating 0

. Deleting model
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.

Simulation complete. Reading coda files...

Coda files loaded successfully

Calculating the Gelman-Rubin statistic for 3 variables....

The Gelman-Rubin statistic is below 1.05 for all parameters

Finished running the simulation

The simple model shown (a linear model with intercept and single explanatory variable) is
run using two chains, contains three variables that are monitored, and convergence is as-
sessed using the Gelman-Rubin statistic (Gelman and Rubin 1992). The method for running
the model shown here does so by calling an external JAGS process in the foreground, but a
variety of methods are available: ‘parallel’ runs separate JAGS processes for parallel chains,
‘background’ and ‘bgparallel’ run the model in the background with control of the R inter-
face returning to the user while it is running, ‘snow’ runs parallel chains in separate JAGS
processes using a (possibly user-specified) distributed computing cluster, ‘rjags’ uses the rjags
package to run JAGS, and ‘rjparallel’ runs parallel chains using separate rjags models using a
distributed computing cluster. The parallel methods (‘parallel’, ‘bgparallel’ and ‘rjparallel’)
should speed up computation of models with multiple chains on multi-core machines, and all
issues pertaining to pseudo-random number generation are automatically handled by runjags:
in this example the RNG type and seed is set for each chain, but if none is provided each chain
will automatically be given a different random number generator in order to avoid possible
issues with non-independence between chains. The method used for each model run can be
controlled directly using the ‘method’ argument, or by changing the default using the ‘run-
jags.options’ function to permanently set an alternative method as the default. For example
the following code will allow a possibly lengthy JAGS simulation to be run in the background
using two processors to speed up the simulation:

R> info <- run.jags(model, n.chains = 2, method = 'bgparallel')

Starting the simulation in the background...

The JAGS process is now running in the background

This returns control of the terminal to the user, who can then carry on working in R while
waiting for the simulation to complete, then retrieve the results once it has:

R> results <- results.jags(info)

Simulation complete. Reading coda files...

Coda files loaded successfully

Calculating the Gelman-Rubin statistic for 3 variables....

The Gelman-Rubin statistic is below 1.05 for all parameters

Finished running the simulation

If the model did not converge or take sufficient samples from the initial JAGS call, the model
can be extended (using a different method to call JAGS if desired) for a fixed additional number
of samples with the ‘extend.jags’ function, with the initial results either being combined with
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the new simulation or discarded. Alternatively, the simulation can be automatically extended
using the ‘autoextend.jags’ function, which ensures that the Gelman-Rubin statistic for all
monitored parameters meets the specified target to indicate convergence, and that the required
number of samples is obtained. The automated assessment of convergence should always be
verified manually for inference to be relied upon, but a fully automated analysis may be
sufficient for simulated data. The initial simulation may also be called using ‘autorun.jags’
in place of ‘run.jags’ to fully automate control of the MCMC simulation run length from the
start.

The output of these functions is an object of class ‘runjags’. This class is associated with S3
methods for print, plot, as.mcmc and as.mcmc.list - all of which may take a ‘vars’ argument
to specify a subset of monitored nodes (using partial matching). Further utility functions are
available for combining multiple objects (‘combine.mcmc’) and for conversion to/from objects
produced by the rjags package (‘as.runjags’ and ‘as.jags’). The plot method is intended to be
used for convergence diagnostics, and has further arguments for commonly used layout and
plot type arguments, but is not intended to be used for producing more specific graphical
output from converged MCMC chains for which plot methods associated with ‘mcmc’ or
‘mcmc.list’ objects are more appropriate. A typical examination of the output of a simulation
(the default print method, and a trace plot output for variable names partially matching the
letter ‘c’) could be obtained as follows:

R> results

JAGS model summary statistics from 20000 samples

(chains = 2; burnin = 5000):

Lower95 Median Upper95 Mean SD

coef 1.9935 1.9995 2.006 1.9996 0.0031642

int 9.7534 10.13 10.48 10.131 0.18577

precision 0.89024 1.2131 1.5533 1.2213 0.17145

MCerr MC%ofSD SSeff AC.10 psrf

coef 0.000076615 2.4 1706 0.1895 1.0003

int 0.0044427 2.4 1748 0.19662 1.0002

precision 0.0012484 0.7 18862 0.0053645 1

Total time taken: 11.9 seconds

R> plot(results, type = "trace", vars = "c", layout = c(2,1) )

Producing 2 plots for 2 variables to the active graphics device

(see ?runjagsclass for options to this S3 method)

The print method displays information on the median and 95% credible interval (CI) esti-
mates, as well as the mean, standard deviation, Monte Carlo error, Monte Carlo error as a
proportion of sample standard deviation, the effective sample size, autocorrelation at lag 10,
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Figure 1: A traceplot displayed by the plot method for the runjags class, showing only
parameters partially matched using the letter ‘c’. Multiple chains are shown using different
colours.
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and potential scale reduction factor of the Gelman-Rubin statistic (Gelman and Rubin 1992;
Brooks and Gelman 1998). The plot method displays trace, density and/or cross-correlation
plots for the variables specified, using either a single graphics device or by opening multiple
devices, or by saving the graphical output to a file for inspection at a later time. The coda
package (Plummer, Best, Cowles, and Vines 2006) provides many of the underlying functions
that calculate these statistics.

2.2. Simulation studies

The principle motivation behind development of the runjags package is to automate the
analysis of simulated datasets for the purposes of model validation. While it is possible
to repeatedly use the ‘autorun.jags’ function to analyse multiple datasets, a higher level
‘run.jags.study’ function is provided to automate much of this process. This function takes
arguments specifying the number of datasets to analyse, the model to use, a function to
produce data that will be provided to each simulation, and a named list of ‘target’ variables
with true values representing parameters to be monitored and used to summarise the output
of the simulation. Inline #inits# and #monitor# statements can be used as before, and any
target variables are automatically monitored. Any variables specified using the inline #data#

statement will be retrieved from the working environment as usual and will be common to
all simulations - data which is intended to change between simulations must therefore be
provided using the ‘data function’ argument instead. The ‘run.jags.study’ function can also
be used to automate drop-k type validation studies, by specifying a data function that returns
the same dataset for each simulation but with a different value (or values) made missing, and
the full data as a target variable. An illustration of this function is provided in Section 3.

Large simulation studies are likely to be quite computationally intensive, but are an ideal
candidate for parallelisation. For this reason, parallel computation is built directly into the
‘run.jags.study’ function using the parallel package. This can be used to parallelise the simu-
lation locally, or using a high performance computing cluster set up using the snow package
(Tierney, Rossini, Li, and Sevcikova 2013) and passed to the simulation study using the ‘cl’
argument. This allows the available computing power to be maximised without requiring
any additional code to be written by the end user, including an initial check to ensure that
the model compiles and runs locally (using a randomly chosen dataset) before beginning the
parallelised study.

2.3. JAGS module

Besides the R code specified above, runjags also includes a modular extension to JAGS that
provides users with access to an additional suite of functions for the Pareto family of dis-
tributions; extending the Pareto Type I distribution provided within JAGS itself to Pareto
Types II, III, and IV distributions, as well as the generalised Pareto distribution, the Lomax
distribution (a special case of the Pareto Type II distribution with µ = 0), and a distribution
advocated by DuMouchel (1994) for use with variance parameters (discussed in Section 3.2).
The usage, PDF and lower bound for the support of each distribution is shown in Table 1 (all
distributions have an upper bound of ∞ unless otherwise stated).

A shared library containing this module is installed within the runjags package, and will be
loaded when either the ‘module’ argument contains ‘runjags’, or automatically when using
any of the distributions or functions provided by the module. Alternatively, the module can
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Name Usage Density Lower

Pareto I 1 dpar1(alpha,sigma)

α > 0, σ > 0
ασα x−(α+1) σ

Pareto II dpar2(alpha,sigma,mu)

α > 0, σ > 0

α

σ

(
σ + x− µ

σ

)−(α+1)

µ

Pareto III dpar3(sigma,mu,gamma)

σ > 0, γ > 0

(x−µ
σ

) 1
γ
−1
(
x−µ
σ

1
γ + 1

)−2

γ σ

µ

Pareto IV dpar4(alpha,sigma,mu,gamma)

α > 0, σ > 0, γ > 0

α
(x−µ

σ

) 1
γ
−1
(
x−µ
σ

1
γ + 1

)−(α+1)

γ σ

µ

Lomax 2 dlomax(alpha,sigma)

α > 0, σ > 0

α

σ

(
1 +

x

σ

)−(α+1)

0

DuMouchel 3 dmouch(sigma)

σ > 0

σ

(x+ σ)2 0

Gen. Par. dgenpar(sigma,mu,xi)

σ > 0

1

σ

(
1 + ξ

x− µ
σ

)−( 1
ξ

+1
)

µ 4

For ξ = 0: 1
σ e

−(x−µ)
σ µ

1 This is equivalent to the dpar(alpha,c) distribution and provided for naming consistency
2 This is referred to as the ‘2nd kind Pareto’ distribution by Van Hauwermeiren and Vose

(2009); an alternative form for the PDF of this distribution is given by: ασα

(x+σ)α+1

3 This distribution was suggested by DuMouchel (1994) as a suitable prior for τ in a
Bayesian meta-analysis setting, and is equivalent to a Lomax distribution with α = 1

4 The Generalised Pareto distribution also has an upper bound of x ≤ µ− σ
ξ for ξ < 0

Table 1: Distributions provided by the JAGS module included with runjags.
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be loaded for use with the rjags package using the following command:

R> load.runjagsmodule()

Loading required package: rjags

Loading required package: coda

Loading required package: lattice

Linked to JAGS 3.4.0

Loaded modules: basemod,bugs

module runjags loaded

Use of the internal module is only available for the ‘rjags’ method (attempts to load the
module will produce an error for other methods), however a standalone JAGS module con-
taining the same functions is available from http://sourceforge.net/projects/runjags.
The configuration of this module is based on the template given by Wabersich and Vandek-
erckhove (2013), and should therefore install on a variety of platforms using the standard
‘./configure’, ‘make’ ‘make install’ convention. Note that this module is named ‘runjagsmod-
ule’ to avoid naming conflicts with the internal module, and the internal module will not
be loaded automatically if the character vector provided to the ‘module’ argument contains
‘runjagsmodule’.

3. Illustration of usage

Here we will consider a worked example of a simulation study analysis using runjags, to as-
sess the sensitivity to various minimally informative priors of an over dispersed count model
represented by multiple formulations of a negative binomial or gamma-Poisson compound
distribution (for the sake of completeness, a proof of the equivalence of these distributions
is included in Appendix A). Use of this distribution is widespread in many biological fields
(Bolker, Brooks, Clark, Geange, Poulsen, Stevens, and White 2009), including parasitology
(Wilson and Grenfell 1997; Wilson, Grenfell, and Shaw 1996; Shaw, Grenfell, and Dobson
1998), where Bayesian methods of analysis have been shown to provide more robust infer-
ence than traditional methods (Denwood, Stear, Matthews, Reid, Toft, and Innocent 2008;
Denwood, Reid, Love, Nielsen, Matthews, McKendrick, and Innocent 2010). A pragmatic as-
sessment of the sensitivity of this distribution to subtly different parameterisations is therefore
merited.

3.1. Model formulation and assessment

The gamma distribution is parameterised in JAGS and BUGS by the shape (α) and rate (β)
parameters, with the expectation given by α

β and variance given by α
β2 . This distribution can

be used to describe underlying variability in a Poisson observation, representing an unknown
amount of over-dispersion between observations. In this situation the extra-Poisson coeffi-
cient of variation may be a more useful measure of the variability of the underlying gamma

distribution Denwood (2010); this is represented by a function of the shape parameter:
√

1
α

A candidate JAGS model (using inline data and monitor statements to be detected by runjags)
is as follows:

http://sourceforge.net/projects/runjags


Matthew J Denwood 11

R> jagsmodel <- "model{

+

+ for(i in 1:N){

+ Count[i] ~ dpois(lambda[i])

+ lambda[i] ~ dgamma(shape, rate)

+ }

+

+ shape ~ dgamma(0.001, 0.001)

+ mean ~ dgamma(0.001, 0.001)

+ rate <- shape / mean

+

+ #data# N

+ #inits# shape, mean, .RNG.seed, .RNG.name

+}"

This model allows each observed Count to follow a Poisson distribution with lambda drawn
from a gamma distribution with shape parameter to be estimated, and rate parameter cal-
culated from the shape parameter and the mean of the distribution, which is also to be
estimated. The Gamma(0.001,0.001) distribution is a commonly used ‘reference prior’ for
variance parameters such as the shape parameter of our gamma distribution; here we use the
same minimally informative prior for both shape and mean parameters. The #data# state-
ment is used to include N as data that does not change between simulations, and #inits#

is used to include shape and mean as initial values for two chains. The Count variable is
also observed, but will vary between simulations so is not retrieved from R memory using the
#data# tag.

The performance of this model can be assessed using a simulation study, with data generated
from a gamma-Poisson distribution with a mean of 2, shape parameter of 0.75, and a sample
size of 20. These values are chosen to exaggerate any model performance issues by providing a
comparatively small dataset with a large number of zero observations, and are similar to those
typically found in veterinary parasitological datasets. This assessment can be automated using
the ‘run.jags.study’ function, by creating a function to return some pre-generated simulated
data, and then running the simulation study using a snow cluster of 20 processors (on the
host machine) as follows.

Create simulated data and function to return one dataset per simulation:

R> N <- 20

R> S <- 1000

R> truemean <- 2

R> trueshape <- 0.75

R> truerate <- trueshape / truemean

R> set.seed(1)

R> alldata <- lapply(1:S, function(x){

+ return( rpois(N, rgamma(N, trueshape, rate = truerate) ) )

+ })

R> datafunction <- function(i)

+ return( list( Count = alldata[[i]] ) )
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Set up initial values for 2 chains and a snow cluster (with 20 parallel threads on the local
machine):

R> shape <- list(0.1, 10)

R> mean <- list(10, 0.1)

R> .RNG.seed <- function(chain)

+ return( switch(chain, "1"= 1, "2"= 2) )

R> .RNG.name <- function(chain)

+ return( switch(chain, "1" = "base::Super-Duper",

+ "2" = "base::Wichmann-Hill") )

R> library("parallel")

R> cl <- makeCluster(20)

Run the simulation study and show the results:

R> results <- run.jags.study(S, jagsmodel, datafunction,

+ targets = list( mean = truemean, shape = trueshape ),

+ runjags.options = list( n.chains = 2 ), cl = cl)

Starting a JAGS study at 01:17

Testing the model and data for simulation 990...

Compiling rjags model and adapting for 1000 iterations...

Finished running the simulation

The model runs OK

Calling autorun.jags for 1000 simulations...

Finished running the simulations

Finished summarising results

Finished JAGS study at 01:27 (total time taken: 6.9 minutes)

R> results

Average values obtained from a JAGS study with a total of 999 simulations

(excluding 1 crashed simulations):

Target Median Mean Lower95%CI Upper95%CI Range95%CI Within95%CI

mean 2.00 2.037695 2.195683 0.9618164 3.732989 2.771172 0.9329329

shape 0.75 1.852515 6.025725 0.1719675 26.917416 26.745448 0.9579580

AutoCorr(Lag10) Simulations

mean 0.1137136 999

shape 0.4883676 999

The 1 error returned has been stored in the '$errors' element of the list returned from run.jags.study

Average time taken: 5.2 seconds (range: 2.4 seconds - 36.9 seconds)

Average burnin required: 7272 (range: 5000 - 145000)

Average samples required: 10470 (range: 10000 - 57825)
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The function returns an object of class ‘runjags.study’, with a default print method that
summarises the results as appropriate; showing average values for the parameters that are
common to multiple simulations, and individual results for parameters that are estimated
from only a single simulation (for drop-1 cross validation studies). All individual simulations
are run using the underlying autorun.jags function, which attempts to ensure that sufficient
samples have been taken to ensure convergence and minimise Monte Carlo error.

For this simulation study, the mean parameter was estimated reasonably well, but there was
a large positive bias for the median and mean estimates of the shape parameter which would
result in under-estimation of the coefficient of variation. As would be expected, the 95%
confidence intervals for both parameters identified the true value approximately 95% of the
time. However, there was substantial autocorrelation for the shape parameter, which will
have the effect of slowing convergence and increasing the required number of samples. One
of the simulations also returned an error; further investigation revealed that the cause of the
error (‘Slicer stuck at value with infinite density’) was sampling of extremely small values for
the shape parameter for a dataset with a particularly large variance and small mean.

3.2. Sensitivity to prior distributions

There are various different minimally informative priors advocated for use with variance
parameters in hierarchical models. The commonly used Gamma(0.001,0.001) distribution is
characterised by a mean of 1 and a very large variance, and is almost improper (Gelman 2006).
One alternative distribution that is guaranteed to be proper is a Uniform distribution with a
lower bound of 0 and arbitrarily large upper bound, such as a Uniform(0,1000) distribution.
For use with variance parameters in hierarchical models, DuMouchel (1994) proposed the use
of a prior distribution with PDF given by:

π (τ) =
s0

(s0 + τ)2

Although this connection is not stated directly by the author, the PDF given above is equiv-
alent to that of a Lomax distribution with τ = x, s0 = σ and α = 1, and therefore to a
Pareto type II distribution with τ = x, s0 = σ, α = 1 and µ = 0 (Table 1). This Du-
Mouchel distribution is guaranteed to be proper, and has a mode of zero with infinite mean
and variance, which are conceptually desirable properties for a minimally informative prior.
The choice of σ dictates the median of the distribution, with a value of 1 advocated because
this also ensures invariance to the inverse transformation of τ , meaning that this prior can be
equivalently applied to the variance or precision. If a different choice of σ is made, then the
distribution of x

σ is invariant to inverse transformation. Note that the Lomax (or Pareto Type
II) distribution is not implemented directly in JAGS or BUGS, however the runjags module
for JAGS implements this function as dlomax(alpha,sigma), and also provides the function
dmouch(sigma) that improves the computational efficiency of the underlying functions by
removing the α parameter from the Lomax distribution. Alternatively, a dummy variable
distributed according to a Pareto(1,1) distribution can be used with the true parameter cal-
culated by subtracting one from this dummy variable using standard BUGS syntax - however
this is only equivalent to the Lomax distribution for the parameterisation with α = 1, σ = 1.

As a result of the desirable properties mentioned above, this distribution has been used as
a minimally informative prior in situations outside the meta-analysis application for which
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Mean Prior Shape Prior Mean Range of CI Within CI Auto. Corr. Simulations

Gamma Gamma 2.20 2.77 0.93 0.11 999
Uniform Gamma 2.67 4.24 0.95 0.24 996
Lomax Gamma 2.09 2.50 0.93 0.08 999

Gamma Uniform 2.13 2.31 0.86 0.27 1000
Uniform Uniform 2.39 2.90 0.89 0.34 999
Lomax Uniform 2.06 2.14 0.86 0.25 999

Gamma Lomax 2.18 2.70 0.93 0.07 999
Uniform Lomax 2.56 3.74 0.96 0.17 999
Lomax Lomax 2.09 2.47 0.93 0.04 1000

Table 2: Average values for the inference on the mean parameter (true value 2) obtained
from 1000 simulated datasets for nine gamma-Poisson MCMC models using three different
minimally informative priors for the mean and shape parameters.

it was originally devised (for example Conti, Presanis, van Veen, Xiridou, Donoghoe, Rinder
Stengaard, and De Angelis 2011; Yin, Conti, Desai, Stafford, Slater, Gill, and Simms 2013;
Phillips, Tam, Conti, Rodrigues, Brown, Iturriza-Gomara, Gray, and Lopman 2010). Here, a
pragmatic approach is taken to quantify the effect of some commonly used prior distributions
on the inference made using the model specified in Section 3.1. Using every combination
of Gamma(0.001,0.001), Uniform(0,1000) and Lomax(1,1) distributions for the mean and
shape parameters gives a total of nine candidate models. Each were run with the same 1000
simulated datasets, using very similar R code to that for the first model.

The results of these nine simulation studies are shown in Tables 2 and 3. Inference for the
mean parameter was comparatively similar between the models, although use of a Uniform
prior for the shape parameter resulted in poorly performing 95% confidence intervals and
higher autocorrelation for the mean parameter. There was a marked difference between
models in terms of the inference on the shape parameter, with a much larger bias and range
of 95% CI for models using a gamma and particularly Uniform prior on the shape parameter
compared to models using the Lomax prior for the shape parameter. The large bias of the
Uniform prior is not surprising given that the mean of this distribution is 500, however a large
positive bias was also observed with the Gamma prior with mean equal to 1. Autocorrelation
was much higher for the shape parameter than the mean parameter for all models, with the
lowest autocorrelation (and all datasets analysed successfully) using Lomax priors for both
parameters.

3.3. Sensitivity of alternative model parameterisations

The model shown in Section 3.1 (hereafter denoted ‘Model A’) is not the only possible for-
mulation of a gamma-Poisson distribution using the BUGS syntax. In Model A, the prior
distributions were placed on the mean and shape parameter with the rate parameter calcu-
lated as a deterministic node from these, however it is equally possible to put the prior on the
rate parameter and calculate the mean parameter deterministically (or even outside JAGS)
as in Model B:

R> ModelB <- "model{

+ for(i in 1:N){
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Mean Prior Shape Prior Mean Range of CI Within CI Auto. Corr. Simulations

Gamma Gamma 6.03 26.75 0.96 0.49 999
Uniform Gamma 5.86 25.36 0.95 0.49 996
Lomax Gamma 5.81 25.66 0.96 0.48 999

Gamma Uniform 115.42 255.49 0.92 0.59 1000
Uniform Uniform 112.49 250.81 0.93 0.60 999
Lomax Uniform 114.65 249.44 0.92 0.59 999

Gamma Lomax 1.47 3.99 0.97 0.37 999
Uniform Lomax 1.44 3.91 0.96 0.39 999
Lomax Lomax 1.49 4.04 0.97 0.38 1000

Table 3: Average values for the inference on the shape parameter (true value 0.75) obtained
from 1000 simulated datasets for nine gamma-Poisson MCMC models using three different
minimally informative priors for the mean and shape parameters.

+ Count[i] ~ dpois(lambda[i])

+ lambda[i] ~ dgamma(shape, rate)

+ }

+

+ shape ~ dgamma(0.001, 0.001)

+ rate ~ dgamma(0.001, 0.001)

+ mean <- shape / rate

+

+ #data# N

+ #inits# shape, rate, .RNG.seed, .RNG.name

+}"

In this simple model, we could also formulate the model as a negative binomial distribution
rather than a gamma mixture of Poisson distributions - the negative binomial distribution is
parameterised by a probability p and a second parameter equivalent to the shape parameter
(see Appendix A for more details). An alternative model formulation could therefore be
represented as in Model C:

R> ModelC <- "model{

+

+ for(i in 1:N){

+ Count[i] ~ dnegbin(prob[i], shape)

+ prob[i] <- shape / (shape + mean)

+ }

+

+ shape ~ dgamma(0.001, 0.001)

+ mean ~ dgamma(0.001, 0.001)

+

+ #data# N

+ #inits# shape, mean, .RNG.seed, .RNG.name

+}"
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Model Prior Mean Range of CI Within CI Auto. Corr. Simulations

Model A Lomax 2.09 2.47 0.93 0.04 1000
Model A Gamma 2.20 2.77 0.93 0.11 999
Model B Lomax 2.06 2.33 0.92 0.01 1000
Model B Gamma 3.87 2.78 0.94 0.03 999
Model C Lomax 2.08 2.44 0.93 0.02 1000
Model C Gamma 2.19 2.74 0.93 0.05 1000

Table 4: Average values for the inference on the mean parameter (true value 2) obtained from
1000 simulated datasets for three equivalent specifications of gamma-Poisson MCMC models,
each using two sets of minimally informative priors for the mean and shape parameters.

Model Prior Mean Range of CI Within CI Auto. Corr. Simulations

Model A Lomax 1.49 4.04 0.97 0.38 1000
Model A Gamma 6.03 26.75 0.96 0.49 999
Model B Lomax 1.25 2.67 0.98 0.57 1000
Model B Gamma 2.51 8.60 0.96 0.65 999
Model C Lomax 1.53 4.05 0.97 0.20 1000
Model C Gamma 9.31 47.17 0.96 0.33 1000

Table 5: Average values for the inference on the shape parameter (true value 0.75) obtained
from 1000 simulated datasets for three equivalent specifications of gamma-Poisson MCMC
models, each using two sets of minimally informative priors for the mean and shape parame-
ters.

These models are all intended to represent the same simple data structure, and share similar
‘minimally informative’ prior distributions on the two parameters of interest. A comparison of
the posterior coverage and autocorrelation between these models can be made, using gamma
priors and Lomax priors for both parameters to assess the relative sensitivity of the three
models to the priors. This procedure is performed using the code given in Section 3.1 for
these six candidate model formulations.

A comparison of the results from each model is shown in Tables 4 and 5. The two models A &
B encountered an error from one dataset using gamma priors, but all datasets were analysed
successfully using Lomax priors. Inference for the mean parameter was very similar between
models A and C, but was somewhat different for Model B using the gamma prior. As before,
inference for the shape parameter was heavily affected by the choice of prior distributions, with
the models using Lomax priors out-performing the corresponding models using gamma priors
for each model type. The choice of model formulation had a small effect on the inference made
for the shape parameter using Lomax priors, particularly in terms of the autocorrelation and
range of the 95’% CI produced, but a much larger effect on the inference made using gamma
priors.

3.4. Discussion

The results presented here demonstrate the potential affect of multiple prior distributions,
each of which could in some way be considered ‘minimally informative’, on the inference
made from analysis of small over-dispersed count datasets. The Uniform prior would not
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typically be used for a variance parameter, but is sometimes used for mean parameters, and
is useful to demonstrate an extreme example of prior distribution influence. The results also
show that a poor choice of prior distribution can also exaggerate differences in inference made
by conceptually equivalent model formulations, and adversely affect the autocorrelation de-
pendence within chains, reducing the effective sample size of a fixed length MCMC chain.
DuMouchel’s prior distribution (equivalent to a Lomax distribution) produced the least bias
and autocorrelation for the simulated data analysed here; this may be partly a function of
the specific characteristics of the data generated for this study, although a similar study using
data generated with a mean of 1 and shape parameter of 10 produced similar results (data
not shown). The desirable properties of this distribution, in terms of invariance to sampling
the variance or precision, infinite mean/variance with a mode of 0, and being guaranteed to
remain proper, suggest that the potential usefulness of this prior should be investigated for
other applications (particularly for precision parameters). Although this distribution is not
directly implemented in JAGS, the runjags package implements the full Pareto family of dis-
tributions using an extension module. Alternatively, it is relatively straightforward (although
computationally slower) to obtain this distribution from a type I Pareto(1, 1) distribution by
subtracting one from a dummy variable.

4. Summary

Given the flexibility and ease of use of BUGS type software packages, the recent widespread
adoption of these statistical tools to analyse data from a variety of disciplines is not surprising.
The extendability of JAGS with user-specified modules is a major advantage compared to
other implementations of BUGS, as it allows any arbitrary function or distribution to be
implemented directly within JAGS, replacing the need for the ‘ones’ trick for using customised
likelihood functions. A very useful tutorial on writing and installing a standalone JAGS
module is provided by Wabersich and Vandekerckhove (2013), however it is substantially
easier to configure and install a JAGS module as part of an R package using the rjags interface
because many of the necessary environmental variables are set up by ‘R CMD INSTALL’
during installation of the package, leaving only a ‘configure’ file in the route directory and
‘Makevars’ file, specifying the required include files, libraries and make objects, to be specified
by the user. The source code for the runjags package is freely available be used as a template
for other users, and includes a brief overview of the process of writing a module within the
README file.

There are huge advantages to using MCMC, but also some potential disadvantages associated
with failure to identify poor convergence and high Monte Carlo error, as well as sensitivity
of the inference made to using subtly different model specifications and prior distributions.
The runjags package attempts to partially safeguard against some of these difficulties by cal-
culating and automatically reporting convergence and sample length diagnostics every time a
JAGS model is run, and providing a more user friendly way to access commonly used visual
convergence diagnostics and summary statistics. The methods used to call the underlying
executable are generalised and flexible, and can be used to parallellise model runs with mul-
tiple chains. A further attraction of this package is the facilitation of simulation studies, with
analysis of an arbitrary number of replicate datasets fully automated and parallelised using
a single function call.

There has been considerable debate in the literature concerning the relative merits of sub-
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jective and objective Bayesian inference (see for example Berger and Berry (1988); Berger
(2006); Lele and Dennis (2009)). Where prior information is available and can be justified,
there can be no doubt that use of this information will have a beneficial effect on the posterior
distributions of all parameters of interest - however, there are many applied fields where use
of such prior information is often considered to be unjustified by the mainstream community.
In these situations, it may be desirable to use a minimally informative prior, however there
is always the potential for inference to be sensitive even to priors that are intended to be
minimally informative, especially when dealing with small datasets. For over-dispersed count
data with properties similar to that generated here, it appears that the prior distribution sug-
gested by DuMouchel (1994) (a Lomax or Pareto Type-II distribution) is a suitable minimally
informative prior, however the most appropriate prior for other applications is likely to be
highly specific to that application. Embarking on a full simulation study to validate the model
formulation used can be computationally demanding, but the availability of ever-increasing
computing power brings these procedures well within reach. Where there is any doubt over
the optimal model formulation for a particular application, a pragmatic and robust approach
should therefore include some validation of the choice of model against simulated data.
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A. Formulation of the negative binomial as a gamma-Poisson

The compound probability mass function of a Poisson distribution (with mean λ) integrated
over a gamma distribution (with shape and scale parameters α and β respectively) is given
in Equation 1.

f(x;α, β) =

∫ ∞
0

λx

x!
e−λ . βα

1

Γ(α)
λα−1e−βλ dλ (1)

Substituting α = r and β = 1−p
p into Equation 1 gives Equation 2, which can be re-written

and simplified to Equation 4.

f(x; r, p) =

∫ ∞
0

λx

x!
e−λ .

(
1− p
p

)r 1

Γ(r)
λr−1e

−
(

1−p
p

)
λ

dλ (2)

=
(1− p)r

x! pr Γ(r)

∫ ∞
0

λx+r−1e−λe
− (1−p)λ

p dλ (3)

=
(1− p)r

x! pr Γ(r)

∫ ∞
0

λx+r−1e
−λ
p dλ (4)

Substituting the gamma function Γ(b+1)
ab+1 =

∫∞
0 tbe−atdt for a = 1

p , b = x + r − 1 and t = λ
into Equation 4 gives Equation 5.

f(x; r, p) =
(1− p)r

x! pr Γ(r)

Γ(x+ r − 1 + 1)(
1
p

)x+r−1+1 (5)

=
(1− p)r

x! pr Γ(r)
Γ(x+ r) px+r (6)

=
Γ(x+ r)

x! Γ(r)
px(1− p)r (7)

Equation 7 is the probability mass function of the negative binomial distribution defining the
number of successes x before r failures with a probability of success p, which is therefore
exactly equivalent to a gamma-Poisson compound distribution with mean α

β = pr
1−p and shape

parameter α = r.
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