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Abstract

In this vignette, the user is guided through some basic analyses
using the sme R package for fitting and visualising smoothing-splines
mixed-effects (SME) models. SME models are an extension of the
standard linear mixed-effects model that can account for a wide range
of non-linear behaviours. They are robust to small sample sizes, noisy
observations and missing data and hence a common application area is
genomics time series data analysis, from which the example data sets
distributed with the package and described in this tutorial originate.

1 Introducing the data

The sme package contains two data sets. The first of these is a small subset of
data from an experiment conducted on blood samples from six healthy human
volunteers to investigate the genetic response to M.Tuberculosis infection.
This will be referred to as the ‘MTB’ data set and is a data.frame with
variables:

> library(sme)

> data(MTB)

> names(MTB)

[1] "y" "tme" "ind" "variable"
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y contains the observed gene expression values, tme contains the correspond-
ing time points (in hours) at which the measurements in y were taken, ind is
a factor identifying which subject is associated with the measurements in y,
and variable is a factor indicating which gene transcript the measurements
are associated with.

The typical approach with replicated genomics data sets such as these,
which contain repeated measurements on more than one biological unit, is to
model each transcript independently using a functional mixed-effects model
[Storey et al., 2005, Liu and Yang, 2009, Berk et al., 2010]. To begin, con-
sidering only the first transcript then, with identifier 6031, the raw data can
be visualised as a trellis plot using the lattice package:

> library(lattice)

> print(xyplot(y ~ tme | ind,data=MTB[MTB$variable==6031,],

+ xlab="Hour",ylab="Gene Expression"))

with the ouput given in Figure 1. The following salient features of the data
can now be noted: (1) there are very few subjects and time points, (2) the
response is highly non-linear, with a distinctive spike in gene expression levels
at 24 hours, and (3) some data is missing, specifically the final observation
for subject 6.

2 Introducing the model

Users already familiar with the theoretical details of functional mixed-effects
models in general and SME models in particular may wish to skip straight to
Section 3 where the illustration of the use of the sme package is resumed.

Given the few time points and aperiodicity, traditional time series analysis
models are unlikely to yield good results on the type of data described above.
Functional mixed-effects models have proven to be a popular alternative,
capable of dealing with all of the associated issues. In a functional mixed-
effects model, the observations on subject i are assumed to have come from
an underlying smooth function of time, yi(t), which is decomposed into the
following components:

yi(t) = µ(t) + vi(t) + εi(t) (1)

where µ(t) is the mean function across all subjects, vi(t) is subject i’s devia-
tion from that mean function, also assumed to be a smooth function of time
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Figure 1: Raw data for gene transcript 6031 from the MTB data set. Note
the small number of subjects and time points, the highly non-linear responses
and the missing data (the final observation for subject 6)

and εi(t) is an error process. Analogous to the linear mixed-effects model
for vectorial data [Harville, 1977], µ(t) is treated as a fixed, but unknown,
population parameter while the vi(t) functions are assumed to be randomly
sampled from the population as a whole.

In practice, to estimate the function µ(t) and the distribution of the func-
tions vi(t), they must be parameterised in some way. Typically this is done
using splines — piecewise polynomials — although wavelets or Fourier bases
are amongst the other options. Splines themselves come in different flavours,
and the monograph of Wu and Zhang [2006] is an excellent introduction to
the various representations in a functional mixed-effects model context.

Essentially the different spline representations vary in the way in which
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they control the smoothness, or analogously the non-linearity, of the func-
tions. Achieving the right level of smoothing is a critical aspect of the mod-
elling process — too much smoothing and the underlying temporal dynamics
will be lost; too little smoothing and spurious conclusions are likely to be
made.

B-splines [de Boor, 1978] are a traditional choice of spline representation
which control the smoothness of the spline by varying the number and loca-
tion of knots that define the break points between the piecewise polynomials.
This means they suffer from the drawback of only providing coarse control
over the smoothness as there can only be an integer number of knots, with
the upper limit dependent on the number of time points. This problem is
exacerbated in the replicated genomics time series context (and other bio-
logical domains such as metabolomics and proteomics) where the very small
number of time points severely restricts the range of non-linear behaviours
that can be considred.

Smoothing-splines deal with this issue by using every distinct time point
as a knot and avoiding the overfitting this would normally incur by intro-
ducing a penalty parameter for the lack of smoothness or roughness of the
function. This penalty parameter can take any non-negative real value and
hence fine control over the smoothness is achieved.

Parameterising the functions in (1) as smoothing splines allows it to be
rewritten in matrix-vector format as

yi = Xiµ+Xivi + εi (2)

where yi is a vector of all observations on subject i, Xi is an incidence matrix
mapping the distinct design time points onto the time points at which subject
i was actually observed, µ is a vector of fitted values for the mean function at
the design time points, vi is a vector of fitted values for the subject-specific
function at the design time points and εi is the vector of error terms.

Standard practice is to assume that the vi and εi terms are multivari-
ate normally distributed with zero mean vectors and covariance matrices D
and σ2I respectively. Under these assumptions, yi is multivariate normally
distributed, and the model parameters µ, D and σ2 which maximise the
likelihood can be found by treating the vi as missing values and employing
the Expectation-Maximisation (EM) algorithm. The penalty parameters for
the roughness of the functions µ(t) and vi(t), λµ and λv, are incorporated
by instead finding the values of µ, D and σ2 which maximise the penalised
likelihood.
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3 Fitting the model

SME models control the degree of non-linearity through two smoothing pa-
rameters, one for the mean function and one for the subject-specific functions,
denoted λµ and λv respectively. The smoothing parameters are non-negative
real values; when small there is little smoothing and the functions can in-
terpolate the data points. When they tend to infinity then the amount of
smoothing is maximised and the functions tend to straight lines.

To illustrate this, first the transcript will be fit with λµ = λv = 0. The
model parameters are estimated using the EM algorithm by executing the
following code:

> fit <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],

+ lambda.mu=0,lambda.v=0)

> plot(fit,type="model",xlab="Hour",ylab="Gene Expression")

with the resulting model fit visualised in Figure 2. The single time point
observations for all subjects are shown as circles. The thick red line is the
fitted mean function, and the dashed black lines are the predicted subject
specific functions. As expected, the subject specific functions interpolate the
data points, which seems implausible as there is likely to be at least some
degree of measurement error. Furthermore, checking the success flag for the
EM algorithm:

> fit$info

[1] -1

indicates that the algorithm failed as the likelihood did not increase during
one of the iterations (zero indicates success). This is likely due to numeri-
cal instability introduced by attempting to estimate more parameters than
there are data points. With the smoothing parameters set to zero, there are
effectively 31 model parameters: 5 parameters for the smoothing-spline rep-
resenting the mean function (one for each time point); 25 parameters for the
between-subject covariance matrix (5 time points × 5 time points) and 1 for
the error variance. Taking into account the missing observation for subject
6 there are only 29 data points.

At the other extreme, the transcript can be refit with λµ = λv = 107:
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Figure 2: Fitting gene transcript 6031 from the MTB data set with λµ = 0
and λv = 0. Note how this combination of smoothing parameters leads to
the functions interpolating the data points. The idea of zero measurement
error seems implausible

> fit <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],

+ lambda.mu=1e7,lambda.v=1e7)

> plot(fit,type="model",xlab="Hour",ylab="Gene Expression")

Referring to Figure 3, this time the mean function is a straight line. Fur-
thermore the subject specific functions coincide with the mean, indicating
that with this level of smoothing all of the variance in the observations is
attributed to measurement error and none to subject heterogeneity. Double
checking the success flag:

> fit$info
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Figure 3: Fitting gene transcript 6031 from the MTB data set with λµ = 107

and λv = 107. Note how this combination of smoothing parameters leads to
a model which has dramatically oversmoothed the data, completely ignoring
the underlying temporal behaviour indicated by the observations

[1] 0

shows that this time the EM algorithm successfully converged.
Neither of these two extremes has produced a satisfactory model fit. Al-

ternatively, the optimal smoothing parameters according to some model se-
lection criteria can be found using Nelder-Mead simplex search [Nelder and
Mead, 1965]. This is the default behaviour for the sme function if lambda.mu
or lambda.v is not set but, as shown above, users can not only get a feel
for how changing the smoothing parameters impacts the model fit but also
write their own search routines by calling the function with the parameters

7



set explicitly.
One of the most popular model selection criteria is Akaike’s Information

Criterion (AIC) [Akaike, 1974] which scores the model as the log-likelihood
with a penalty for the number of fitted parameters. Finding the optimal
model under this criterion is achieved by executing:

> fit <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],

+ criteria="AIC")

> plot(fit,type="model",xlab="Hour",ylab="Gene Expression")
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Figure 4: The optimal SME model for gene transcript 6031 from the MTB
data set according to the AIC. Compared to Figures 2 and 3, this model
yields fitted functions that strike a good balance between smoothness and
adequately modelling the underlying temporal behaviour suggested by the
observations
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By default, however, the sme function uses the corrected AIC of Hurvich and
Tsai [1989] which includes a correction for small sample sizes. In addition
to these two forms of AIC, the user also has the option of the Bayesian
Information Criterion [Schwarz, 1978] where the penalty can either depend
on the total number of observations across all subjects (criteria="BIC") or
the total number of subjects (criteria="BICn"). The ‘correct’ criteria to
use will depend on how smooth the underlying functions are likely to be given
any prior knowledge that may be available, and on how large the sample size
is. The corrected AIC gives good results in most instances, hence it is the
default option.

4 Additional visualisation options

While Figure 4 provides a useful overview of the model fit, it is impossible to
determine which observations are associated with which subject. As a result,
it may be useful to produce a trellis plot as with the raw data, except with
the fitted subject-specific functions superimposed on top. This can be done
by running:

> plot(fit,type="raw",showModelFits=TRUE,xlab="Hour",

+ ylab="Gene Expression")

with the result given in Figure 5.
It can be insightful to visualise the 95% confidence band for the estimated

mean function in order to assess the model fit. This is done by passing
showConfidenceBands=TRUE to the plot function:

> plot(fit,type="model",xlab="Hour",ylab="Gene Expression",

+ showConfidenceBands=TRUE)

with the result given in Figure 6.
The model fit can further be assessed using a diagnostic plot generated

via:

> plot(fit,type="diagnostic")

which is shown in Figure 7. There are four panels to this plot, which has
been heavily inspired by Wu and Zhang [2006]. Each panel visualises the
standardised residuals in a different way in order to help determine whether
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Figure 5: Raw data for gene transcript 6031 from the MTB data set with
fitted subject-specific curves overlaid

the data has been adequately modelled. The top panels and the bottom
left are all intended to detect whether there is any latent structure to the
residuals. The Q-Q plot in the bottom right helps to determine whether
the assumption for normality for the residuals is valid. In this particular
instance, there does not appear to be any latent structure to the residuals.
The Q-Q plot raises questions over the assumption of normality due to the
extreme values but this is largely to be expected given the small number of
observations.
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Figure 6: Visualisation of the SME model fit for gene transcript 6031 from
the MTB data set, with the addition of the 95% confidence band for the
estimate of the mean function

5 Advanced topics

5.1 Carrying out multiple model fits in parallel

Thus far fitting only a single gene transcript has been considered. In a
typical genomics data set there will be tens of thousands of transcripts to
be fit. In order to make this task as efficient as possible, the sme package
supports OpenMP (http://www.openmp.org/) for using multiple threads to
carry out multiple model fits in parallel (note that this feature is platform
dependent and in particular is unavailable on OS X). The MTB data set
contains ten gene transcripts in total in order to illustrate this process.
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Figure 7: Diagnostic plot for assessing the SME model fit to gene transcript
6031 from the MTB data set

First, all ten transcripts can be fit one after the other as follows:

> system.time(fits <- lapply(unique(MTB$variable),

+ function(v) sme(MTB[MTB$variable==v,c("y","tme","ind")])))

user system elapsed

1.76 0.00 1.79

Alternatively, the sme function can be called on the entire MTB data set.
As this data.frame contains a variable factor, the sme function will auto-
matically recognise that multiple fits should be carried out in parallel. By
default, the OpenMP system will automatically select the number of threads
to be used. There will be some inefficiency due to the overheads of thread cre-
ation (these overheads are greater on Windows than other operating systems,
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and are especially noticable with such a small example). Alternatively the
number of threads can be specified explicitly through the numberOfThreads

parameter:

> system.time(fits <- sme(MTB,numberOfThreads=3))

user system elapsed

1.78 0.00 0.97

5.2 Using less knots

Although using every distinct time point as a knot works well for the MTB
data set, and works well for the vast majority of other genomics time series
experiments, in some instances it may be inappropriate. The sme package
contains a second data set, which consists of a single gene transcript from an
experiment investigating an inflammatory condition in children. This will be
referred to as the ‘inflammatory’ data set. In this experiment the sampling
times are highly irregular, as can be seen by visualising the data:

> data(inflammatory)

> plot(y~tme,data=inflammatory,xlab="Day",

+ ylab="Gene Expression")

> for(ind in inflammatory$ind) lines(y~tme,

+ data=inflammatory[inflammatory$ind==ind,],

+ lty="dashed")

shown in Figure 8. The single time point observations are shown as circles
which have been joined by lines where they belong to the same subject. Using
each distinct time point as a knot will still work but will be slow. Some speed
can be gained by relaxing the convergence criteria for the Nelder-Mead search
by setting the parameter deltaNM=0.1 (the default is 0.001):

> system.time(fit <- sme(inflammatory,

+ deltaNM=0.1))

user system elapsed

50.61 0.67 52.23

> plot(fit,xlab="Day",ylab="Gene Expression")
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Figure 8: Raw data for the example gene transcript in the inflammatory data
set. Note the irregular time points at which the observations were collected

with the model fit visualised in Figure 9. Alternatively, a vector of time
points to use as knots can be specified as an argument to the sme function.
Note that these should be internal knots, as the time points at the extremes
of the time course will automatically be used. For example, using five equally
spaced knots can be achieved by running:

> my.knots <- seq(min(inflammatory$tme),max(inflammatory$tme),

+ length.out=7)[-c(1,7)]

> my.knots

[1] 20.33333 38.66667 57.00000 75.33333 93.66667

> system.time(fit <- sme(inflammatory,knots=my.knots,

+ deltaNM=0.1))
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Figure 9: SME model fit to the example gene transcript in the inflammatory
data set when using every distinct time point as a knot

user system elapsed

4.66 0.00 4.67

> plot(fit,xlab="Day",ylab="Gene Expression")

which executes significantly faster. Comparing the visualisation of the model
fit, given in Figure 10, with Figure 9, ultimately there is very little difference
between the two. Note that in these situations it is not overly critical to
pick a ‘good’ number of knots; provided ‘enough’ knots are used so that a
sufficient range of non-linear behaviours can be considered. The smoothing
parameters will take care of avoiding overfitting as usual.
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Figure 10: SME model fit to the example gene transcript in the inflammatory
data set when using only five equally spaced internal knots
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