
Introduction to STRUctural Modeling of Latent

Variables for General Pedigree

Yeunjoo E. Song, Nathan J. Morris

November 4, 2013

1 Getting started

The strum package implements the framework for structural equation models
for general pedigrees described in Morris et al. (2010). It includes both fitting
and simulation of a broad range of latent measurement models and structural
equation models with covariates, allowing for a wide variety of models including
latent growth curve models. It can handle multilevel models, polygenic ran-
dom effects and linkage random effects. Traditional structural equation models
and confirmatory factor analysis may also be performed. The framework imple-
mented now can only handle quantitative variables.

Assuming that you have the strum package installed, you first need to load
it:

> library(strum)

> set.seed(1)

Note that all packages that strum depends on will be loaded as well. Once it
is loaded, now you can start a strum analysis.

2 strum Analysis

A strum analysis is performed by calling the main function strum() which re-
quires two arguments, an object of strumModel class and an object of strum-

Data class. The strumModel is an S4 class that represents the trait model for
your data. The strumData is an S4 class that contains the input data. The
following illustrates the typical steps for a strum analysis.

1. Construct a strumModel by createStrumModel() function.

2. Prepare data using createStrumData() function.

3. Run analysis by the function call strum().

1

2.1 strumModel

An object of strumModel is constructed by createStrumModel() function. The
formulas argument for this function defines the relationship among the variables.
The measurement equations are specified by the “=∼” operator. The “∼” oper-
ator specifies the structural equations in the model. The “=” operator specifies
the constraints in the model, i.e., fixing a model parameter - a variance, co-
variance, or coefficient. Please refer to the reference manual for more detailed
decription of the syntax for the model formulas and other optional arguments
for this function.

Following are some acronyms used below:

SEM: Structural Equation Model
CFA: Confirmatory Factor Analysis
ACE: Additive polygenic(A), common environmental(C), random error(E)
MIMIC: Multiple Indicators Multiple Causes

Here are some examples of ‘formulas’ for different types of analysis with
the corresponding model diagrams. Following standard conventions, observed
variables are represented as squares and latent variables are represented as ovals.
The arrows represent linear relations between variables. There are four possible
error terms; additive genetic linkage (a), polygenic (p), shared environmental (c)
and independent environmental (e) variance components. They are represented
as non-filled small circles. Note that the subscripts for error terms and coefficient
parameters are omitted.

❼ Genetic association analysis model with a latent trait (similar to MIMIC
model)

formulas = ‘

L1 =∼ P1 + P2 + P3 + <e>

L1 ∼ SNP + <p,e>

’

2

❼ Genetic linkage analysis model with a latent trait

formulas = ‘

L1 =∼ P1 + P2 + P3 + <e>

L1 ∼ <a,p,e>

’

❼ SEM with latent variables and polygenic effect

formulas = ‘

bp =∼ SBP + DBP

anger =∼ A1 + A2

stress =∼ S1 + S2

bp ∼ anger + stress

stress ∼ anger + rs6040343

var(stress) = .1

’

❼ CFA with a pleiotropic genetic effect influenced by a SNP

formulas = ‘

z1 =∼ X1 + X2 + X3 + <e>

z2 =∼ X4 + X5 + X6 + <e>

g1 ∼ rs6040343 + <p>

z1 ∼ g1 + <e>

z2 ∼ g1 + <e>

’

3

❼ Multivariate test for genetic association

formulas = ‘

X1 ∼ rs6040343

X2 ∼ rs6040343

cov(X1,X2) = NA

’

❼ CFA with polygenic effect

formulas = ‘

z1 =∼ X1 + X2 + X3

z2 =∼ X4 + X5 + X6

cov(z1,z2,p) = NA

cov(z1,z2,e) = NA

’

❼ SEM with latent variables with polygenic effects

formulas = ‘

z1 =∼ X1 + X2 + X3 + <e>

z2 =∼ X4 + X5 + X6 + <e>

z1 ∼ z2

cov(X1,X2,e) = NA

’

4

❼ CFA with latent variables with polygenic effects

formulas = ‘

z1 =∼ X1 + X2 + X3 + <e>

z2 =∼ X4 + X5 + X6 + <e>

X7 ∼ z2

cov(z1,z2) = NA

’

❼ Multiple SNP / Latent Genotype model

formulas = ‘

z1 =∼ RS1 + RS2 + RS3 + y

’

❼ Mendelian randomization model

formulas = ‘

X2 ∼ X1

X1 ∼ RS

cov(X1,X2) = NA

’

❼ ACE model - <p, c, e> in strum Model

formulas = ‘

X1 ∼ <p,c,e>

’

5

❼ Latent growth curve model

formulas = ‘

S =∼ 1*X2 + 2*X3 + <e>

I =∼ 1*X1 + 1*X2 + 1*X3 + <e>

S ∼ RS

’

The following example shows how to construct strumModel object for the
first model above.

> formulas =

+ ✬L1 =~ P1 + P2 + P3 + <e>

+ L1 ~ aSNP + <p,e>

+ ✬

> myModel = createStrumModel(formulas = formulas)

Creating strumModel Done

> myModel

Basic properties of the model:

Model Class strumModel

Ascertainment FALSE

List of all variables:

Obs Covariate InEita InY Exogen.

L1 FALSE FALSE TRUE FALSE FALSE

aSNP TRUE TRUE FALSE FALSE NA

P1 TRUE FALSE FALSE TRUE NA

P2 TRUE FALSE FALSE TRUE NA

P3 TRUE FALSE FALSE TRUE NA

Model formulas:

L1 =~ P1 + P2 + P3 + <e>

L1 ~ aSNP + <p,e>

6

2.2 strumData

An object of strumData is constructed by createStrumData() function. The
value of inData argument for this function has to be a data.frame, and the
allowed values for dType argument is either “Pedigree” or “RawData”.

❼ Pedigree data

If dType = “Pedigree”, the data must be a data.frame with 4 required id
fields - family, id, father, mother. For founders, “0” needs to be used to
indicate the missing parents.

A typical space-delimited pedigree file will look like following.

family id father mother sex X1 X2 ...

1 1 0 0 1 0.24 0.36 ...

1 2 0 0 2 1.26 3.25 ...

1 3 1 2 1 0.37 0.48 ...

1 4 1 2 1 3.26 2.67 ...

2 1 0 0 1 2.25 1.87 ...

2 2 0 0 2 0.48 1.68 ...

2 3 1 2 1 1.94 0.62 ...

2 4 1 2 2 3.17 2.10 ...

A typical comma-delimited pedigree file will look like following.

family,id,father,mother,sex,X1,X2,...

1,1,0,0,1,0.24,0.36,...

1,2,0,0,2,1.26,3.25,...

1,3,1,2,1,0.37,0.48,...

1,4,1,2,1,3.26,2.67,...

2,1,0,0,1,2.25,1.87,...

2,2,0,0,2,0.48,1.68,...

2,3,1,2,1,1.94,0.62,...

2,4,1,2,2,3.17,2.10,...

The following example show how to construct strumData object from an
example pedigree file. Note that the first 4 column names are changed to
the 4 required id fields - family, id, father, mother.

> inPed = system.file("extdata/example_ped.csv", package = "strum")

> dfPed = read.csv(inPed, header=T)[,c(1:6,8:10,17)]

> names(dfPed)[1:4] = c("family","id", "father","mother")

> myPedData = createStrumData(dfPed, "Pedigree")

Creating strumData Done

7

> myPedData

Data type: Pedigree

Data size: 477 entries, 10 variables

First 5 rows of data values:

family id father mother sex disease P1 P2 P3 aSNP

1 1 1 0 0 0 0 0.4093955 0.44450079 -0.3867515 1

2 1 2 0 0 1 0 -1.5037814 1.52582608 0.8832360 0

3 1 3 1 2 0 0 1.5850090 0.08833692 0.9322619 1

4 1 4 1 2 1 0 1.6246356 0.60065352 1.0895325 0

5 1 5 1 2 1 0 -0.4111477 0.08588345 -0.6477336 1

phi object contains 75 matrices:

First matrix:

$❵1❵

1 2 3 4 5 6 7

1 1.0 0.0 0.5 0.5 0.5 0.5 0.5

2 0.0 1.0 0.5 0.5 0.5 0.5 0.5

3 0.5 0.5 1.0 0.5 0.5 0.5 0.5

4 0.5 0.5 0.5 1.0 0.5 0.5 0.5

5 0.5 0.5 0.5 0.5 1.0 0.5 0.5

6 0.5 0.5 0.5 0.5 0.5 1.0 0.5

7 0.5 0.5 0.5 0.5 0.5 0.5 1.0

Empty IBD object.

❼ Pedigree data with IBD info

When your analysis model includes the additive genetic variance compo-
nent (a), the ibd information for the family data has to be imported by
specifying the name of ibd file into ibdFileName argument. Currently,
the ibd file generated by the program GENIBD in S.A.G.E. package is
supported.

> iName = system.file("extdata/GENIBD.chr1Ped.ibd", package = "strum")

> myPedDataIBD = createStrumData(dfPed, "Pedigree", ibdFileName=iName)

Importing S.A.G.E. IBD file Done

Creating strumData Done

> myPedDataIBD

8

Data type: Pedigree

Data size: 477 entries, 10 variables

First 5 rows of data values:

family id father mother sex disease P1 P2 P3 aSNP

1 1 1 0 0 0 0 0.4093955 0.44450079 -0.3867515 1

2 1 2 0 0 1 0 -1.5037814 1.52582608 0.8832360 0

3 1 3 1 2 0 0 1.5850090 0.08833692 0.9322619 1

4 1 4 1 2 1 0 1.6246356 0.60065352 1.0895325 0

5 1 5 1 2 1 0 -0.4111477 0.08588345 -0.6477336 1

phi object contains 75 matrices:

First matrix:

$❵1❵

1 2 3 4 5 6 7

1 1.0 0.0 0.5 0.5 0.5 0.5 0.5

2 0.0 1.0 0.5 0.5 0.5 0.5 0.5

3 0.5 0.5 1.0 0.5 0.5 0.5 0.5

4 0.5 0.5 0.5 1.0 0.5 0.5 0.5

5 0.5 0.5 0.5 0.5 1.0 0.5 0.5

6 0.5 0.5 0.5 0.5 0.5 1.0 0.5

7 0.5 0.5 0.5 0.5 0.5 0.5 1.0

IBD object contains 20 markers:

First 5 rows of markers:

Marker Position

1 chr1marker1 0.0

2 chr1marker2 10.0

3 chr1marker3 20.0

4 chr1marker4 30.0

5 chr1marker5 40.0

First matrix:

$❵1❵

1 2 3 4 5 6 7

1 1.0 0.0 0.5 0.5 0.5 0.5 0.5

2 0.0 1.0 0.5 0.5 0.5 0.5 0.5

3 0.5 0.5 1.0 0.5 0.5 0.5 0.5

4 0.5 0.5 0.5 1.0 0.5 0.5 0.5

5 0.5 0.5 0.5 0.5 1.0 0.0 1.0

6 0.5 0.5 0.5 0.5 0.0 1.0 0.0

7 0.5 0.5 0.5 0.5 1.0 0.0 1.0

Note that now, the new strumData object, myPedDataIBD, includes the
IBD information.

9

❼ Raw data

For “RawData” type, 4 id fields are not required. The program automat-
ically creates the dummy id fields if any of them are not present in the
input file by making each individual as a family of own. Note that the last
four columns are automatically included in the following example.

> inRaw = system.file("extdata/example_raw.csv", package = "strum")

> dfRaw = read.csv(inRaw, header=T)

> head(dfRaw)

sex disease X1 X2 X3 X4 X5 X6 aSNP

1 0 0 3.390 4.180 1.300 1.63 1.90 -0.0613 1

2 1 0 -3.490 -2.720 -0.784 -3.55 -2.89 -2.1300 0

3 0 0 0.499 -3.690 -3.640 -1.10 1.47 0.4280 2

4 1 0 2.990 4.920 -0.372 3.81 2.37 0.4940 1

5 0 0 -5.310 -1.860 -2.420 -2.79 -2.46 0.6770 1

6 1 0 -0.232 -0.195 0.927 1.84 1.38 -0.7670 1

> myRawData = createStrumData(dfRaw, "RawData")

Creating strumData Done

> myRawData

Data type: RawData

Data size: 150 entries, 13 variables

First 5 rows of data values:

sex disease X1 X2 X3 X4 X5 X6 aSNP family id mother

1 0 0 3.390 4.18 1.300 1.63 1.90 -0.0613 1 1 1 0

2 1 0 -3.490 -2.72 -0.784 -3.55 -2.89 -2.1300 0 2 2 0

3 0 0 0.499 -3.69 -3.640 -1.10 1.47 0.4280 2 3 3 0

4 1 0 2.990 4.92 -0.372 3.81 2.37 0.4940 1 4 4 0

5 0 0 -5.310 -1.86 -2.420 -2.79 -2.46 0.6770 1 5 5 0

father

1 0

2 0

3 0

4 0

5 0

10

2.3 Run analysis

By the function call strum() with two previous objects (strumModel and
strumData) as the arguments, you can run a strum analysis. This is an exam-
ple with the myModel object and the myPedData object.

> myFitResult = strum(myModel, myPedData)

Start STRUM analysis ...

Fitting model step 1 Done

Fitting model step 2 Done

Testing model fit Done

Analysis completed!

The strum() function has an optional third argument, ibdmarkers. This
argument is to specify the names of the IBD markers when you want to analyze
a subset of IBD markers instead of all markers by default. As stated previously,
this is the case for the analysis models including the additive genetic variance
component (a) and the data including the ibd information.

> mNames = c("chr1marker1", "chr1marker2")

> myLinkResult = strum(myLinkModel, myPedIBD, ibdMarkers=mNames)

As a result of strum() run, an object (or a list of objects in case of anal-
ysis with multiple IBD markers) of strumFittedModel class, which contains
the model description and two result tables. The first table contains the fit-
ted parameter values with standard errors, confidence intervals, and p-values.
The second table contains the information on the model fit from four different
measures, with the degrees of freedom and p-values.

1. the un-adjusted χ2 index of fit

2. the mean scaled χ2 index of fit

3. the mean and variance scaled χ2 index of fit

4. the exact p-value from simulation

11

3 Simulation

This package provides the functions to simulate both trait and marker data.
Given a model you want to test, it simulates the data according to the model
specification. The following illustrates the typical steps for a strum simulation.

1. Construct a simulation model.

❼ Import Hapmap data by importHapmapData() function.

❼ Construct a strumMarker by createStrumMarker() function.

❼ Construct a strumSimModel by createSimModel() function.

2. Simulate data using simulateStrumData() function.

3. Run analysis on the simulated data by the function call strum().

3.1 Simulation model

An object of strumSimModel is constructed by createSimModel() function.
The syntax of the formulas argument for this function is similar to the one
for the createStrumModel() function. However, for the simulation, you include
the coefficients for the model parameters, and there are two additional optional
arguments, “tMissingRate” and “markerInfo”.

The value for“tMissingRate” is a numeric vector to define the missing rate(s)
of the simulated trait(s) in the model. The length of vector needs to be equal
to the number of observed traits in the model or 1 if one common missing rate
is applied to all traits. A value has to be given for the markerInfo argument
when a marker is included in the simulation model. This must be an object of
strumMarker class with a data.frame containing hapmap data, which you can
import from Hapmap project website.

❼ Import Hapmap data

To construct a data.frame containing hapmap data, the function im-
portHapmapData() comes in handy. This function imports Hapmap3
Phased data from the wabsite for the specified chromosome number. By
default, ‘CEU’ population is used when the population of your choice is
not specified. In the following example, the chromosome 20 of ‘CEU’
population is imported.

> hap20 = importHapmapData(20)

12

❼ Construct strumMarker

An object of strumMarker is constructed by createStrumMarker() func-
tion. The value of “hapMapData” argument for this function must be a
data.frame containing hapmap data with three required information fields
- rsID, chr, and phys position. In the following example, every 10th SNPs
from the imported hapmap data above are used to construct a strum-

Marker object.

> #hap20snp10 = hap20[(1:10)*10,]

> #save(hap20snp10,file="hap20snp10.Rdata")

> #using locally saved copy

> inHap = system.file("extdata/hap20snp10.Rdata", package = "strum")

> load(file=inHap)

> snpStrumMarker = createStrumMarker(hapMapData=hap20snp10)

Creating strumMarker Done

> #snpStrumMarker

❼ Construct strumSimModel

Now, you can construct an object of strumSimModel by calling cre-
ateSimModel() function. The following example shows a simulation model
using the snpStrumMarker and a common missing rate of 0.1 for the sim-
ulated traits.

> simform =

+ ✬L1 =~ X1 + 2*X2 + 0.5*X3 + <e>

+ L1 ~ aSNP + <p,e>

+ ✬

> mySimModel = createSimModel(formulas = simform,

+ tMissingRate = c(0.1),

+ markerInfo = snpStrumMarker)

Creating strumSimModel Done

> #mySimModel

13

3.2 Simulate data

Given an object of strumSimModel, the data is simulated by the function
simulateStrumData() according to the specified model. There are two optional
arguments, “inData” and “N ”. Note that either “inData” or “N ”, or both must
be specified.

An object of strumData or a data.frame contaning that input data must
be given as the value for “inData” argument when a specific format of the input
data (either family structures or individuals) is desired. This value is also re-
quired when the simulation model contains covariate(s), since covariates are not
simulated. When a particular size of the simulated data is desired, a positive
number needs to given as the value for “N ” argument.

The following example shows the case when the value for “inData” argument
is specified using the myPedData from above. Note that all simulated traits (P1,
P2, p3) will have the missing rate of 0.1.

> mySimData = simulateStrumData(mySimModel, myPedData)

Simulating strumData Done

> #mySimData

This is another example when the value for “N ” argument is specified, with
a simple model without any marker variables.

> simform1 = ✬z1 =~ X1 + 0.8*X2 + 0.5*X3 + y✬

> mySimModel1 = createSimModel(formulas = simform1,

+ defaultError=✬<e>✬)

Creating strumSimModel Done

> #mySimModel1

> mySimData1 = simulateStrumData(mySimModel1, N=150)

Creating strumData Done

Simulating strumData Done

> #mySimData1

3.3 Run analysis with simulated data

As for the strum analysis, you can run a strum analysis by the function call
strum() with simulate data. This is an example with the mySimData1 data.

> testform = ✬z1 =~ X1 + X2 + X3 + y✬

> myTestModel = createStrumModel(formulas = testform, defaultError=✬<e>✬)

> mySimResult = strum(myTestModel, mySimData1)

> #mySimResult

14

4 Ascertainment

This section explains how to specify the ascertainment of the data, a feature
commonly found in family-based studies. That is, pedigrees are selected for
inclusion in a study based upon some criteria for the observed traits. Generally,
pedigrees are collected by first identifying an individual who is affected or has an
extreme phenotype. Such an individual, who causes the pedigree to be sampled,
is known as a proband.

There is an optional argument, “ascertainment”, for both “createStrum-
Model()” and “createSimModel()” functions. Though the names are the same
for both functions, the values are different.

1. The value for createStrumModel()

Charactor stating the name of the column in data file that contains the
indicator variable (1, 0) designating the probands of the pedigrees.

Suppose that “proband” field in the “example.ped” file is a (1, 0) indicator
of proband status for this family data. Then, in the association analy-
sis model above, you would specify the ascertainment argument value as
“proband” for createStrumModel() call as below.

> myAStrumModel = createStrumModel(formulas = formulas,

+ ascertainment="proband")

Creating strumModel Done

> myAStrumModel

Basic properties of the model:

Model Class strumModel

Ascertainment TRUE

List of all variables:

Obs Covariate InEita InY Exogen.

L1 FALSE FALSE TRUE FALSE FALSE

aSNP TRUE TRUE FALSE FALSE NA

P1 TRUE FALSE FALSE TRUE NA

P2 TRUE FALSE FALSE TRUE NA

P3 TRUE FALSE FALSE TRUE NA

Model formulas:

L1 =~ P1 + P2 + P3 + <e>

L1 ~ aSNP + <p,e>

Note that now, the description of the model informs that this model in-
cludes the ascertainment.

15

2. The value for createSimModel()

Function stating the ascertainment criteria of the data. The return value
of the function is composed of two components for each pedigree, allowing
either one of components or both components to be returned as a list.
The first component is a TRUE/FALSE value indicating the ascertainment
status of the pedigree. The second component is a vector of TRUE/FALSE
stating the proband status of each member of the pedigree Please refer to
the reference manual for details.

This is an example when the data is simulated with the ascertainment
using the ’disease’ field in myPedData above.

> aFunction = function(thisFam)

+ {

+ aff = (thisFam$disease == 1)

+ ascertained = any(aff)

+ proband = rep(FALSE, nrow(thisFam))

+ if(ascertained)

+ pPos = which.min(thisFam$disease == 1)

+ proband[pPos] = TRUE

+ return(list(aStatus=ascertained, pStatus=proband))

+ }

> myASimModel = createSimModel(formulas = simform,

+ markerInfo = snpStrumMarker,

+ ascertainment = aFunction)

Creating strumSimModel Done

> #myASimModel

> myASimData = simulateStrumData(myASimModel, myPedData)

Simulating strumData Done

> #myASimData

16

5 SessionInfo

> sessionInfo();

R version 3.0.2 (2013-09-25)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] strum_0.1 pedigree_1.4 reshape_0.8.4 plyr_1.8

[5] HaploSim_1.8.4 Matrix_1.0-14 lattice_0.20-23

loaded via a namespace (and not attached):

[1] grid_3.0.2 MASS_7.3-29 tools_3.0.2

References

Morris, N.J., Elston, R.C., & Stein, C.M. (2010). A framework for structural
equation models in general pedigrees. Human heredity, 70, 278–286.

17

