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Abstract

This software fits a multivariate proportional hazards model to interval
censored event data by a Bayesian approach. Right and interval censored
data and a lognormal or gamma frailty term can be fitted. An example is
studied and the output analysed.

1 The basic model

The data, based on a sample of size n, consists of the triple (ti, δi,xi), i = 1, . . . , n
where ti is the time on study for subject i, δi is the event indicator for subject
i (δi = 1 if event has occurred, δi = 0 if the observation is right censored), xi is
the r-dimensional vector of covariate values for subject i.
The likelihood contribution of the i-th single observation is given by

λ0(ti|xi)δiS(ti|xi) = exp
{

δi[h(ti) + β′x]− eβ′x

∫ ti

0

exp[h(s)]ds

}
where h(s) = ln[λ0(s)]. The infinite dimensional problem gets to a finite di-
mensional one by partitioning the time axis [0,∞[ into disjoint intervals Ik =
[θk−1, θk[ for k = 1, ...,K where θk is the time of the k-th event and θ0 = 0.
The largest event time observed is θK . The function h is approximated by cubic
B-splines
The priors for the components of the vector β will be multivariate normal dis-
tributed with mean 0 and a precision with a flat Wishart prior. The prior for
the coefficients hk of the function h will be a autoregressive process of order
one with prior information on smoothness (Bayesian P-splines, see [4]). Writing
hk = h(θk), k = 1, . . . ,K the first order process is defined as hk = hk−1 + εk

with εk ∼ N(0, σ2
k) and h0 ∼ N(0, σ2

0), where h0 and εk, k = 1, . . . ,K are
pairwise independent. The variances are chosen as σ2

k = ∆kσ2
1 and ∆k depends

on the interval lengths. The inverse of the covariance matrix, Σ−1, is a band-
matrix of bandwidth one. The parameters 1

σ2
0

= τ0 and 1
σ2
1

= τ1 are treated
as hyperparameters with flat gamma priors setting both parameters equal to
0.001.
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2 Sampling procedure

Sampling for the parameter vector

Aitkin and Clayton [1] pointed out that the proportional hazards model can
interpreted as a generalized linear model.
Gamerman [2] describes how one can effectively sample the vector of covariates
in generalizes linear mixed models in a block updating step. This is a combina-
tion of the iterated least squares method (IWLS) as it is known in fitting such
models with a Metropolis-Hasting sampling.

Sampling for the baseline hazard

With the given structure of the log baseline hazard function one has to sample
from a Gaussian Markov Random Field (GMRF), see Rue [7] and Knorr Held
and Rue [3].

Sampling for the dispersion parameters

For the dispersion parameters σ2
0 and σ2

1 a flat Gamma prior with rate κ and
shape ν is chosen. This leads to Gamma posteriors.

3 Extensions of the basic model

Data augmentation and a multiplicative frailty model is used to analyze clus-
tered interval censored event data. Data augmentation is used to interfere un-
observed event times. The potential clustering of event times within a statistical
unit is modeled by introducing an unit specific random effect or frailty term into
the proportional hazards model.

4 Example

Meisel et al. [6] present data on the shrinkage of aneurisms associated with cere-
bral arteriovenous malformations (cAVM) after embolization treatment. The
time to a shrinkage of the aneurism to below 50% of the baseline volume was of
interest. Several patients had multiple aneurisms. Each patient was inspected
at a random inspection time obs.t. The censoring variable z was set to one,
if at the inspection time sufficient shrinkage was observed, else the censoring
indicator was set to zero.
Two covariates were considered: the degree of cAMV occlusion by embolization
(dichotomized at 50%, variable mo) and the location of the aneurism, whether
at the midline arteries or at other afferent cerebral arteries, variable lok.
The single aneurisms are not independent because aneurisms within a patient
may shrink in the same way (because the share the same ”environment”). Mul-
tiple aneurisms were observed per patient. This clustering of aneurisms is indi-
cated by the grouping variable gr.
The data is loaded and inspected for the first eleven patients.
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> library(survBayes)

> data(AA.data)

> AA.data[1:11, ]

z mo gr lok t.left t.right
1 0 0 1 1 1.7698630 NA
2 0 1 2 1 0.9972603 NA
3 0 1 2 1 0.9972603 NA
4 0 1 2 1 0.9972603 NA
5 0 0 3 0 1.0712329 NA
6 0 0 3 1 1.0712329 NA
7 0 0 4 1 5.6547945 NA
8 0 0 5 1 1.5780822 NA
9 1 0 5 0 0.0000000 1.578082
10 1 0 5 0 0.0000000 1.578082
11 1 0 5 1 0.0000000 1.578082

The data is analyzed by applying the survBayes algorithm. The fit with
survBayes gives an object which stores all sampled values in the required num-
ber after the burn in. The str function gives a survey over the output. The low
number for the sample is only due to fast checking of the package in the CRAN.
Please choose at least 5000.

> control <- survBayes.control(delta.taylor = 0.3, sigma.lbh.1 = 0.01,

+ rate.sigma.lbh.1 = 0.001, shape.sigma.lbh.1 = 0.001)

> AA.res <- survBayes(Surv(t.left, t.right, z * 3, type = "interval") ~

+ mo + lok + frailty(gr, dist = "gamma"), data = AA.data, burn.in = 0,

+ number.sample = 10, control = control)

> str(AA.res)

List of 7
$ t.where : num [1:51] 0 0.0275 0.0598 0.1299 0.1559 ...
$ beta : mcmc [1:10, 1:2] 0 -0.184 -0.0126 -0.3381 -0.6568 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "beta" "" "" "" ...
.. ..$ : chr [1:2] "mo" "lok"
..- attr(*, "mcpar")= num [1:3] 1 10 1
$ lbh.coef : mcmc [1:10, 1:53] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "lbh.coef" "lbh.coef" "lbh.coef" "lbh.coef" ...
.. ..$ : NULL
..- attr(*, "mcpar")= num [1:3] 1 10 1
$ sigma.lbh : mcmc [1:10, 1:2] 9971638 395945 31306 21100 15055 ...
..- attr(*, "mcpar")= num [1:3] 1 10 1
$ z.cluster : mcmc [1:10, 1:83] 0.1425 1.0597 0.0533 0.4992 0.3672 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "z.cluster" "z.cluster" "z.cluster" "z.cluster" ...
.. ..$ : NULL
..- attr(*, "mcpar")= num [1:3] 1 10 1
$ mu.cluster :Class 'mcmc' atomic [1:10] 0.804 0.738 0.634 0.502 0.502 ...
.. ..- attr(*, "mcpar")= num [1:3] 1 10 1
$ m.h.performance: num [1:3] 8 0 9
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The components are, if appropriate,

t.where: the time points which were chosen; the range of the Kaplan Meier
estimate is divided by the number of grid points and transformed back to
the time axis;

beta: samples of the vector of covariates;

cov.beta: samples of the covariance matrix of beta;

lbh.coef: samples of the log baseline hazard coefficients at the grid points;

sigma.lbh: samples of sigma.lbh.0 and sigma.lbh.1;

alpha.cluster: samples of the frailty values;

sigma.cluster: samples of frailty variance;

z.cluster: samples of the frailty values;

mu.cluster: samples of the rate and shape of the gamma prior;

m.h.performance: number of the successful performances of the Metropolis-
Hastings step for beta, lbh and alpha.cluster or mu.cluster

The convergence is diagnosed by mean of CODA. The Raftery-Lewis diagnostic
gives a good description of the convergence, see [5].

> raftery.diag(AA.res$beta)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

> raftery.diag(AA.res$sigma.lbh)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

> raftery.diag(AA.res$z.cluster)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

> raftery.diag(AA.res$mu.cluster)
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Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

This indicates that the sample size should be increased to at least 60000 sam-
ples.
The estimated coefficients and cumulative baseline hazard can be used to esti-
mated and plot group specific survival curves.

> beta.est <- apply(AA.res$beta, 2, mean)

> baseline.hazard <- survBayes.baseline.hazard(AA.res, start = 1,

+ type = "cum")

> time <- baseline.hazard$time

> Lambda0 <- baseline.hazard$cum.base.haz

> surv.base <- exp(-Lambda0)

> plot(time, surv.base, type = "l", xlab = "time [years]", ylab = "Survival function",

+ lty = 1, ylim = c(0, 1))

> lines(time, surv.base^exp(beta.est["mo"]), type = "l", lty = 2)

> lines(time, surv.base^exp(beta.est["lok"]), type = "l", lty = 3)

> lines(time, surv.base^exp(sum(beta.est[c("mo", "lok")])), type = "l",

+ lty = 5)

> leg.names <- c("mo=0, lok=0", "mo=1, lok=0", "mo=0, lok=1", "mo=1, lok=1")

> legend(4, 1, leg.names, lty = c(1, 2, 3, 5), bty = "n")
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