
ESGtoolkit, tools for Economic Scenarios
Generation

Thierry Moudiki
13th June 2014

Contents

1 Overview 1
1.1 Context . 1
1.2 simdiff . 2
1.3 simshocks . 5

2 Examples 6
2.1 Generating dependent shocks with simshocks 6
2.2 Example with simdiff and simshocks : Option pricing under

the Bates model (SVJD) for equity 9

1 Overview

1.1 Context

An Economic Scenario Generator (ESG) is a tool for projection of plausible fu-
ture paths for an insurer’s financial risk factors. It helps her in pricing her
insurance products, and in assessing her current and future solvency.

Two types of ESGs are generally needed, for different purposes : a real-
world ESG, and a a market consistent ESG.

The aim of a real-world ESG is to produce projections of risk factors, whose
distribution patterns are coherent with the past distribution of those risk
factors. Real-world scenarios are mainly used for the valuation of solvency
capital requirements.

A market consistent ESG shall produce projections of risk factors that are
coherent with market prices observed at the valuation date. Market consist-
ent scenarios are mainly used for the best estimate valuation of the technical
reserves.

Hence, in real-world simulations the historical probability is used and in
market consistent simulations, the projection of risk factors is made in a risk-
neutral probability. A risk-neutral probability measure is a measure under
which the discounted prices of assets are martingales.

A simple example about transitioning from a simulation under the histor-
ical probability to a simulation under a risk-neutral probability can be made

1

ESGtoolkit, tools for Economic Scenario Generation • June 2014

by using the Black-Scholes model, a geometric Brownian motion. In real-
world simulations, the asset evolves according to the following SDE1 (with a
drift µ, a volatility σ, and (W(t))t≥0 being a standard brownian motion) :

dS(t) = µS(t)dt + σS(t)dW(t) (1)

Let r be a constant risk-free rate. e−rtS(t), the discounted price of S(t), will
be a martingale if

d(e−rtS(t)) (2)

is driftless.

Applying Ito’s formula to e−rtS(t), we have :

d(e−rtS(t)) = −re−rtS(t)dt + e−rtdS(t)− 1
2

.0 < dS(t), dS(t) > (3)

= −re−rtS(t)dt + e−rtµS(t)dt + e−rtS(t)σdW(t) (4)
= e−rtS(t) [(µ− r)dt + σdW(t)] (5)

Thus, the drift vanishes iff µ = r, that is, if the asset with price S(t) rewards
the risk-free rate r. Under this martingale probability measure, the asset price
can thus be re-written as :

dS(t) = rS(t)dt + σS(t)dW∗(t) (6)

Where (W∗(t))t≥0 is a standard brownian motion under the risk-neutral meas-
ure.

ESGtoolkit does not directly provide multiple asset models, but instead,
some building blocks for constructing a variety of these.

Two main functions are therefore provided : simshocks, simdiff.

In this vignette, I introduce these functions, and present how they could
be used in building other models. Others tools for statistical testing and visu-
alization are introduced as well.

As a reminder : there are no perfect models, and the more sophisticated
doesn’t necessarily mean the most judicious. To avoid possible disasters, it’s
important to know precisely the strengths and weaknesses of a model before
using it.

1.2 simdiff

Let (W(t))t≥0 be a standard brownian motion. simdiff makes simulations
of a diffusion process (X(t))t≥0, which evolves according to the following
equation :

dX(t) = µ(t, X(t))dt + σ(t, X(t))dW(t) + γ(t, X(t−), J)dN(t) (7)

1Stochastic Differential Equation

2

ESGtoolkit, tools for Economic Scenario Generation • June 2014

Actually, this is just a generic formulation of the models from simdiff.
Not all the parts of this expression are required all the times, but only
σ(t, X(t))dW(t).

The part γ(t, X(t−), J)dN(t) in particular, is optional, and not available
for all the models. It contains jumps of the process, that occur according to a
homogeneous Poisson process (N(t))t≥0 with intensity λ. The time elasped
between two jumping times follows an exponential ε(λ) distribution; and the
number of jumps of the process on [0, t[follows a Poisson distribution P(λt).
The magnitude of the jumps is controlled by J.

Let’s make this clearer now. The basic building blocks models implemen-
ted in simdiff, are :

• An Orsnstein-Uhlenbeck process; for simdiff used with parameter
model = "OU", and parameters theta1, theta2 and theta3 provided (if
theta1 or theta2 are not necessary for building the model, they are to
be provided and set to 0) :

µ(t, X(t)) = (θ1 − θ2X(t))
σ(t, X(t)) = θ3

• A Cox-Ingersoll-Ross process; for simdiff used with parameter
model = "CIR", and parameters theta1, theta2, theta3 provided (if
theta1 or theta2 are not necessary for building the model, they are to
be provided and set to 0) :

µ(t, X(t)) = (θ1 − θ2X(t))

σ(t, X(t)) = θ3

√
X(t)

• A Geometric Brownian motion, or ’augmented’ versions; for simdiff

used with parameter model = "GBM", and parameters theta1, theta2,
theta3 provided. For the sake of clarity, the argument model is set to
"GBM", but not only the Geometric Brownian motion with constant para-
meters is available. We can have :

A Geometric Brownian Motion

µ(t, X(t)) = θ1X(t)
σ(t, X(t)) = θ2X(t)

A modified Geometric Brownian Motion, with time-varying drift and
constant volatility

3

ESGtoolkit, tools for Economic Scenario Generation • June 2014

µ(t, X(t)) = θ1(t)X(t)
σ(t, X(t)) = θ2X(t)

A modified Geometric Brownian Motion, with time-varying volatility
and constant drift

µ(t, X(t)) = θ1X(t)
σ(t, X(t)) = θ2(t)X(t)

It’s technically possible to have both θ1 and θ2 varying with time (both
provided as multivariate time series). But it’s not advisable to do this, unless
you know exactly why you’re doing it.

Jumps are available only for model = "GBM". The jumps arising from the
Poisson process have a common magnitude J = 1 + Z, whose distribution ν
is either lognormal or double-exponential. Between two jumps, the process
behaves like a Geometric Brownian motion, and at jumping times, it increases
by Z%.

For lognormal jumps (Merton model), the distribution ν of J is :

log(J) = log(1 + Z) ∼ N (log(1 + µZ)−
σ2

Z
2

, σ2
Z) (8)

For double exponential jumps (Kou’s model), the distribution ν of J is :

log(J) = log(1 + Z) ∼ ν(dy) = p
1

ηu
e−

1
ηu 11y>0 + (1− p)

1
ηd

e
1

ηd 11y<0 (9)

Hence for taking jumps into account when model = "GBM", optional para-
meters are to be provided to simdiff, namely :

• lambda the intensity of the Poisson process

• mu.z the average jump magnitude (only for lognormal jumps)

• sigma.z the standard deviation of the jump magnitude (only for lognor-
mal jumps)

• p the probability of positive jumps (only for double exponential jumps)

• eta up the mean of positive jumps (only for double exponential jumps)

• eta down the mean of negative jumps (only for double exponential
jumps)

4

ESGtoolkit, tools for Economic Scenario Generation • June 2014

simdiff’s core loops are written in C++ via Rcpp, for an enhanced per-
formance. Currently, for the simulation of the Ornstein-Uhlenbeck process,
with model = "OU", the simulation of a Cox-Ingersoll-Ross process with model = "CIR",
or a geometric brownian motion with model = "GBM", it uses an exact simu-
lation (please see the references for details), which means there’s no discretiz-
ation of the processes.

In simdiff, the user can choose the horizon of the projection and the
sampling frequency (annual, semi-annual, quarterly . . .). The output is a
time series object created by ts() from base R.

For a customized simulation of the ε ∼ N (0, 1) embedded in the SDE
expression via dW(t) = εdt, one can fill simdiff’s parameter eps, with an
output of the function simshocks. simshocks is described in the next section.

1.3 simshocks

simshocks is the complementary function to simdiff, with which you can
simulate custom the ε ∼ N (0, 1) (that we call shocks) embedded into the
diffusion as :

dW(t) = εdt (10)

For the simulation of gaussian increments of a univariate process simshocks
is written in C++ via Rcpp.

When it comes to the simulation of multi-factors models, or the simula-
tion of risk factors with flexible dependence structure, simshocks calls the
underlying function CDVinesim, from the package CDVine. CDVineSim makes
simulations of canonical (C-vine) and D-vine copulas.

Simply put, a copula is a function which gives a multidimensional distri-
bution to given margins. If (X1, . . . , Xd)

T is a random vector with margins of
cumulative distribution functions F1, . . . , Fd, there exists a copula function C,
such that the d-dimensional cumulative distribution function of (X1, . . . , Xd)

T

is :

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (11)

If the marginal distributions F1, . . . , Fd are continuous, then C is unique.

On the other hand, if C is a copula, and F1, . . . , Fd are 1-dimensional cumu-
lative distribution functions, the previous equation defines a joint cumulative
distribution function for (X1, . . . , Xd)

T , with margins F1, . . . , Fd.

Contrarily to the multivariate Gaussian or Student-t copulas, vine copulas
accurately model the dependence in high dimensions. They use the density
functions of bivariate copulas (called pair-copula) to iteratively build a mul-
tivariate density function, which leads to a great flexibility in modeling the
dependence.

simshocks applies inverse standard gaussian cumulative distribution func-
tion to the uniform margins of CDVinesim to obtains gaussian shocks, with
various dependence structures between them.

5

http://cran.r-project.org/web/packages/Rcpp/index.html
http://cran.r-project.org/web/packages/CDVine/index.html

ESGtoolkit, tools for Economic Scenario Generation • June 2014

The package CDVineSim can be used first, to choose the copula, and make
an inference on it. Sometimes, the choice of the relevant copula is also made
with expert knowledge.

2 Examples

2.1 Generating dependent shocks with simshocks

To use simshocks, you need the specify the number of simulations n that you
need, the type of dependence family, and additional parameters, depending
on the copula that you use. For a simulation of Gaussian the copula, the
family is 1 :

library(ESGtoolkit)

Number of simulations

nb <- 1000

Number of risk factors

d <- 2

Number of possible combinations of the risk factors (here : 1)

dd <- d * (d - 1)/2

Family : Gaussian copula

fam1 <- rep(1, dd)

Correlation coefficients between the risk factors (d*(d-1)/2)

par0.1 <- 0.1

par0.2 <- -0.9

The correlation coefficient is provided through the argument par :

set.seed(2)

Simulation of shocks for the d risk factors

s0.par1 <- simshocks(n = nb, horizon = 4, family = fam1, par = par0.1)

s0.par2 <- simshocks(n = nb, horizon = 4, family = fam1, par = par0.2)

You can make a correlation test with esgcortest, to assess whether the
correlation estimate is significantly close to the correlation that you specified,
or not.

If the confidence interval contains the true value at a given confidence
level, then the null hypothesis chosen is not to be rejected at this level.

Use simshocks along with set.seed, so that when the correlation seems
acceptable, you can reproduce the simulation.

6

ESGtoolkit, tools for Economic Scenario Generation • June 2014

Correlation test

esgcortest(s0.par1)

$cor.estimate

Time Series:

Start = 1

End = 4

Frequency = 1

[1] 0.09793 0.04339 0.09855 0.10845

##

$conf.int

Time Series:

Start = 1

End = 4

Frequency = 1

Series 1 Series 2

1 0.03616 0.1590

2 -0.01865 0.1051

3 0.03679 0.1596

4 0.04677 0.1693

These confidence intervals on the estimated correlations can also be visu-
alized with esgplotbands:

test <- esgcortest(s0.par2)

par(mfrow = c(1, 2))

esgplotbands(esgcortest(s0.par1))

esgplotbands(test)

1.0 2.0 3.0 4.0

0.
00

0.
05

0.
10

0.
15

conf. int for the correlations

time

co
nf

. i
nt

. ●

●

●

●

1.0 2.0 3.0 4.0

−
0.

91
0

−
0.

90
0

−
0.

89
0

−
0.

88
0

conf. int for the correlations

time

co
nf

. i
nt

.

●

●

●
●

Now with other types of dependences, namely rotated versions of the
Clayton copula :

7

ESGtoolkit, tools for Economic Scenario Generation • June 2014

Family : Rotated Clayton (180 degrees)

fam2 <- 13

par0.3 <- 2

Family : Rotated Clayton (90 degrees)

fam3 <- 23

par0.4 <- -2

number of simulations

nb <- 200

Simulation of shocks for the d risk factors

s0.par3 <- simshocks(n = nb, horizon = 4, family = fam2, par = par0.3)

s0.par4 <- simshocks(n = nb, horizon = 4, family = fam3, par = par0.4)

There’s a nice function from the package, esgplotshocks, that helps you
in visualizing the dependence between the shocks (inspired by this blog post)
:

esgplotshocks(s0.par3, s0.par4)

0.0
0.1
0.2
0.3
0.4

−2 0 2
xvar

de
ns

ity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

−2

0

2

−2 0 2
xvar

yv
ar

zvar

●

●

x

y

−2

0

2

0.00.10.20.30.4
density

yv
ar

8

http://rforpublichealth.blogspot.fr/2014/02/ggplot2-cheatsheet-for-visualizing.html

ESGtoolkit, tools for Economic Scenario Generation • June 2014

2.2 Example with simdiff and simshocks : Option pricing un-
der the Bates model (SVJD) for equity

SVJD stands for Stochastic Volatility with Jump Diffusion. In this model, the
volatility of the asset’s price evolves as a CIR process. The price itself is a
Geometric Brownian motion between jumps, arising from a Poisson process.
Here, we consider jumps with lognormal magnitude.

The model

dS(t) = (r− λµZ)S(t)dt +
√

v(t)S(t)dW(t)(1) + (J − 1)dN(t)

dv(t) = κ(θ − v(t))dt + σ
√

v(t)dW(t)(2)

dW(t)(1)dW(t)(2) = ρdt

We use the package fOptions to compute options’ prices from market
implied volatility :

library(fOptions)

The parameters of the Bates model are :

Spot variance

V0 <- 0.1372

mean-reversion speed

kappa <- 9.511/100

long-term variance

theta <- 0.0285

volatility of volatility

volvol <- 0.801/100

Correlation between stoch. vol and prices

rho <- -0.5483

Intensity of the Poisson process

lambda <- 0.3635

mean and vol of the merton jumps diffusion

mu.J <- -0.2459

sigma.J <- 0.2547/100

m <- exp(mu.J + 0.5 * (sigma.J^2)) - 1

Initial stock price

S0 <- 4468.17

Initial short rate

r0 <- 0.0357

Now we make 300 simulations of shocks and diffusions, on a weekly basis,
from today, up to year 1. The shocks are simulated by using a variance reduc-
tion technique : antithetic variates (argument method).

n <- 300

horizon <- 1

9

ESGtoolkit, tools for Economic Scenario Generation • June 2014

freq <- "weekly"

Simulation of shocks, with antithetic variates

shocks <- simshocks(n = n, horizon = horizon, frequency = freq, method = "anti",

family = 1, par = rho)

Vol simulation

sim.vol <- simdiff(n = n, horizon = horizon, frequency = freq, model = "CIR",

x0 = V0, theta1 = kappa * theta, theta2 = kappa, theta3 = volvol, eps = shocks[[1]])

Plotting the volatility (only for a low number of simulations)

esgplotts(sim.vol)

0.120

0.125

0.130

0.135

0.140

0.00 0.25 0.50 0.75 1.00
Maturity

V
al

ue
s

Finally, the price’s simulation takes exactly the same parameters n, horizon, frequency

as simshocks and simdiff, and the volatility is embedded through theta2.

prices simulation

sim.price <- simdiff(n = n, horizon = horizon, frequency = freq, model = "GBM",

x0 = S0, theta1 = r0 - lambda * m, theta2 = sim.vol, lambda = lambda, mu.z = mu.J,

sigma.z = sigma.J, eps = shocks[[2]])

10

ESGtoolkit, tools for Economic Scenario Generation • June 2014

We can clearly see the prices jumping with matplot. But esgplotbands,
offering a view of the paths by percentiles, will be more useful for thousands
of simulations :

par(mfrow = c(2, 1))

matplot(time(sim.price), sim.price, type = "l", main = "with matplot")

esgplotbands(sim.price, main = "with esgplotbands", xlab = "time", ylab = "values")

0.0 0.2 0.4 0.6 0.8 1.0

20
00

40
00

60
00

with matplot

time(sim.price)

si
m

.p
ric

e

0.0 0.2 0.4 0.6 0.8 1.0

20
00

40
00

60
00

with esgplotbands

time

va
lu

es

Now, we would like to verify the convergence of the estimated discounted
prices to the initial asset price :

1
N

N

∑
i=1

e−rTS(i)
T −→ E[e−rTST] = S0 (12)

where N is the number of simulations, r is the constant risk free rate, and
T is a maturity of 2 weeks.

Discounted Monte Carlo price

as.numeric(esgmcprices(r0, sim.price, 2/52))

[1] 4456

11

ESGtoolkit, tools for Economic Scenario Generation • June 2014

Inital price

S0

[1] 4468

pct. difference

as.numeric((esgmcprices(r0, sim.price, 2/52)/S0 - 1) * 100)

[1] -0.2612

One would also want to see how fast is the convergence towards S0 :

convergence of the discounted price

esgmccv(r0, sim.price, 2/52, main = "Convergence towards the initial \n asset price")

0 50 100 150 200 250 300

40
00

45
00

50
00

Convergence towards the initial
 asset price

number of simulations

m
on

te
 c

ar
lo

 e
st

im
. p

ric
e

esgmcprices and esgmccv give information about the mean, but a statist-
ical test gives more information.

martingaletest.sim.price <- esgmartingaletest(r = r0, X = sim.price, p0 = S0)

esgmartingaletest computes for each T, a Student’s t-test of

H0 : E[e−rTST − S0] = 0

versus the alternative hypothesis that the mean is not 0, at a given confidence
level (default is 95%).

esgmartingaletest also provides p-values, and confidence intervals for
the mean value.

If all the confidence intervals contain 0, then the null hypothesis is not
rejected at the given level, let’s say 95%. Which means that there are less
than 5 chances out of 100 to be wrong by saying that the true mean of the
distribution is 0.

esgplotbands gives a visualization of the confidence intervals, as well as
the average discounted prices.

12

ESGtoolkit, tools for Economic Scenario Generation • June 2014

esgplotbands(martingaletest.sim.price)

0.0 0.2 0.4 0.6 0.8 1.0

−
15

0
−

50
0

50
conf. int.

 for the martingale difference

time

co
nf

. i
nt

.

0.0 0.2 0.4 0.6 0.8 1.0

43
50

44
50

45
50

true (black) vs
 monte carlo (blue) prices

time

pr
ic

es

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●

●

Now, we price a call option under the Bates model :

Option pricing

Strike

K <- 3400

Kts <- ts(matrix(K, nrow(sim.price), ncol(sim.price)), start = start(sim.price),

deltat = deltat(sim.price), end = end(sim.price))

Implied volatility

sigma.imp <- 0.6625

Maturity

maturity <- 2/52

payoff at maturity

payoff <- (sim.price - Kts) * (sim.price > Kts)

payoff <- window(payoff, start = deltat(sim.price), deltat = deltat(sim.price),

names = paste0("Series ", 1:n))

13

ESGtoolkit, tools for Economic Scenario Generation • June 2014

True price

c0 <- GBSOption("c", S = S0, X = K, Time = maturity, r = r0, b = 0, sigma = sigma.imp)

c0@price

[1] 1070

Monte Carlo price

as.numeric(esgmcprices(r = r0, X = payoff, maturity))

[1] 1063

pct. difference

as.numeric((esgmcprices(r = r0, X = payoff, maturity = maturity)/c0@price -

1) * 100)

[1] -0.6772

Convergence towards the option price

esgmccv(r = r0, X = payoff, maturity = maturity, main = "Convergence towards the call \n option price")

0 50 100 150 200 250 300

50
0

10
00

15
00

Convergence towards the call
 option price

number of simulations

m
on

te
 c

ar
lo

 e
st

im
. p

ric
e

14

ESGtoolkit, tools for Economic Scenario Generation • June 2014

References

Bates DS (1996). “Jumps and stochastic volatility: Exchange rate processes
implicit in deutsche mark options.” Review of financial studies, 9(1), 69–107.

Black F, Scholes M (1973). “The pricing of options and corporate liabilities.”
The journal of political economy, pp. 637–654.

Brechmann EC, Czado C (2012). “Risk management with high-dimensional
vine copulas: An analysis of the Euro Stoxx 50.”

Brechmann EC, Schepsmeier U (2013). “Modeling dependence with C-and
D-vine copulas: The R-package CDVine.” Journal of Statistical Software, 5(3),
1–27.

Brigo D, Mercurio F (2006). Interest rate models-theory and practice: with smile,
inflation and credit. Springer.

Cox JC, Ingersoll Jr JE, Ross SA (1985). “A theory of the term structure of
interest rates.” Econometrica: Journal of the Econometric Society, pp. 385–407.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ integration.”
Journal of Statistical Software, 40(8), 1–18.

Glasserman P (2004). Monte Carlo methods in financial engineering, volume 53.
Springer.

Iacus SM (2008). Simulation and inference for stochastic differential equations: with
R examples. Springer.

Kou SG (2002). “A jump-diffusion model for option pricing.” Management
science, 48(8), 1086–1101.

Merton RC (1976). “Option pricing when underlying stock returns are discon-
tinuous.” Journal of financial economics, 3(1), 125–144.

Uhlenbeck GE, Ornstein LS (1930). “On the theory of the Brownian motion.”
Physical review, 36(5), 823.

Vasicek O (1977). “An equilibrium characterization of the term structure.”
Journal of financial economics, 5(2), 177–188.

Wickham H (2009). ggplot2: elegant graphics for data analysis. Springer.

15

	Overview
	Context
	simdiff
	simshocks

	Examples
	Generating dependent shocks with simshocks
	Example with simdiff and simshocks : Option pricing under the Bates model (SVJD) for equity

