

PBSadmb 0.65: User’s Guide

Jon T. Schnute, Rowan Haigh, and Alex Couture-Beil

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2013

User’s Guide Formatted as a
Canadian Technical Report of
Fisheries and Aquatic Sciences

 Her Majesty the Queen in Right of Canada, 2013

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: May 6, 2013

Correct citation for this publication:

Schnute, J.T., Haigh, R., and Couture-Beil, A. 2013. PBSadmb 0.65: user’s guide formatted as a

Canadian Technical Report of Fisheries and Aquatic Sciences: ii + 36 p. Last updated
May 6, 2013

 – i –

TABLE OF CONTENTS

Abstract ... ii
Preface ... ii
1. Introduction ... 1
2. Using PBSadmb ... 3
3. The PBSadmb GUI .. 4
4. ADMB in action .. 6
5. R scripts to run ADMB ... 7
Acknowlegements ... 10
Appendix A. Installing PBSadmb .. 12
Appendix B. ADMB scripts .. 15
Appendix C. Detailed PBSadmb documentation ... 15

C.1. Functions in ADMB .. 15
C.2. PBSadmb manual ... 16

LIST OF TABLES

Table 1. The Report Section in vonb.tpl ... 8
Table 2. The report file vonb.rep produced by running vonb.exe 9
Table 3. The R source file vonb.r ... 9

LIST OF FIGURES

Figure 1. PBSadmb Graphical User Interface (GUI) ... 5
Figure 2. Fitted von Bertalanffy growth curve ... 11
Figure 3. Scatter plot of points from the vonb posterior distribution .. 12

 – ii –

ABSTRACT

Schnute, J.T., Haigh, R., and Couture-Beil, A. 2013. PBSadmb 0.65: user’s guide formatted as a

Canadian Technical Report of Fisheries and Aquatic Sciences: ii + 36 p. Last updated
May 6, 2013.
This report describes the R package PBSadmb, an R wrapper for the powerful software

package ADMB (AD Model Builder, http://admb-project.org/) released into the public domain in
2009. The ADMB framework constitutes a remarkably efficient tool for estimating parameters
and their uncertainty, based on complex nonlinear statistical models. Its effectiveness stems
partly from the use of automatic differentiation (AD, also called algorithmic differentiation) to
compute the gradient of an objective function to be minimized. It includes robust algorithms for
modal estimation and Markov chain Monte Carlo (MCMC) sampling from Bayesian posterior
distributions. It also supports other common inference methods, such as asymptotic covariances
and likelihood profiles. With the package PBSadmb, commands to ADMB can be integrated with
R commands in the same script file. We introduce standards that make it possible to preserve
variable names between R scripts and ADMB template files. For example, a single R script can
use ADMB to make an executable file, generate an MCMC sample, and draw a pairs plot of
the results. More generally, PBSadmb allows a user to treat ADMB as just another R application,
with the same interface in all supported operating systems (currently Windows, Linux, or Mac
OS).

Preface

(Eventually, this section should include some colourful history of ADMB.)

http://admb-project.org/�

 – 1 –

User’s Guide to PBSadmb Page 1

User’s Guide to the R Package PBSadmb
by Jon Schnute, Rowan Haigh, and Alex Couture-Beil

Pacific Biological Station, Nanaimo, BC, Canada

1. Introduction

 Perhaps only a small minority of R users know about the powerful software package
ADMB (AD Model Builder, http://admb-project.org/) released into the public domain in 2009. It
provides a remarkably efficient tool for estimating parameters and their uncertainty, based on
complex nonlinear statistical models. Its effectiveness stems partly from the use of automatic
differentiation (AD, also called algorithmic differentiation) to compute the gradient of an
objective function to be minimized. It includes robust algorithms for modal estimation and
Markov chain Monte Carlo (MCMC) sampling from Bayesian posterior distributions. Other
common inference methods, such as asymptotic covariances and likelihood profiles, are also
supported. ADMB allows you to examine your data with any statistical model that has a properly
defined likelihood function or Bayesian posterior. The model can have hundreds or even
thousands of unknown parameters that require estimation.

 Originally, ADMB was developed commercially by its principal author David Fournier
and the company Otter Research Ltd. (http://www.otter-rsch.com/). It quickly gained wide use in
fishery data analyses, although it has potential value in many scientific fields. Thanks to a
generous grant from the Gordon and Betty Moore Foundation (http://www.moore.org/), the
ADMB Project (http://admb-project.org/) acquired rights to the software and began releasing it
to the public domain in 2008. Several releases have now been completed, and many people have
worked hard to make this possible. We thank all of them for their efforts and mention a few
names in the Acknowledgements below. An authoritative history of ADMB remains to be
written, but it would make a very colourful story for an ambitious historian of computer science
who has a lively sense of humour. It involves a cast of remarkable personalities who know how
to develop serious scientific tools while having a great deal of fun. Not by accident, some of the
spin-off packages bear the names of New Zealand wines, such as Coleraine
(http://fish.washington.edu/research/coleraine/) and Awatea (http://code.google.com/p/pbs-
awatea/). Currently, PBSadmb supports ADMB version 10 or higher (we hope!).

 The R software environment easily accommodates external programs. R packages
routinely include C/C++ code, and the packaging system automatically compiles the code for all
supported operating systems. More generally, R can connect to a wide range of software written
independently. For example, the open source program ggobi (http://www.ggobi.org/, “Good
pictures force the unexpected upon us”) allows users to visualize high dimensional data in a
number of creative ways. This software runs independently from R, but the package rggobi
allows R users to think of it as just another R application. Commands in R allow you to do
anything that you could otherwise do with ggobi. To make things work, a user may need to
install ggobi in the operating system of choice before installing the R package rggobi.

http://admb-project.org/�
http://www.otter-rsch.com/�
http://www.moore.org/�
http://admb-project.org/�
http://fish.washington.edu/research/coleraine/�
http://code.google.com/p/pbs-awatea/�
http://code.google.com/p/pbs-awatea/�
http://www.ggobi.org/�

 – 2 –

User’s Guide to PBSadmb Page 2

 ADMB necessarily involves a C++ environment that cannot be entirely masked by R.
The automatic differentiation algorithms, implemented with C++ classes, require a user to
express the posterior or likelihood in C++. The author (Dave Fournier) had the ingenious idea of
making this process as easy as possible with a template that handles most of the annoying
bookkeeping, so that a user need only write code (very similar to R code) that expresses the
model analytically. Program development involves three distinct steps: (1) converting the
template to true C++ code, (2) compiling the C++ code, and (3) linking the resulting object
module to ADMB libraries. The complete cycle makes an executable file that recognizes a
variety of command line arguments. PBSadmb implements these steps with the R commands
convAD (convert to C++), compAD (compile C++), and linkAD (link to libraries). A composite
command makeAD performs all three steps sequentially. Another command runAD runs the
executable file with specified arguments.

 The native interface to ADMB differs slightly among operating systems. For example, a
Windows platform uses DOS batch files, whereas a Linux system uses bash scripts. Although
this doesn’t create any serious problems, it does require a bit of adjustment when moving from
one system to another. The R platform, available on Windows, Linux, and MacOS X, offers a
common interface that appears the same, regardless of the operating system. We have designed
PBSadmb to take advantage of this fact. Consequently, a user who interacts with ADMB via R
sees exactly the same interface on every platform.

PBSadmb allows a user to enter all ADMB commands in an R terminal, rather than a
DOS or bash terminal. Furthermore, because R is now the language of choice, commands to
ADMB can be integrated with R commands in the same script file. We introduce standards that
make it possible to preserve variable names between R scripts and ADMB template files. A
single R script can use ADMB to make an executable file, generate an MCMC sample, and
produce a pairs plot of the results.

 Although PBSadmb has the primary goal of accessing ADMB via R scripts, we also
provide a Graphical User Interface (GUI) that greatly facilitates ADMB model development.
New users may find it particularly helpful for editing code, testing it rapidly, and inspecting
results (such as MCMC simulations). The GUI gives links to help files and examples that
illustrate key aspects of ADMB model development. Use of the GUI is, however, entirely
optional, and experienced users of ADMB and R may confine their applications of PBSadmb
entirely to R script files. They might also find the GUI useful for configuring the software to run
properly.

 The initials ‘PBS’ refer to the Pacific Biological Station, a major fisheries laboratory
operated by Fisheries and Oceans Canada on the Pacific coast in Nanaimo, British Columbia,
Canada (http://www.pac.dfo-mpo.gc.ca/science/facilities-installations/pbs-sbp/index-eng.htm).
We have developed a number of packages for R, each starting with the acronym PBS. Three of
these (PBSmapping, PBSmodelling, and PBSddesolve) existed prior to PBSadmb on the
Comprehensive R Archive Network (CRAN, http://cran.r-project.org/). We use Google Code
web sites to maintain a source code archive for each of our packages. See
http://code.google.com/p/pbs-software/ for links to all of them. In particular,
http://code.google.com/p/pbs-admb/ has the source code and other information about PBSadmb.

http://www.pac.dfo-mpo.gc.ca/science/facilities-installations/pbs-sbp/index-eng.htm�
http://cran.r-project.org/�
http://code.google.com/p/pbs-software/�
http://code.google.com/p/pbs-admb/�

 – 3 –

User’s Guide to PBSadmb Page 3

 Arguably, this package should have been called pbsADMB to put the proper emphasis on
the role of ADMB. We have chosen, however, to preserve the naming style of our other
packages because they tend to be closely linked. For example, PBSadmb uses numerous
functions from PBSmodelling and extends many of the programming goals of that earlier
package. We encourage users to try all of our packages, or at least read their descriptions.

 If you are an R user who wants the freedom to build arbitrarily complex statistical
models, we believe you’ll find this package an invaluable tool. Although ADMB was motivated
by problems in fisheries science, professionals in many other fields (such as economics, finance,
medicine, genetics, physics, and chemistry) will likely be surprised, if not astonished, at its
power. We’ve written this package to help make ADMB transparent, useful, and available to a
much wider audience than its traditional core in fishery science.

2. Using PBSadmb

 To use PBSadmb, you first need to install it properly by the detailed procedure in
Appendix A. As suggested in the introduction, this involves the two R packages PBSadmb and
PBSmodelling, as well as ADMB itself. A C/C++ compiler is also required, which needs
special installation on a Windows platform, but may come automatically as part of Linux or
MacOS X. The GUI also requires a suitable choice of text editor.

 Because this package applies to R, we assume that our readers have at least some
familiarity with R itself and the standard methods of installing packages from the CRAN
repository. If you are new to ADMB, you need to know that a typical project has a file prefix (*)
and three associated files to hold the code (*.tpl), input data (*.dat), and initial parameter
values (*.pin).

 We illustrate the use of ADMB by considering a very simple estimation problem for the
familiar von Bertalanffy growth curve:

(1) 0()[1]iK a t

i iy L e σε− −
∞= − + , where 1, ,= i n .

This formula calculates observed lengths iy from observed ages ia and a vector 0(, , ,)σ∞L K t of
four unknown parameters. The residuals ε i in (1) are assumed to be independent normal random
variables with mean 0 and standard deviation 1. From the density function for a normal
distribution, the negative log likelihood for this model is:

(2) 2
0 1 1

1
2

1
2

(, , , | , , , , ,) log ()
σ

σ σ∞
=

= + −∑

n

n n i i
i

L K t a a y y n y z ,

where the predicted length iz at age ia is

 – 4 –

User’s Guide to PBSadmb Page 4

(3) 0()
0(; , , ,) [1]σ − −

∞ ∞= − iK a t
i iz a L K t L e .

We drop an additive constant in (2) that does not affect the analysis. The notation emphasizes
that we regard as a function of the parameters for fixed values of the data.

 If the ADMB prefix for this project is vonb, then the three text files vonb.tpl,
vonb.dat, vonb.pin would contain, respectively:
• the code for in (2),
• the data (,)i ia y for 1, ,= i n , and
• initial values of the parameters 0(, , ,)σ∞L K t .

This operational framework motivates the scripting language developed in PBSadmb, which
includes the following commands (some mentioned previously):

convAD convert *.tpl to *.cpp,
compAD compile *.cpp to a binary object,
linkAD link the binary object with ADMB libraries and create an executable file,
makeAD convert, compile, and link to make an executable file,

runAD run an ADMB executable with specified command line arguments,
showArgs show all possible command line arguments for an ADMB executable,
runMC run an ADMB executable in MCMC mode,
plotMC plot the results of an MCMC simulation,

editAD edit text files for the current project in the text editor,
readRep read one of the standard reports generated by an ADMB executable,
startLog start a log file (*.log) of ADMB activity,
appendLog append to a log file of ADMB activity,
cleanAD remove files created by ADMB that tend to proliferate in the working directory,
convOS convert text files to the format for the operating system (Windows or Unix).

 These commands illustrate the functions available in PBSadmb. For a complete list, see
Appendix C.

3. The PBSadmb GUI

 As we have emphasized, PBSadmb principally defines a scripting language for interacting
with ADMB. However, the package ADMB itself is quite complex, and new users sometimes
find it rather intimidating. Even experienced users like us sometimes forget key details needed to
accomplish certain tasks. For this reason we offer a GUI that greatly facilitates ADMB model
development. In our own workshops, we have found it an invaluable tool for educational
purposes.

 The GUI (Figure 1) allows a user to explore all aspects of ADMB model development.
The interface emphasizes four distinct phases:

 – 5 –

User’s Guide to PBSadmb Page 5

• Initialize the package with appropriate paths , check that they make sense, and save them in
a file normally called Adopts.txt.

• Make the executable file for a chosen prefix, with options between “Safe” and “Optimized”
compilation and a choice to have random effects or not.

• Run the executable code with suitable command line arguments, where the “All args” button
shows all available arguments. The interface gives particular support for generating MCMC
samples and likelihood profiles. Turn off “Verbose” while producing MCMC samples.

• Inspect the Output by “View”ing various reports or “Import”ing them into the R working
environment. As mentioned earlier, we give special support to MCMC samples with plots
that allow a user to inspect the sampled chain. The widgets “Thin and “Var” (for
“Variables”) enable a user to thin the current chain and select variables for plotting.

Figure 1. The graphical user interface (GUI) in PBSadmb, generated by the R command admb()
on a Windows platform. The window makes use of notebook

 tabs: from left to right –
Setup, Make, Run, and Output.

 – 6 –

User’s Guide to PBSadmb Page 6

 Buttons labelled “>” in the “Initialize” and “Make” sections allow a user to browse for
available choices. Text boxes in the “Make” section show the times required for converting
(row 1) compiling (row 2), and linking (row 3). The R function proc.time reports the ‘user
time’ and ‘system time’, as well as the elapsed time, and these correspond to the three columns
in the interface. Similarly, text boxes in the “Run” section show the run times.

 Experienced ADMB users know that ADMB leaves many “footprints” as files in the
current working directory. The interface gives you “Clean” buttons to help clean them up. To
make things easy, each “Clean” button activates a second GUI that displays potential files
associated with the project prefix, as well as other debris files spawned by ADMB. The user can
fine-tune the selection using the “Select” and “Deselect” buttons. When the “Clean” button is
pressed, a final prompting GUI pops up to confirm deletion of the selected files. Once the files
have been deleted, the Clean window remains and the user can choose another prefix (by typing
manually or pressing the selection button “>”) AND hitting the “Refresh” button. This causes the
GUI to rebuild itself with files having the newly selected prefix. If no additional files are
apparent, the Clean window disappears. Files with suffixes .tpl, .dat, .pin, .r, and .pdf are
never picked for potential deletion. Be careful when cleaning; for example don’t delete an output
file until you’re sure you’re ready to do so.

 After you’ve successfully installed PBSadmb, we encourage you to experiment with the
GUI. You can quickly see the functionality available in the main menu items. <Edit> allows you
to edit the main project files, and <View> displays the output files. <Examples> copies various
examples (discussed below) into your working directory. <Package> shows the R code for this
package and the Window description file used to create the GUI in Figure 1. <Help> points to
manuals in the package, online resources, and this User’s Guide.

4. ADMB in action

 If you’re like us, whenever you install a software package, you immediately want to see it
do something. PBSadmb includes a number of examples that teach new users (and remind
experienced users) how to write, test, and implement an ADMB template. To see them click
<Examples> on the GUI menu. If you click one of them (the file prefix), the program will load
all related files into your current working directory. Typically, these have the suffixes
• .tpl – the ADMB template file;
• .dat – the data used for this template;
• .pin – initial values for the parameter estimates;
• .r – R code that can be sourced to obtain an extended analysis using both ADMB and R;
• .pdf – documentation for this example.

 When the GUI copies text files to the working directory, they automatically get converted
(via the function convOS) to the correct format for the operating system, with line endings
<CR><LF> in Windows and <LF> in Unix. Sometimes ADMB fails when the input files have a
format inappropriate for the OS. (We encountered this problem with the ADMB command
tpl2rem, called by our function convAD.) If you move files across platforms, remember that

 – 7 –

User’s Guide to PBSadmb Page 7

conversion might be necessary. Linux users probably have the native OS commands todos and
fromdos for this purpose. Windows users can get similar utilities from the Internet.

 PBSadmb includes the examples listed below. We encourage new users to focus
particularly on vonb.

simple, adapted from an example in the ADMB manual, codes the likelihood for regressing a
vector y on a vector x. Take special note of how code is written for the four SECTIONs (DATA,
PARAMETER, PROCEDURE, REPORT). Values initialized in the DATA_SECTION come
from simple.dat, and values initialized in the PARAMETER_SECTION come from
simple.pin.

simple_mc, a variant of simple, can give a Bayesian posterior sample of the parameters. The
GUI allows you to perform a run with “MCMC” options (the number of simulations and the
thinning frequency). You can then view results visually with plots generated from the “Output”
section of the GUI.

simple_pbs, a variant of simple_mc, has a REPORT_SECTION written explicitly for
PBSadmb to ensure that variable names in R code match those from ADMB. In this case, the file
simple_pbs.r performs four tasks:
• making the executable file simple_pbs.exe (in Windows) or simple_pbs (in Linux)

from simple_pbs.tpl,
• running the executable file,
• loading the data from simple_pbs.rep into R, while preserving variable names, and
• producing a standard regression plot for the data exported imported from simple_pbs.rep.

vonb, similar to simple_pbs, implements the estimation problem posed by equations (1)–(3)
in Section 2. It can also generate a likelihood profile for the parameter Linf, renamed for this
purpose as VonBLinf. In this case, ADMB generates a file named VonBLinf.plt, with the
parameter name prefix, not the prefix vonb.

catage, taken from ADMB web sites, implements a more complex model designed for
estimating biological parameters from fishery data on catch and age structure. In the case, the
code allows a user to compute a likelihood profile for the predicted biomass pred_B.

pheno, also taken from ADMB web sites, implements a model with the “random effects”
feature. The lines declaring a random_effects_vector play a role similar to init_vector
in earlier examples, except that the estimation method for random effects variables works
differently (and much more slowly). The file pheno.pin includes initial values for the two
random effects vectors declared in pheno.tpl.

5. R scripts to run ADMB

 The examples simple_pbs and vonb both contain R files (*.r) that illustrate the use of
R scripts to code ADMB analyses in R. We focus here on the vonb example. Table 1 shows the

 – 8 –

User’s Guide to PBSadmb Page 8

Report Section in the model template. It writes variable names (preceded by $) and variable
values. Running the executable file produces the report file vonb.rep listed in Table 2. This file
has “PBS format”, defined in the package PBSmodelling. Think of it as an R list object with
named components.

 Once you understand the relationship between the Report Section in Table 1 and the
report file in Table 2, examine the R code in Table 3. It produces the plot in Figure 2, based
entirely on data exported from the ADMB model. The functions readList and unpackList
from PBSmodelling produce R variables with the same names as corresponding variables in
the template file, given the structure of the Report Section in Table 1. This technique represents a
standard in PBSadmb for writing ADMB template code to ensure variables with identical names
and values in the R environment. Just write the Report Section to export both names and values,
as illustrated in Table 1.

Table 1. The Report Section in vonb.tpl. It generates a report file vonb.rep that contains
both variable names and values for easy import into the R environment. This technique ensures
variables with common names and values in both ADMB and R.

REPORT_SECTION
 report << "$Linf" << endl;
 report << Linf << endl;
 report << "$K" << endl;
 report << K << endl;
 report << "$t0" << endl;
 report << t0 << endl;
 report << "$sigma" << endl;
 report << sigma << endl;
 report << "$fval" << endl;
 report << fval << endl;
 report << "$age" << endl;
 report << age << endl;
 report << "$y" << endl;
 report << y << endl;
 report << "$ypred" << endl;
 report << ypred << endl;
 report << "$mcnames" << endl;
 report << "Linf K t0 sigma LK fval" << endl;
 report << "$mcest" << endl;
 report << Linf << " " << K << " " << t0 << " " << sigma << " "
 << LK << " " << fval << endl;

 – 9 –

User’s Guide to PBSadmb Page 9

Table 2. The report file vonb.rep produced by running vonb.exe. To fit in the space available
on this page, the vectors y and ypred have been truncated. The file represents an R list with
named components.

$Linf
57.2689
$K
0.164044
$t0
0.152865
$sigma
0.492146
$fval
-3.34367
$age
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
$y
 7.36 14.3 21.8 27.6 31.5 35.3 39 41.1 43.8 45.1 ...
$ypred
 7.43029 14.9707 21.3702 26.8015 31.4111 35.3233 ...
$mcnames
Linf K t0 sigma LK fval
$mcest
57.2689 0.164044 0.152865 0.492146 9.39464 -3.34367

Table 3. The R source file vonb.r. In the R console, the command source("vonb.r")
initializes PBSadmb from a file Adopts.txt (presumably available and correct), makes
vonb.exe from vonb.tpl, generates the plot in Figure 2, and compares results computed
independently by ADMB and R.

Initialize
require(PBSmodelling); require(PBSadmb); readADopts("Adopts.txt")

Make and run "vonb.exe"
makeAD("vonb"); runAD("vonb");

Read and unpack the report;
i.e., create R variables with the same names used in "vonb.tpl"
vonb <- readList("vonb.rep"); unpackList(vonb);

Plot the data
plot(age,y); lines(age,ypred,col="red",lwd=2);

Check the calculations in R
ypredR <- Linf*(1-exp(-K*(age-t0)));
nobs <- length(age);
fvalR <- nobs*log(sigma) + sum((ypredR-y)^2)/(2.0*sigma^2)

cat("Functions values (ADMB & R):\n");
cat(fval," ",fvalR,"\n")

cat("Predictions (ADMB & R):\n");
cat(ypred,"\n");
cat(ypredR,"\n");

 – 10 –

User’s Guide to PBSadmb Page 10

 The code in Table 3 can be supplemented by two simple commands:
> runMC("vonb",100000,100)
> plotMC("vonb")

to give the Bayesian posterior scatter plot shown in Figure 3. The first line runs 100,000
simulations, thinning to keep only 1 of every 100 results. The second line plots the 1,000 points
that result from this calculation. The following lines from the Report Section (Table 1) play a
key role in producing Figure 3:
report << "$mcnames" << endl;
report << "Linf K t0 sigma LK fval" << endl;
report << "$mcest" << endl;
report << Linf << " " << K << " " << t0 << " " << sigma << " "
 << LK << " " << fval << endl;

by communicating the names of the variables preserved in the MCMC simulation ($mcnames)
and their values at the posterior mode ($mcest). These provide the graph with variable names
along the diagonal and coordinates of the mode, shown as a red point corresponding to the
minimum (fval).

 The results in Figure 3 can also be obtained directly from the GUI. Furthermore, plotMC
can also draw a variety of plots, as indicated by the five coloured buttons along the bottom line
of the GUI. Try them!

Acknowlegements

 Our intrepid programmer, Alex Couture-Beil, greatly assisted the development of
PBSadmb by improving its integration with PBSmodelling. In some cases, this meant changing
PBSmodelling to enhance support for external packages. We thank all members of the ADMB
community for their efforts on the open source project, particularly Dave Fournier, John Sibert,
Mark Maunder, and Johnoel Ancheta. Ian Taylor helped us experiment with early conversions of
PBSadmb from Windows to Linux. Saang-Yuan Hyun conducted tests and made a number of
helpful suggestions. Andy Edwards generously contributed funding to support programming
expenses.

 – 11 –

User’s Guide to PBSadmb Page 11

Figure 2. Plot of data points and a fitted von Bertalanffy growth curve, obtained by sourcing the
R code in Table 3. The data portrayed here come entirely from the ADMB model. The source
code compares these numbers with independent calculations in R.

 – 12 –

User’s Guide to PBSadmb Page 12

Figure 3. Scatter plot of 1,000 points from the vonb posterior distribution, generated by the code
in vonb.r and the two additional commands: runMC("vonb",100000,100);
plotMC("vonb"). The red point indicates the posterior mode, where fval is minimized. The
variables labelled Linf, K, t0, sigma, LK, and fval ∞L represent , K, 0t , σ , the
product ∞L K , and , respectively.

Appendix A. Installing PBSadmb

 As for most R packages, installation of PBSadmb is fairly easy. Unfortunately, this one
requires other software as well, so please be patient while going through all the required steps.
Essentially, you need to install R, PBSmodelling, PBSadmb, a C/C++ compiler (which
normally comes installed on a Unix platform), and a text editor suitable for writing templates and

 – 13 –

User’s Guide to PBSadmb Page 13

viewing reports. Then you need to run R, load PBSadmb, and give it some configuration
information. At this point, you should have a working version of the interface in Figure 1. Here
are the details.

Step 1. Install the current version of R for your operating system from a package manager or the
CRAN web site http://cran.r-project.org/. For fast downloads, choose a mirror near you. We
assume that you have enough familiarity with R to do this without difficulty. If you have a
version of R already installed, update it to the current version (R 2.15.3 at the time of revising
this report) if necessary.

Step 2. Run R and install current versions of the packages PBSmodelling and PBSadmb.
Ideally, both of these should be available on CRAN, but we also plan to keep current versions of
Windows binary (*.zip) and package source (*.tar.gz) files on our web sites:

http://code.google.com/p/pbs-modelling/ for PBSmodelling,
http://code.google.com/p/pbs-admb/ for PBSadmb.

In Windows, you can install packages from the R GUI, but on all systems you can use the
command install.packages().

Step 3 (Windows). Next you need to install a suitable C++ compiler for Windows, along with a
corresponding version of the ADMB package. In the current implementation of PBSadmb, we
make this step easy by using the GUI (Figure 1, Setup tab). Select the menu item Install and
then the (only available) choice ADMB and MinGW for Windows. This gives the interactive
window shown below, where the default paths for these two packages lie in the software
directory of the R library for PBSadmb. You can choose other directories with the "..." buttons.

The files used for this installation are archived on our Google code site at
http://code.google.com/p/pbs-admb/downloads/list, as referenced in the file versions.txt.

 Please note that we do not support other compilers such as those by Borland or Microsoft.
Users interested in such a compiler need to ensure that it is properly installed, along with
corresponding version of ADMB. Correct paths must also be specified in the configuration file
(by default ADopts.txt).

http://cran.r-project.org/�
http://code.google.com/p/pbs-modelling/�
http://code.google.com/p/pbs-admb/�
http://code.google.com/p/pbs-admb/downloads/list�

 – 14 –

User’s Guide to PBSadmb Page 14

Step 3 (Linux or MacOS X). If you have a Unix system, hopefully you already have compiler
support for C/C++. To check this, open a bash terminal window and type
g++ --version

Hopefully, you’ll see a result like
g++ (Ubuntu 4.3.3-5ubuntu4) 4.3.3

You also need to know where the executable g++ is located. On our Ubuntu system, it’s in the
directory /usr/bin/, but you may to go to the root directory (cd /) and run a command
(whereis g++) to find the path.

 You also need to obtain ADMB for your system. Start at the "Downloads" page:
http://www.admb-project.org/downloads and look for support for your operating system. The
most reliable method will probably come from downloading the full source distribution and
following the instructions to build and install the package from source. That way, you guarantee
that the binary version of ADMB matches the compiler on your system. You also need to find
the path to the installed version of ADMB.

Step 4. Obtain a good text editor that you can use for code development. On Windows, the
Notepad will work, but much better options are available. Currently, we recommend Notepad++,
available free at http://notepad-plus-plus.org/. Other colleagues have used the Crimson Editor
(http://www.crimsoneditor.com/) or Tinn-R (http://www.sciviews.org/Tinn-R/). Ideally, use an
editor that supports syntax highlighting and displays multiple files in a single window, with tabs
to select among them.

On Linux systems, gedit seems to work reasonably well. In Mac OS X, you might consider
using TextWrangler available free at
http://www.barebones.com/products/textwrangler/download.html.

Step 6. Run R in an empty working directory. Then type these two commands into the R
console:
> require(PBSadmb)
> admb()

The GUI should appear at the Setup tab, probably with a red field Fix and a warning message
about missing files. You can use the GUI to set the three required paths, always using the Unix
syntax in which the forward slash / (rather than the Windows backslash \) separates
subdirectories.

• The “ADM path” should refer to the directory with the installed ADMB binary version.
Typically it includes a few files (such as LICENSE and README.txt) and several
subdirectories, including bin, include, and lib.

• The “GCC Path” should be the path discussed in Step 3. It should include a bin subdirectory
with the file g++.exe.

• The “Editor” should be the complete path to executable file for the editor chosen in Step 4,
such as C:/Utils/Npp/notepad++.exe.

http://www.admb-project.org/downloads�
http://notepad-plus-plus.org/�
http://www.crimsoneditor.com/�
http://www.sciviews.org/Tinn-R/�
http://www.barebones.com/products/textwrangler/download.html�

 – 15 –

User’s Guide to PBSadmb Page 15

You can use the buttons labelled “>” to navigate to the appropriate directories or files.

Step 7. Click the Apply button. If everything is OK, the red Fix should be replaced by a green
OK. If Fix persists, then something essential can’t be found on the paths you’ve specified. Either
you haven’t installed something correctly, or one of the paths is wrong.

 When everything is OK, click Save to save your options in a text file in your current
working directory, with the default name ADopts.txt. You can inspect it with the text editor.
Potentially, you can have multiple options files that point to different text editors or different
compilers (e.g., 32 bit or 64 bit).

In the future, when you issue the R command admb() with this working directory, the file
Adopts.txt will automatically determine the paths in the GUI. Furthermore, you can copy this
file to any other directory from which you want to use PBSadmb. Conceivably, you might use
different option files for projects in different directories.

Appendix B. ADMB scripts

 As we have discussed, ADMB involves the three basic operations convAD, compAD, and
linkAD to convert, compile, and link a template file. These are implemented in ADMB with
scripts written as batch files for Windows or bash files for Unix. The scripts generally have the
file prefix as an argument, along with other arguments that determine compilation options like
safe or optimized code. The Make tab of the PBSadmb GUI has radio buttons that support four
binary alternatives – safe or optimized code, normal or random effects model, create .exe or
.dll, and include debugging symbols or not.

Appendix C. Detailed PBSadmb documentation

C.1. Functions in ADMB

The list of functions in this section comes from the PBSmodelling command
> viewCode("PBSadmb",output=2)

Function Description
admb Start the PBS ADMB GUI
appendLog Append Data to Log File
checkADopts Check ADMB Options for Link Integrity
cleanAD Clean ADMB-Generated Files from the Working Directory
compAD Compile C Code
convAD Convert TPL Code to CPP Code
convOS Convert Text Files to Default OS Format
copyFiles Copy System Files
editAD Edit ADMB Files

 – 16 –

User’s Guide to PBSadmb Page 16

editADfile Edit a File
installADMB Install windows admb binary (for gcc)
linkAD Link Object Files to Make an Executable
makeAD Make an Executable Binary File from a C File
makeADopts Creates the ADMB Options List
plotMC Plot Results of MCMC Simulation
readADopts Reads an ADMB Options List into Memory From a File
readRep Read an ADMB Report into R Memory
runAD Run an Executable Binary File
runMC Run an Executable Binary File in MCMC Mode
setADMBPath Creates the ADMB Options List
showADargs Show All Arguments for an ADMB Executable
startLog Start a Log File
writeADopts Writes the ADMB Options List from Memory to a File

C.2. PBSadmb manual

 The following pages show the standard R manual for PBSadmb, including help pages for
all objects, a table of contents, and an index. This manual also appears on the CRAN web site:
http://cran.r-project.org/web/packages/PBSadmb/index.html. (Or from CRAN’s root, locate
“Packages” and find “PBSmodelling”.)

 For a description of the method used to generate the pages that follow, see Appendix D.2
of the PBSmodelling User’s Guide included with PBSmodelling.

http://cran.r-project.org/web/packages/PBSadmb/index.html�

Package ‘PBSadmb’
May 13, 2013

Version 0.65

Date 2013-05-06

Title ADMB for R Using Scripts or GUI

Author Jon T. Schnute, Rowan Haigh, Alex Couture-Beil

Maintainer Jon T. Schnute<schnutej-dfo@shaw.ca>

Depends R (>= 2.15.0), methods, tcltk, PBSmodelling (>= 2.65)

Description R Support for ADMB (Automatic Differentiation Model Builder)

License GPL (>=2)

URL http://code.google.com/p/pbs-admb/

R topics documented:

admb 18
appendLog 18
atget 19
checkADopts 20
cleanAD 21
compAD 21
convAD 22
convOS 23
copyFiles 24
editAD 25
editADfile 25
installADMB 26
linkAD 26
makeAD 27
makeADopts 28
plotMC 29
readADopts 29
readRep 30
runAD 31
runMC 32
setADMBPath 33
showADargs 33
startLog 34
writeADopts 35

17

http://code.google.com/p/pbs-admb/

18 appendLog

Index 36

admb Start the PBS ADMB GUI

Description

Start up the PBS GUI for running ADMB.

Usage

admb(prefix="", wdf="admbWin.txt", optfile="ADopts.txt")

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

wdf string name of thewindow description filethat creates the GUI.

optfile string name of options file (usually in user’s working directory).

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts

appendLog Append Data to Log File

Description

Append summary information or output to a previously created log file.

Usage

appendLog(prefix, lines)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

lines data to append to’prefix’.log).

Value

No explicit value reurned. Appends data into a log file’prefix’.log.

Note

A wrapper function that can be called from a GUI exists as.win.appendLog.

atget 19

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

startLog, editADfile

atget Get/Print Objects From or Put Objects Into Temporary Work Environment

Description

These functions are wrappers to the PBSmodelling accessor functions that get/print objects from or put objects
into a temporary work environment, in this case.PBSadmbEnv. Working objects includePBSadmb, which acts as
a storage object for some of the functions, and.PBSadmb, which controls the options for the user’s project.

Usage

atget(...)

atcall(...)

atprint(...)

atput(...)

alisp(...)

Arguments

... Foratget through toatput, the only free argument is:
x – name (with or without quotes) of an object to retrieve or store in the temporary environ-
ment; cannot be represented by a variable.
Fixed arguments:penv = parent.frame(), tenv = .PBSadmbEnv

Seetget for additional information.

Foralisp, there is only one fixed argument:
pos = .PBSadmbEnv

All other arguments are available – seelisp

Details

These accessor functions were developed as a response to theCRAN repository policy statement: “Packages
should not modify the global environment (user’s workspace).”

Value

Objects are retrieved from or sent to the temporary working environment to/from the place where the function(s)
are called. Additionally,atcall invisibly returns the object without transferring, which is useful when the object
is a function that the user may wish to call, for example,atcall(myfunc)(), or as arguments in other functions.

Note

Additional wrapper functions to access functions in.PBSadmbEnv are named with the prefix.win (none at the
moment).

20 checkADopts

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

References

CRAN Repository Policy:http://cran.r-project.org/web/packages/policies.html

See Also

tget andlisp in PBSmodelling

checkADopts Check ADMB Options for Link Integrity

Description

Check that.ADopts has all required components and that links point to actual files on the hard drive.

Usage

checkADopts(opts=getOptions(atcall(.PBSadmb)),

check=c("admbpath","gccpath","editor"), warn=TRUE, popup=FALSE)

Arguments

opts ADMB options values.

check components of.ADopts to check.

warn logical: if TRUE, print the results of the check to the R console.

popup logical: if TRUE, display program location problems in a popup GUI.

Value

Boolean value whereTRUE indicates all programs were located in the specified directories andFALSE if at least
one program cannot be found. The returned Boolean scalar hastwo attributes:
warn - named list of test results, and
message - named vector of test results.

Note

A wrapper function that can be called from a GUI exists as.win.checkADopts.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

makeADopts,readADopts

http://cran.r-project.org/web/packages/policies.html

cleanAD 21

cleanAD Clean ADMB-Generated Files from the Working Directory

Description

Detects files in the working directory with the specifiedprefix and removes them all save those with the suffix
.tpl, .dat, and.pin.

Usage

cleanAD(prefix)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

Details

Aside from potential garbage files with the specifiedprefix, other files associated with ADMB are detected. Also
files *.tmp and*.bak are displayed. CallingcleanAD invokes the hidden function.cleanUp, which creates a
GUI menu of the potential garbage files. The user can select whichever files s/he wishes for disposal.

Value

Returns nothing. Invokes a GUI menu of potential garbage files.

Note

A wrapper function that can be called from a GUI exists as.win.cleanAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeAD, runAD, readRep

compAD Compile C Code

Description

Compile C++ code in’prefix’.cpp to create a binary object file’prefix’.o.

Usage

compAD(prefix, raneff=FALSE, safe=TRUE, dll=FALSE, debug=FALSE, logfile=TRUE, add=TRUE, verbose=TRUE)

22 convAD

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

raneff logical: use the random effects model, otherwise use the normal model (currently does not
influence the compile stage, but the argument is preserved here for future development).

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

dll create dll (rather than executable)

debug compile with debug symbols

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function uses the C++ comiler declared in.ADopts. If logfile=TRUE,any errors will appear in’prefix’.log.
If verbose=TRUE, they will appear in the R console.

Value

Invisibly returns the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as.win.compAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, linkAD, makeAD

convAD Convert TPL Code to CPP Code

Description

Convert code in’prefix’.tpl to C++ code in’prefix’.cpp.

Usage

convAD(prefix, raneff=FALSE, safe=TRUE, dll=FALSE, debug=FALSE, logfile=TRUE, add=TRUE, verbose=TRUE)

convOS 23

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

raneff logical: if TRUE, use the random effects model executabletpl2rem.exe, otherwise use the
normal model executabletpl2cpp.exe.

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

dll create dll (rather than executable)

debug compile with debug symbols

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function invokes the ADMB commandtpl2cpp.exe or tpl2rem.exe, if raneff is FALSE or TRUE respec-
tively. If logfile=TRUE, any errors will appear in’prefix’.log. If verbose=TRUE, they will appear in R
console.

Value

Invisibly returns the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as.win.convAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

compAD, linkAD, makeAD

convOS Convert Text Files to Default OS Format

Description

Convert text files to the default format of the operating system.

Usage

convOS(inam, onam = inam, path = getwd())

Arguments

inam string vector of names specifying files to be converted to theformat of the operating system.

onam string vector of name specifying the output files (the default overwrites the input file).

path string specifying the path where the input files are located (defaults to current working direc-
tory).

24 copyFiles

Value

Text file(s) formatted in accordance with standards of the operating system.

Note

This function essentially executes areadLines command followed by a call towriteLines.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

copyFiles, .addQuotes

copyFiles Copy System Files

Description

Copy files with specified prefixes and suffixes from one location to another.

Usage

copyFiles(prefix, suffix=NULL, srcdir=getwd(), dstdir=getwd(), ask=TRUE)

Arguments

prefix string scalar/vector of potential file prefixes.

suffix string scalar/vector of potential file suffixes.

srcdir source directory from which to copy files.

dstdir destination directory to copy files to.

ask logical: if TRUE, popup boxes will prompt the user for every instance that a file will be over-
written.

Details

This function uses R’slist.files andfile.copy functions. The pattern recognition tends not to work when
given the wildcard character*; however, the user may use this character, and the code will interpret it.

Value

Invisibly returns a Boolean vector with names of files that have been copied or not.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo, BC

See Also

editAD

editAD 25

editAD Edit ADMB Files

Description

Edit files associated with specified prefix and suffixes.

Usage

editAD(prefix, suffix=c(".tpl",".cpp",".log"))

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

suffix string scalar/vector specifying one or more suffixes.

Value

Invisibly returns Boolean vector with elementsTRUE if files exist,FALSE if they do not.

Note

A wrapper function that can be called from a GUI exists as.win.editAD.

This function explicitly uses the editor chosen for PBSadmb. PBSmodelling has another functionopenFile that
uses Windows file associations or an application specified with setPBSext.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, makeADopts

editADfile Edit a File

Description

Edit a file using the text editor specified in.ADopts.

Usage

editADfile(fname)

Arguments

fname string name of file in current working directory (or elsewhere if path delimited by/ or \).

Value

Returns Boolean:TRUE if file exists,FALSE if it does not.

26 linkAD

Note

This function explicitly uses the editor chosen for PBSadmb. PBSmodelling has another functionopenFile that
uses Windows file associations or an application specified with setPBSext.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editAD, makeADopts

installADMB Install windows ADMB and MinGW binaries

Description

Only applicable for Windows: Downloads and installs the windows ADMB and MinGW binaries.

A user interface is displayed which allows to select to install either ADMB and/or MinGW for either 32bit or
64bit versions of Windows. Default installation directories are suggested for installation; however, a user may
choose to install the binaries elsewhere.

A file "pathconfig.txt" is saved in the PBSadmb library (underR), which keeps track of the most recently installed
locations.

Usage

installADMB()

linkAD Link Object Files to Make an Executable

Description

Links the binary object file’prefix’.o to the ADMB libraries and produces the executable file’prefix’.exe.

Usage

linkAD(prefix, raneff=FALSE, safe=TRUE, dll=FALSE, debug=FALSE, logfile=TRUE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

raneff logical: use the random effects model, otherwise use the normal model.

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

dll create dll (rather than executable)

debug compile with debug symbols

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

makeAD 27

Details

This function uses the C++ comiler declared in.ADopts. If logfile=TRUE,any errors will appear in’prefix’.log.
If verbose=TRUE, they will appear in the R console.

Value

Invisibly returns the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as.win.linkAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, compAD, makeAD

makeAD Make an Executable Binary File from a C File

Description

Essentially a wrapper function that calls in sequence:convAD, compAD, andlinkAD.

Usage

makeAD(prefix, raneff=FALSE, safe=TRUE, dll=FALSE, debug=FALSE, logfile=TRUE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

raneff logical: use the random effects model, otherwise use the normal model.

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

dll create dll (rather than executable)

debug compile with debug symbols

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function uses the C++ comiler declared in.ADopts. If logfile=TRUE,any errors will appear in’prefix’.log.
If verbose=TRUE, they will appear in the R console.

Value

Returns nothing. The three functions called bymakeAD each return the shell call and its messages.

28 makeADopts

Note

A wrapper function that can be called from a GUI exists as.win.makeAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, compAD, linkAD, cleanAD

makeADopts Creates the ADMB Options List

Description

Creates a global list object detailing the pathways to the ADMB directory, the GCC bin, and the user’s preferred
text editor.

Usage

makeADopts(admbpath, gccpath, editor)

Arguments

admbpath explicit path to the user’s ADMB directory.

gccpath explicit path to the user’s GCC bin (C-compiler) directory.

editor explicit path and program to use for editing text.

Value

Creates a global, hidden list object called.ADopts.

Note

A wrapper function that can be called from a GUI exists as.win.makeADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts, writeADopts

plotMC 29

plotMC Plot Results of MCMC Simulation

Description

Plot results of an ADMB MCMC simulation using various plot methods.

Usage

plotMC(prefix, act="pairs", pthin=1, useCols=NULL)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

act string scalar: action describing plot type (current choices: "pairs", "eggs", "acf", "trace",
and"dens").

pthin numeric scalar indicating interval at which to collect records from the.mc.dat file for plotting.

useCols logical vector indicating which columns of.mc.dat to plot.

Note

A wrapper function that can be called from a GUI exists as.win.plotMC. Use the PBSadmb GUI to explore these
plots easily.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

runMC, showADargs

readADopts Reads an ADMB Options List into Memory From a File

Description

Reads ADMB options into a global, hidden list object called.ADopts from an ASCII text file using
PBSmodelling::readList).

Usage

readADopts(optfile="ADopts.txt")

Arguments

optfile string name of an ASCII text file containing ADMB options information.

Value

No values returned. Reads the ADMB options into the list object .ADopts.

30 readRep

Note

A wrapper function that can be called from a GUI exists as.win.readADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts,writeADopts

readRep Read an ADMB Report into R Memory

Description

Import ADMB-generated report files into R’s memory using thenames of the report files to name the R-objects.

Usage

readRep(prefix, suffix=c(".cor",".rep",".std",".mc.dat"), global=FALSE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

suffix string scalar/vector specifying one or more suffixes.

global logical: if TRUE, save the imported reports as objects to global environmentusing the same
names as the report files.

Details

If the report object is one ofc(".cor", ".std", ".mc.dat"), the report object is a data frame, otherwise it is
a string vector. Multiple report objects are returned as a list of objects. A single report object is returned as the
object itself.

This function attempts to detect the file format from a numberof possibilities. For example, if the file has the
special format recognized by PBSmodelling, then the function returns a list with named components. The example
vonb included with this package shows how to write the template toget consistent variable names between ADMB
and R. See the User’s Guide for complete details.

Value

Invisibly returns the list of report objects. If only one report is imported, a single report object is returned.

Note

A wrapper function that can be called from a GUI exists as.win.readRep.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, .win.viewRep

runAD 31

runAD Run an Executable Binary File

Description

Run the executable binary file’prefix’.exe that was created bymakeAD.

Usage

runAD(prefix, argvec="", logfile=TRUE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

argvec string scalar/vector of arguments appropriate for the executable’prefix’.exe.

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function typically reads the two files’prefix’.dat and’prefix’.pin, although in same cases one or both
of these files may not be necessary.

If logfile=TRUE, output (including error messages, if any) will appear in’prefix’.log. If verbose=TRUE, it
will appear in the R console.

Value

Invisibly returns the results of the shell call.

Note

A wrapper function that can be called from a GUI exists as.win.runAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

runMC, makeAD, cleanAD

32 runMC

runMC Run an Executable Binary File in MCMC Mode

Description

Run the executable binary file’prefix’.exe, created bymakeAD, to generate MCMC simulations.

Usage

runMC(prefix, nsims=2000, nthin=20, outsuff=".mc.dat",

logfile=FALSE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

nsims numeric scalar indicating number of MCMC simulations to perform.

nthin numeric scalar indicating the sampling rate or thinning of the nsims MCMC simulations to
report.

outsuff string name suffix of the MCMC output data file.

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function runs’prefix’.exe twice, first with the arguments-mcmc ’nsims’ -mcsave ’nthin’ and second
with the argument-mceval. By default, output goes to the file’prefix’.mc.dat, although a user can specify a
different output suffix.

To see this function in action, use the PBSadmb GUI with the examplevonb or simpleMC.

Value

Invisibly returns the results of the shell call.

Note

A wrapper function that can be called from a GUI exists as.win.runMC.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

runAD, makeAD, cleanAD

setADMBPath 33

setADMBPath Creates the ADMB Options List

Description

Creates a global list object detailing the pathways to the ADMB directory, the GCC bin, and the user’s preferred
text editor.

Usage

setADMBPath(admbpath, gccpath, editor)

Arguments

admbpath explicit path to the user’s ADMB directory.

gccpath explicit path to the user’s GCC bin (C-compiler) directory.

editor explicit path and program to use for editing text.

Value

Creates a global, hidden list object called.ADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts, writeADopts

showADargs Show All Arguments for an ADMB Executable

Description

Show all arguments available for an ADMB executable in the default text editor.

Usage

showADargs(prefix, ed=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

ed logical: if TRUE, write the ADMB arguments to a file and view them with the text editor, else
display the arguments on the R console.

Value

Invisibly returns the argument list.

34 startLog

Note

A wrapper function that can be called from a GUI exists as.win.showADargs.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, runAD

startLog Start a Log File

Description

Start a log file by removing any previous version and appending header information.

Usage

startLog(prefix)

Arguments

prefix string name prefix of the ADMB project (e.g.,"vonb").

Value

No explicit value reurned. Writes header lines into a log file’prefix’.log.

Note

A wrapper function that can be called from a GUI exists as.win.startLog.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

appendLog, editADfile

writeADopts 35

writeADopts Writes the ADMB Options List from Memory to a File

Description

Writes the global ADMB options list to a file in ’PBS’ format (seePBSmodelling::writeList).

Usage

writeADopts(optfile="ADopts.txt")

Arguments

optfile string name of the intended output file.

Value

Returnsopts invisibly. Writes the options list object to an ASCII file.

Note

A wrapper function that can be called from a GUI exists as.win.writeADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts, readADopts

Index

∗Topic IO
admb, 18
copyFiles, 24

∗Topic character
convOS, 23

∗Topic data
checkADopts, 20
makeADopts, 28
readADopts, 29
setADMBPath, 33
writeADopts, 35

∗Topic environment
atget, 19

∗Topic file
appendLog, 18
convOS, 23
editAD, 25
editADfile, 25
installADMB, 26
readRep, 30
showADargs, 33
startLog, 34

∗Topic hplot
plotMC, 29

∗Topic interface
compAD, 21
convAD, 22
linkAD, 26
makeAD, 27
runAD, 31
runMC, 32

∗Topic list
checkADopts, 20
makeADopts, 28
readADopts, 29
setADMBPath, 33
writeADopts, 35

∗Topic manip
atget, 19
cleanAD, 21
readRep, 30

∗Topic programming
compAD, 21
convAD, 22
linkAD, 26

makeAD, 27
runAD, 31
runMC, 32

∗Topic utilities
copyFiles, 24

admb, 18
alisp (atget), 19
appendLog, 18, 34
atcall (atget), 19
atget, 19
atprint (atget), 19
atput (atget), 19

checkADopts, 20
cleanAD, 21, 28, 31, 32
compAD, 21, 23, 27, 28
convAD, 22, 22, 27, 28
convOS, 23
copyFiles, 24, 24

editAD, 24, 25, 26
editADfile, 19, 25, 25, 30, 34

installADMB, 26

linkAD, 22, 23, 26, 28
lisp, 19, 20

makeAD, 21–23, 27, 27, 31, 32
makeADopts, 18, 20, 25, 26, 28, 28, 30, 33, 35

plotMC, 29

readADopts, 20, 29, 35
readRep, 21, 30
runAD, 21, 31, 32, 34
runMC, 29, 31, 32

setADMBPath, 33
showADargs, 29, 33
startLog, 19, 34

tget, 19, 20

writeADopts, 28, 30, 33, 35

36

	Jon T. Schnute, Rowan Haigh, and Alex Couture-Beil
	Fisheries and Oceans Canada
	Science Branch, Pacific Region
	Pacific Biological Station
	3190 Hammond Bay Road
	Nanaimo, British Columbia
	V9T 6N7
	1. Introduction
	2. Using PBSadmb
	3. The PBSadmb GUI
	4. ADMB in action
	5. R scripts to run ADMB
	Acknowlegements
	Appendix A. Installing PBSadmb
	Appendix B. ADMB scripts
	Appendix C. Detailed PBSadmb documentation
	C.1. Functions in ADMB
	C.2. PBSadmb manual

	PBSadmb.pdf
	admb
	appendLog
	atget
	checkADopts
	cleanAD
	compAD
	convAD
	convOS
	copyFiles
	editAD
	editADfile
	installADMB
	linkAD
	makeAD
	makeADopts
	plotMC
	readADopts
	readRep
	runAD
	runMC
	setADMBPath
	showADargs
	startLog
	writeADopts
	Index

