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1 Introduction

The PF package is a collection of functions related to estimating prevented fraction, PF =
1 −RR , where RR = π2/π1 .

Technical notes

Optimization. Unless otherwise stated, optimization is by the DUD algorithm (Ralston and
Jennrich 1978).

Level tested. The help files indicate the level of testing undergone by each function. In
some cases that is a subjective judgement, since most of these functions were originally
tested in SPlus and have been ported to R more recently.

2 Score based methods

2.1 The score statistic

Confidence intervals for the risk ratio may be based on the score statistic (Koopman 1984;
Miettinen and Nurminen 1985),

π̂2 − ρ0π̂1√
(π̃2(1 − π̃2)/n2 ) + ρ20 (π̃1(1 − π̃1)/n1 )

where hat indicates the MLE and tilde indicates the MLE under the restriction that ρ = ρ0.

2.2 Asymptotic intervals

RRsc() estimates asymptotic confidence intervals for the risk ratio or prevented fraction
based on the score statistic. Interval estimates are returned for three estimators. The
score method was originally introduced by Koopman (1984). Gart and Nam’s modification
includes a skewness correction (Gart and Nam 1988). The method of Miettinen and Nur-
minen (1985) is a version made slightly more conservative than Koopman’s by including a
factor of (N − 1)/N .
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> require(PF)

> RRsc(c(4,24,12,28))

PF

95% interval estimates

PF LL UL

MN method 0.611 0.0251 0.857

score method 0.611 0.0328 0.855

skew corr 0.611 0.0380 0.876

Starting estimates for the algorithm are obtained by the modified Katz method (log method
with 0.5 added to each cell). Both forms of the Katz estimate may be retrieved from the
returned object using RRsc()$estimate.

2.3 Exact intervals

These methods give intervals that are ‘exact’ in the sense that they are based on the actual
sampling distribution rather than an approximation to it. The score statistic is used to
select the 2 × 2 tables that would fall in the tail area, and the binomial probability is
estimated over the tail area by taking the maximum over the nuisance parameter. The
search over the tail area is made more efficient by the Berger-Boos correction (Berger and
Boos 1994).

RRtosst() gives intervals obtained by inverting two one-sided score tests; RRotsst() gives
intervals obtained by inverting one two-sided score test. RRtosst() is thus more conser-
vative, preserving at least α/2 in each tail. Agresti and Min (2001) discuss the properties
and relative benefits of the two approaches. The price of exactnesss is conservatism, due
to the discreteness of the binomial distribution (Agresti 2001). This means that the actual
coverage of the confidence interval does not exactly conform to the nominal coverage, but it
will not be less than it. (See also Agresti (2003).) Both functions use a simple step search
algorithm.

> RRotsst(c(4,24,12,28))

PF

95% interval estimates

PF LL UL

0.6111 0.0148 0.8519

> RRtosst(c(4,24,12,28))

PF

95% interval estimates
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PF LL UL

0.611 0.012 0.902

3 Stratified designs

Methods for estimating a common RR from stratified or clustered designs depend on ho-
mogeneity with respect to the common parameter.

3.1 Gart-Nam score method

Gart (1985) and Gart and Nam (1988) derived a score statistic for a common estimate of
RR from designs with multiple independent strata, and they showed that it is identical to
one proposed by Radhakrishnan (1965) from a different perspective.

RRstr() provides confidence intervals and a homogeneity test based on Gart’s statistic.

Data may be input two ways, either using a formula and data frame, or as a matrix.

> RRstr(cbind(y,n) ~ tx + cluster(clus), Table6 , pf = F)

[1] "ok"

[1] "end"

Test of homogeneity across clusters

stat 0.954

df 3

p 0.812

RR

95% interval estimates

RR LL UL

starting 2.66 1.37 5.18

mle 2.65 1.39 5.03

skew corr 2.65 1.31 5.08

> # Data matrix input:

> # RRstr(Y = table6, pf = F)
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3.2 Mantel-Haenszel estimator

A widely-used heuristic method for sparse frequency tables is the weighted average approach
of Mantel and Haenszel (1959).1 MH interval estimates are based on the asymptotic nor-
mality of the log of the risk ratio. RRmh() utilizes the variance estimator given by Greenland
and Robins (1985) for sparse strata. The resulting asymptotic estimator is consistent for
both the case of sparse strata where the number of strata is assumed increasing, and the
case of limited number of strata where the stratum size is assumed increasing. In the lat-
ter case, however, it is less efficient than maximum likelihood (Agresti and Hartzel 2000;
Greenland and Robins 1985). Additional discussion may be found in Lachin (2000, Section
4.3.1), Landis et al. (2005), and Somes and O’Brien (2006). 2

> RRmh(cbind(y,n) ~ tx + cluster(clus), Table6 , pf = F)

[1] "ok"

[1] "end"

RR

95% interval estimates

RR LL UL

2.67 1.37 5.23

> # Data matrix input:

> # RRmh(Y = table6, pf = F)

3.3 Examples

For a fuller set of examples, see the vignette Examples for Stratified Designs.

4 Model based intervals

4.1 Logistic regression estimates

Intervals may be estimated from logistic regression models with RRor(). It takes the fit of
a glm() object and estimates the intervals by the delta method.

1Kuritz et al. (1988) review the Mantel-Haenzel approach and point out its relationship to a method
proposed by Cochran (1954), which was the basis of Rhadakrishnan’s method (Radhakrishnan 1965),
alluded to in section 3.1.

2SAS Proc FREQ provides MH interval estimates of RR. The other estimator calculated by Proc FREQ,
which it calls “logit,” is actually a weighted least squares estimator (Lachin 2000) that has a demonstrable
and severe bias for sparse data (Greenland and Robins 1985). It should be avoided.
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> bird.fit <- glm(cbind(y,n-y) ~ tx - 1, binomial, bird)

> RRor(bird.fit)

95% t intervals on 4 df

PF

PF LL UL

0.5000 -0.0406 0.7598

mu.hat LL UL

txcon 0.733 0.896 0.466

txvac 0.367 0.624 0.168

4.2 Estimating the dispersion parameter

The binomial GLM weights are
π̂(1 − π̂)

a(ϕ̂)/n

where a(ϕ̂) is a function of the dispersion parameter.

4.2.1 Dispersion parameter ϕ

A simple estimator of the dispersion parameter, ϕ, may be estimated by the method of
moments (Wedderburn 1974). It is given by phiWt(). This form of the dispersion parameter
has a(ϕ) = ϕ, and ϕ is estimated by X2/df , the Pearson statistic divided by the degrees
of freedom.

Note that ϕ is the same estimator as may be obtained by the quasibinomial family in
glm() which is, in fact, what is used by phiWt() to reweight the original fit:

> phiWt(bird.fit, fit.only = F)$phi

all

2.471592

> summary(update(bird.fit, family = quasibinomial))$disp

[1] 2.471592

phiWt() makes it easy to estimate PF intervals with a single command.

> # model weighted by phi hat

> RRor(phiWt(bird.fit))
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95% t intervals on 4 df

PF

PF LL UL

0.500 -0.583 0.842

mu.hat LL UL

txcon 0.733 0.943 0.3121

txvac 0.367 0.752 0.0997

It also allows different estimates of ϕ̂ for specified subsets of the data.

> # model with separate phi for vaccinates and controls

> RRor(phiWt(bird.fit, subset.factor = bird$tx))

95% t intervals on 4 df

PF

PF LL UL

0.500 -0.645 0.848

mu.hat LL UL

txcon 0.733 0.938 0.3330

txvac 0.367 0.767 0.0925

If you want to subtract a degree of freedom for each additional parameter, you can do that
by entering the degrees of freedom as an argument to RRor().

> # subtract 2 degrees of freedom

> RRor(phiWt(bird.fit, subset.factor = bird$tx), degf = 2)

95% t intervals on 2 df

PF

PF LL UL

0.500 -2.164 0.921

mu.hat LL UL

txcon 0.733 0.975 0.1635

txvac 0.367 0.895 0.0377
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4.2.2 Dispersion parameter τ

When overdispersion is due to intra-cluster correlation, it may make sense to estimate
the dispersion as a function of the intra-cluster correlation parameter τ . In other words,
a(ϕij) = 1 + τj(nij−1). tauWt() does this using the Williams procedure (Williams 1982).

> # model weighted using tau hat

> RRor(tauWt(bird.fit, subset.factor = bird$tx))

95% t intervals on 4 df

PF

PF LL UL

0.500 -0.645 0.848

mu.hat LL UL

txcon 0.733 0.938 0.3330

txvac 0.367 0.767 0.0925

In this example the tauWt() estimates are the same as the phiWt() estimates. That is
because the cluster sizes are all the same. Let’s see what happens if we modify the bird

data set. The birdm data set has the same cluster fractions but differing cluster sizes.

> # different cluster sizes, same cluster fractions

> birdm.fit <- glm(cbind(y,n-y) ~ tx - 1, binomial, birdm)

> RRor(tauWt(birdm.fit, subset.factor = birdm$tx))

95% t intervals on 4 df

PF

PF LL UL

0.490 -0.605 0.838

mu.hat LL UL

txcon 0.737 0.942 0.328

txvac 0.376 0.764 0.101

Note that increasing cluster size can make things worse when there is intra-cluster correla-
tion.

Now let’s compare the weights from phiWt() and tauWt() with unequal cluster sizes. In
the output below, w represents 1/a(ϕ̂) and nw is n/a(ϕ̂)
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> # Compare phi and tau weights

> #

> phi.wts <-phiWt(birdm.fit,fit.only = F, subset.factor = birdm$tx)$weights

> tau.wts <- tauWt(birdm.fit,fit.only = F, subset.factor = birdm$tx)$weights

> w <- cbind(w.phi=phi.wts,w.tau=tau.wts,nw.phi=phi.wts*birdm$n,

+ nw.tau=tau.wts*birdm$n)

> print(cbind(birdm[,c(3,1,2)],round(w, 2)), row.names=F)

tx y n w.phi w.tau nw.phi nw.tau

vac 1 10 0.32 0.35 3.20 3.55

vac 8 20 0.32 0.21 6.40 4.13

vac 9 15 0.32 0.26 4.80 3.92

con 8 16 0.21 0.27 3.39 4.33

con 8 10 0.21 0.38 2.12 3.82

con 27 30 0.21 0.16 6.36 4.84

Look at the last two rows. Note that the nw.phi are directly proportional to n within
treatment group, while the nw.tau are not. With intra-cluster correlation, increasing cluster
size does not give a corresponding increase in information.

4.3 Rao-Scott weights

Rao and Scott (1992) give a method of weighting clustered binomial observations based
on the variance inflation due to clustering. They relate their approach to the concepts of
design effect and effective sample size familiar in survey sampling, and they illustrate its
use in a variety of contexts. rsbWt() implements it in the same manner as phiWt() and
tauWt(). For more general use, the function rsb() just returns the design effect estimates
and the weights.

> # model weighted with Rao-Scott weights

> RRor(rsbWt(birdm.fit, subset.factor = birdm$tx))

95% t intervals on 4 df

PF

PF LL UL

0.479 -0.314 0.793

mu.hat LL UL

txcon 0.768 0.960 0.311

txvac 0.400 0.717 0.149
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> # just the design effect estimates

> rsb(birdm$y, birdm$n, birdm$tx)$d

con vac

5.137107 2.500000

5 Likelihood based intervals

The RRlsi() function estimates likelihood support intervals for RR by the profile likelihood
(Royall 1997, Section 7.6).

Likelihood support intervals are usually formed based on the desired likelihood ratio, 1/k ,
often 1/8 or 1/32 . Under some conditions the log likelihood ratio may follow the chi-
square distribution. If so, then α = 1 − Fχ2 (2 log(k), 1). RRsc() will make the conversion
from α to k with the argument use.alpha = T.

> RRlsi(c(4,24,12,28))

1/8 likelihood support interval for PF

corresponds to 95.858% confidence

(under certain assumptions)

PF

PF LL UL

0.6111 0.0168 0.8859

> RRlsi(c(4,24,12,28), use.alpha = T)

1/6.826 likelihood support interval for PF

corresponds to 95% confidence

(under certain assumptions)

PF

PF LL UL

0.6111 0.0495 0.8792

6 Incidence ratio

The incidence is the number of cases per subject-time. Its distribution is assumed Poisson.
Under certain designs, the incidence ratio (IR) is used as a measure of treatment effect.
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Correspondingly, PF IR = 1 − IR would be used as a measure of effect for an intervention
that is preventive, such as vaccination. IR is also called incidence density ratio (IDR), and
that is the term used in the following functions.

6.1 Score method

IDRsc() estimates a confidence interval for the incidence density ratio using Siev’s formula
(Siev 1994, Appendix 1) based on the Poisson score statistic.3

IDR = ̂IDR{1 +

(
1

y1
+

1

y2

)
z2α/2

2
±

z2α/2
2y1y2

√
y•
(
y•z2α/2 + 4y1y2

)}

> IDRsc(c(26,204,10,205), pf = F)

IDR

95% interval estimates

IDR LL UL

2.61 1.28 5.34

6.2 Likelihood method

A likelihood support interval for IDR may be estimated based on orthogonal factoring
of the reparameterized likelihood. (Royall 1997, Section 7.2) IDRlsi() implements this
method.

Likelihood support intervals are usually formed based on the desired likelihood ratio, 1/k ,
often 1/8 or 1/32 . Under some conditions the log likelihood ratio may follow the chi square
distribution. If so, then α = 1 − Fχ2 (2 log(k), 1). IDRlsi() will make the conversion from
α tp k with the argument use.alpha = T.

> IDRlsi(c(26,204,10,205), pf = F)

1/8 likelihood support interval for IDR

corresponds to 95.858% confidence

(under certain assumptions)

IDR

3This formula was published in a Japanese journal (Sato 1988) several years before Siev. See also
Graham et al. (2003) and Siev (2004).
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IDR LL UL

2.61 1.26 5.88

> IDRlsi(c(26,204,10,205), pf = F, use.alpha = T)

1/6.826 likelihood support interval for IDR

corresponds to 95% confidence

(under certain assumptions)

IDR

IDR LL UL

2.61 1.30 5.69
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