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Abstract

Rchoice is a package for R which enables the estimation of a variety of Binary, Count
and Ordered models with unobserved and observed heterogeneity in the parameters for
cross-section data. We implement simulated maximum likelihood methods for the esti-
mation of the coefficients which can assume a variety of distributions such as the mlogit

package does. This document is a general description of Rchoice and all functionalities
are illustrated using real databases.
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1. Introduction

A growing number of empirical studies involve the assessment of influences on a choice among
binary, count or ordered discrete alternatives. Those models are well known. However, one
of the traditional modeling shortcomings is their inability to control for possible unobserved
heterogeneity that may exist across individuals. For instance, one might assume that some
variable, such as income or education, does not affect equally the utility of individuals, there-
fore there may be a deviation from the mean of the respective coefficient. Binary, count and
ordered choice models with random parameters extension allows heterogeneity among indi-
viduals assuming some distribution on the parameters.

In this document we present the package Rchoice for program R. Rchoice is a package for
estimating a variety of Ordered and Binary Choice Models with observed and unobserved
heterogeneity in the coefficients. The estimation procedure is based on Maximum Simulated
Likelihood (MSL) which allows to control for observed and unobserved heterogeneity in a very
flexible way. 1 To our knowledge, only LIMDEP (Greene 2002) is able to estimate these type
of models in a concise and flexible manner. Therefore, this package intends to make available
these estimation methods to the general public and practitioners in a friendly and flexible
way.

1For multinomial discrete choice models with random parameters see mlogit package in R (Croissant et al.
2012)
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2. Maximum Simulated Likelihood Estimation

One of the major capability of the Rchoice package is to estimate Binary, Count and Ordered
models with random parameters. They are estimated by Rchoice using Simulated Maximum
Likelihood (SML). In this section we briefly explain some basic ideas of SML procedure. For
a more complete treatment of SML see for example Gourieroux and Monfort (1997); Hajivas-
siliou and Ruud (1986); Train (2009); Cameron and Trivedi (2005)

A random parameter model or random coefficient model permits regression parameter to
vary across individuals according to some distribution. A fully parametric random parameter
model specifies the dependent variable yi conditional on regressors xi and given parameters
βi to have conditional density f(yi|xi, βi), where βi are iid with density g(βi|θ) . Inference
is based on the density of yi conditional on xi and given θ:

f(y|xi,θ) =

∫
f(y|x,β)g(β,θ)dβ

This integral will not have a closed-form solution except in some especial cases. For example,
we can assume normally distributed random parameters, with βi ∼ N(µ,Σ). Then βi =
µ+Σ−1/2υi, where υi ∼ N(0, I), thus:

f(y|x,θ) =
∫

∞

−∞

f(y|x, µ,Σ)
1√
2π

exp

(
−1

2
υ2

)
dυ (1)

Note that (1) has no close-form solution, that is, it is difficult to integrate out the random
parameter and hence it difficult to perform ML estimation. However ML estimation may still
be possible if we instead use a good approximation f̂(y|x,θ) of f(y|x,θ) to form a likelihood
function.

But, how can we obtain f̂(y|x,θ)? A good approximation can be obtained by Monte Carlo
integration. 2 This procedure provides and alternative to deterministic numerical integra-
tion. Here we can simulate the integration using random draws from the distribution g(β|θ).
For example, the researcher specifies the function form g(β|θ) and wants to estimate the
parameter θ. The Monte Carlo approximation is:

f̂(y|xi,βir,θ) =
1

R

R∑

r=1

f̃(y|x,βr,θ),

where βir, for example, is the rth draw of β from g(βi|θ) for individual i. Given independence
over i, the MSL is the value θ that maximizes:

θ̂MSL ≡ argmax
θ∈Θ

N∑

i=1

log f̂(y|xi,βir,θ)

2Another numerical approximation is Gauss-Hermite quadrature. However, it has been documented that
for models with more than 3 random parameters SML performs better.



Mauricio Sarrias 3

The following preposition gives the asymptotic distribution of MSL estimator. For a complete
derivation of the asymptotic properties of the MSL and a more comprehensive view see Lee
(1992) or Gourieroux and Monfort (1997).

Preposition 1 (Distribution of MSL Estimator). Assume the following:

1. The data are from a simple random sample from a dgp with likelihood function f(y|x,θ0)
that satisfies the regularity conditions so that the ML estimator is consistent and asymp-
totically normal with variance matrix A−1(θ0), where:


 1

N

N∑

i=1

∂ log f(y|xi,θ)

∂θ∂θ′

∣∣∣∣∣
θ0


 p−→ A(θ0)

2. The likelihood function f is estimated using the simulator f̂ with f̃ unbiased for f .

Then the maximum simulated likelihood estimator is asymptotically equivalent to the ML
estimator if R → ∞. N → ∞ and

√
N/R → ∞, and it has a limit normal distribution with:

√
N(θ̂MSL − θ)

d−→ N(0,A−1(θ0))

3. Technical Aspects of Maximum Simulated Likelihood

In this section, we show the general technical aspect of the MSL. This will allow us to ac-
commodate any index-type regression model such as probit, logit, ordered and count model.
This section relies heavily on chapter 15 of Greene (2012) and chapter 10 of Train (2009).

3.1. Simulated Maximum Likelihood

In order to develop a general set of results, it is convenient to write each single density in the
simulated function as:

f(yi|xi,βir,θ) = Pir(θ) = Pir

where θ is the vector that collects all the parameters. The simulated log-likelihood is :

logLs =
N∑

i=1

log

(
1

R

R∑

r=1

Pir(θ)

)
(2)

If we define:

Pi = Pi(θ) =
1

R

R∑

r=1

Pir,
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then, the maximum likelihood can be written as:

logLs =

N∑

i=1

logPi(θ) (3)

With this notation, we will be able to accommodate richer specifications of the index function
and discrete choice models by simply changing the specification of Pir. As typical, the index
model represents a latent process of the form:

U∗

ir(θ) = z′iδ + x′

iβir + ǫi, (4)

where zi is a vector of variables with fixed parameters δ; xi is a vector of variables with
random coefficients βir; and ǫi is the error term. For simplicity, assume that βir ∼ N(β,Σ),
then the random vector of coefficients can be written as:

βir = β + Lωir

where ωir is a vector of random draws from normal standard distribution. If the random
parameters are correlated normal, then L is a lower triangular which produces the covariance
matrix of the random parameters, LL′ = Σ; otherwise, the matrix L is a diagonal matrix of
standard deviations. A hierarchical model is obtained by allowing the parameter heterogeneity
to be partly systematic in terms of observed variables:

βir = β +Πsi + Lωir,

where Π is a matrix of parameters and si is a vector of covariates. Then, E(βi) = β+πsi +
LE(ω) = β + πsi and its covariance is Var(βi) = E(Lω(ω)′) = LE(ωω′)L = LIL = LL′ =
Σ.

Example 1 (Representation of Correlated Random Parameters). Suppose two cor-
related random parameters, β1 and β2, whose mean depend upon variables S,B and C. Then:

β1,ir = β̄1 + π1,1Si + π1,2Bi + π1,3Ci + s11ω1,ir

β2,ir = β̄2 + π2,1Si + π2,2Bi + π2,3Ci + s21ω1,ir + s22ω2,ir

or in vector form:

(
β1,ir
β2,ir

)
=

(
β̄1
β̄2

)
+

(
π1,1 π1,2 π1,3
π2,1 π2,2 π2,3

)

Si

Bi

Ci


+

(
s11 0
s21 s22

)(
ω1,ir

ω2,ir

)

In this case, the variance-covariance matrix of the random parameters is:

Σ = LL′ =

(
s11 0
s21 s22

)(
s11 s21
0 s22

)
=

(
s211 s11s22

s21s22 s221 + s222

)
,

and the conditional mean vector is:

E(βi|si) = β +Πsi
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Rchoice allows to specify different distribution for the random parameters. See section 4.

Finally, depending in the nature of the dependent variable and the distribution of the error
term, the probability for each individual can be specified. It is well known that, if the
dependent variable is binary, then the probability for each individual in each draw is:

Pir(θ) = F (qi · U∗

ir(θ)) (5)

where qi = 2yi − 13. Furthermore, if the model is probit, then:

F (qi · U∗

ir(θ)) = Φ(qi · U∗

ir(θ))

f(qi · U∗

ir(θ)) = φ(qi · U∗

ir(θ))

where Φ(·) and φ(·) are the CDF and the pdf for the standard normal distribution. Likewise,
if the model is logit, then:

F (qi · U∗

ir(θ)) = Λ(qi · U∗

ir(θ)) =
exp(qi · U∗

ir(θ))

1 + exp(qi · U∗

ir(θ))

f(qi · U∗

ir(θ)) = Λ(qi · U∗

ir(θ)) [1− Λ(qi · U∗

ir(θ))]

For the Poisson model, the probability for individual i for the r draw is:

Pir(θ) =
exp(− exp(U∗

ir(θ))) exp(U
∗

ir(θ))
yi

yi!
(6)

and for the ordered model, we have:

Pir(θ) = F (κj − U∗

ir(θ))− F (κj−1 − U∗

ir(θ)) (7)

where:

κj = κj−1 + exp(αj)

This last reparametrization ensure the ordering of the thresholds.

3.2. Gradient of the Simulated Maximum Likelihood

SML procedure is very time consuming. Providing the gradient to the maximization proce-
dure can considerable reduce the time to achieve convergence. Rchoice package provides the

3As explained by Greene (2012), if the distribution is symmetric, as the normal and logistic are, then
1− F (x′β) = F (x′β). Then, logL =

∑
i
F (qixiβ)
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gradient for all random parameter models. Next, the formulas used by Rchoice to obtain the
gradient are given. To obtain the derivatives, we begin with:

∂ logLs

∂θ
=
∑

i=1




1
R

∑R
r=1

(
∂Pir(θ)

∂θ

)

1
R

∑R
r=1 Pir(θ)


 (8)

For the derivative term,

∂Pir(θ)

∂θ
= Pir

∂ logPir(θ)

∂θ
= Pir(θ)gir(θ). (9)

where we use the fact that ∂ log p
∂θ = 1

p
∂p
∂θ . Now, inserting 9 into 8 we get:

∂ logLs

∂θ
=
∑

i=1

(∑R
r=1 Pir(θ)gir(θ)∑R

r=1 Pir(θ)

)
. (10)

Define the weight Qir(θ) = Pir(θ)/
∑R

r=1 Pir(θ) so that 0 < Qir(θ) < 1 and
∑R

r=1Qir(θ) = 1.
Then,

∂ logLs

∂θ
=

N∑

i=1

R∑

r=1

Qir(θ)gir(θ) =

N∑

i=1

ḡi(θ). (11)
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Example 2 (Gradients formulas used by Rchoice). For binary models, taking first
derivatives on the log of equation 5 we get:

∂ logPir(θ)

∂θ
= gir = λir(θ)

(
∂U∗

ir(θ)

∂θ

)
, (12)

where:

λir =
qif(qiU

∗

ir(θ))

F (qiU∗

ir(θ))
,

and f = ∂F (·)
∂θ . If the model is the Poisson regression model model, then gir is given by:

∂ logPir(θ)

∂θ
= gir = (yi − exp(U∗

ir(θ)))

(
∂U∗

ir(θ)

∂θ

)
.

For the ordered model, let θ the vector collecting all the parameters except for the thresholds
parameters. Then, gir is given by:

∂ logPir(θ)

∂θ
= − fir,j(θ)− fir,j−1(θ)

Fir,j(θ)− Fir,j−1(θ)

(
∂U∗

ir(θ)

∂θ

)
,

and by:

∂ logPir(θ)

∂αk
=

dj,kfir,j(θ)− dj−1,kfir,j−1(θ)

Fir,j(θ)− Fir,j−1(θ)

(
∂κj

∂αk
− ∂κj−1

∂αk

)

with δj,k = 1 if j = k and 0 otherwise. Finally, if parameters are uncorrelated, then:

∂Uitr(θ)

∂θ
=




zit
xit

si ⊗ xit

ωit • xit


 .

Rchoice uses this formulas to compute the gradient and uses the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (as default) to iteratively solve the MSL.

4. Drawing from Densities

SML procedure requires to draw pseudo-random numbers from the specified distribution for
simulation. A good performance of SML requires very large number of draws. The main
drawback to this approach is that with large samples and complex models, the maximization
of logLs can be very time consuming. Researchers have gained speed with no degradation
in simulation performance through the use of small number of Halton draws (Bhat 2001;
Train 2000). The idea is that, instead of taking independent random draws, simulation can
potentially be improved by selecting evaluation points more systematically and with better
coverage (Sándor and Train 2004). In this section, we detail how draws are computed by
Rchoice. 4

4In terms of programming, we have modified the functions from mlogit (Croissant et al. 2012) to allow
variation in the mean by observed covariates (Hierarchical model).
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Suppose that there are K2 random parameters. Then, the K2 elements of ωir are drawn as
follows. We begin with a K2 random vector ωir that is:

• K2 independent draws from the standard uniform (0, 1) distribution or

• K2 independent draws from themth Halton sequence, wherem is themth prime number
in the sequence of K2 prime numbers beginning with 2.

An important attribute of the Halton values is that they are also distributed in the (0, 1)
interval. Then, the primitive draw (Pseudo or Halton draws) is then transformed to the
distribution specified by the user as follows:

• uk,ir ∼ U(0, 1): primitive draw from halton or pseudo-random number generator

• wk,ir = Φ−1(uk,ir) ∼ N(0, 1)

Using these two primitive draws, Rchoice creates the random parameters as follows:

1. Normal Parameter:

βk,ir = βk + σkwk,ir

wk,ir ∼ N(0, 1)

where βk and σk are estimated. Then, βk,i ∼ N(βk, σ
2
k)

2. Truncated normal Parameter:

βk,ir =

{
βk + σkwk,ir if βk,ir > 0

0 otherwise

wk,ir ∼ N(0, 1)

where βk and σk are estimated. Then, βk,i ∼ N(βk, σ
2
k) with the share below zero

massed at zero

3. Log-Normal Distribution:

βk,ir = exp (βk + σkwk,ir)

wk,ir ∼ N(0, 1)

where βk and σk are estimated. Then, βk,i ∼ logN(βk, σ
2
k)
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4. Uniform:

βk,ir = βk − σk + 2σkuk,ir

uk,ir ∼ U(0, 1)

where βk and σk are estimated.

5. Triangular distribution:

βk,ir = βk + σkvk,ir

vk,ir ∼ 1(uk,ir < 0.5)
(√

2uk,ir − 1
)
+ 1(uk,ir ≥ 0.5)

(
1−

√
2(1− uk,ir)

)

where βk and σk are estimated.

Rchoice allows to the user to specify two type of random draws by the argument haltons:
pseudo-random draws (haltons = NULL) and Halton draws (haltons = NA) as default. If
haltons = NULL, the seed is set to set.seed(123). The user can change this by the seed

argument. For the Halton draws, the default is to use the first K2 primes numbers starting
with 3. Within each series, the first 100 draws are discarded, as the first draws tend to be
highly correlated across different draw. The user can also change the prime number and
the element dropped for each serie. For example, if K2 = 2, and the user wants to use the
primes numbers 5 and 31 along with dropping the first 10 draws, he could specify haltons

= list("prime" = c(5,31), "drop" = c(10,10)).

Note that log-normal and truncated normal give positive coefficients only. If the user wants
a variable to have only negative coefficients, he should create the negative of the variable.

5. Poisson Regression Model Examples

5.1. Standard Poisson Model

In R there exist several package to estimate binary, count and ordered models. glm function
allows to estimate different kind of discrete choice models such as Poisson and binary models.
The function probit from the package micEcon allows to estimate probit model. Moreover,
the function polr from the package MASS allows to estimate ordered models (Venables and
Ripley 2002). The advantage of Rchoice is that allows more flexibility in the optimization
routines which improves the convergence speed. Rchoice uses the function maxLik in order
to maximize the log-likelihood function, which permits to estimate models by the Newton-
Raphson (NR), BGFS and Berndt-Hall-Hall-Hausman (BHHH) procedures (see Henningsen
and Toomet 2011).
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In this section, we show the capabilities of Rchoice to estimate Poisson regression model with
and without random parameters.

Rchoice is loaded by typing:

library("Rchoice")

In order to show how to estimate Poisson regression models using Rchoice, we will use data
on scientific productivity (Long 1990, 1997). We load the data using

data("Articles")

head(Articles, 3)

## art fem mar kid5 phd ment

## 1 0 0 1 0 2.52 7

## 2 0 1 0 0 2.05 6

## 3 0 1 0 0 3.75 6

To see more information about the data, one can use:

help(Articles)

The work by Long (1990) suggest that gender, marital status, number of young children,
prestige of the graduate program, and the number of articles written by a scientist’s mentor
could affect a scientist’s level of publication. In order to see this, we estimate a Poisson
regression model use the Rchoice function specifying link = "poisson":

poisson <- Rchoice(art ~ fem + mar + kid5 + phd + ment, data = Articles,

family = poisson)

##

## Starting values Parameters:

## (Intercept) fem mar kid5 phd ment

## 1.33425 -0.38089 0.26320 -0.29144 -0.01137 0.06149

summary(poisson)

##

## Model: poisson

## Model estimated on: Tue Apr 01 12:41:11 2014

##

## Call:

## Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,

## family = poisson, method = "nr")

##
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## The estimation took: 0h:0m:0s

##

## Coefficients:

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 0.30462 0.10298 2.96 0.0031 **

## fem -0.22459 0.05461 -4.11 3.9e-05 ***

## mar 0.15524 0.06137 2.53 0.0114 *

## kid5 -0.18488 0.04013 -4.61 4.1e-06 ***

## phd 0.01282 0.02640 0.49 0.6271

## ment 0.02554 0.00201 12.73 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by Newton-Raphson maximisation

## Log Likelihood: -1650

## Number of observations: 915

## Number of iterations: 7

## Exit of MLE: gradient close to zero

The output shows that the log-likelihood function is estimated using NR algorithm in 7 itera-
tions. If the user wants to estimate the model using another algorithm he should type method
= "bfgs" for the BGFS method or method = "bhhh" for BHHH method.

In terms of interpretation, we can say that, being a female scientist decreases the expected
number of articles by a factor of 0.8 (= exp(−.225)), holding all other variables constant.
Or equivalently, being a female scientist decreases the expected number of articles by 20%
(= 100 [exp(−.225)− 1]), holding all other variables constant. Prestige of PhD department is
not important for productivity.

Another capability of Rchoice is its interaction with other packages in R. For example, we
can compute the robust standard error by using the package sandwich:

library(sandwich)

library(lmtest)

coeftest(poisson, vcov = sandwich)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.30462 0.14652 2.08 0.03790 *

## fem -0.22459 0.07166 -3.13 0.00178 **

## mar 0.15524 0.08193 1.89 0.05843 .

## kid5 -0.18488 0.05596 -3.30 0.00099 ***
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## phd 0.01282 0.04196 0.31 0.76001

## ment 0.02554 0.00382 6.69 3.9e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In order to get the same robust standard errors as STATA (StataCorp 2011), we need to make
a small sample correction:

vcov.stata <- vcovHC(poisson, type = "HC0") * nObs(poisson)/(nObs(poisson) -

1)

coeftest(poisson, vcov = vcov.stata)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.30462 0.14660 2.08 0.0380 *

## fem -0.22459 0.07170 -3.13 0.0018 **

## mar 0.15524 0.08197 1.89 0.0586 .

## kid5 -0.18488 0.05599 -3.30 0.0010 ***

## phd 0.01282 0.04199 0.31 0.7601

## ment 0.02554 0.00382 6.69 4e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

where the correction is n/(n− 1).

Rchoice also interacts with linearHypothesis and deltaMethod functions from car (Fox,
Bates, Firth, Friendly, Gorjanc, Graves, Heiberger, Monette, Nilsson, Ogle et al. 2009) and
the lrtest and waldtest functions from lmtest package (Zeileis and Hothorn 2002). For
example, we can test H0 : phd/ment = 0 by:

library(car)

deltaMethod(poisson, "phd/ment")

## Estimate SE

## phd/ment 0.502 1.043

5.2. Random Parameter Poisson Model

Now, we estimate a Poisson regression model with random parameters. In this case, we
will assume that the effect of kid5, phd and ment are not fixed, but rather heterogeneous
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among the population. Specifically, we will assume that the coefficients for those variables
are independent normally distributed, that is, we will not allow correlation among them:

βkid5,i = βkid5 + σkid5ωkid5,ir

βphd,i = βphd + σphdωphd,ir

βment,i = βment + σmentωment,ir

Then, in order to estimate this model, we can write:

poisson.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,

data = Articles, ranp = c(kid5 = "n", phd = "n", ment = "n"),

family = poisson,

R = 10)

##

## Starting values Parameters:

## (Intercept) fem mar mean.kid5 mean.phd mean.ment

## 0.30462 -0.22459 0.15524 -0.18488 0.01282 0.02554

## sd.kid5 sd.phd sd.ment

## 0.00000 0.00000 0.00000

It is important to discuss the arguments for the Rchoice function. First, the argument ranp
indicates which variables are random in the formula and their distributions. In this case, we
have specified that all of them are normal distributed using "n". The number of draws are
not specified. Therefore, Rchoice will set R = 40 as default. The user can change this by
changing the R argument. The type of draws are Halton draws as a default, but if the user
wants pseudo-random draws he can specify haltons = NULL. As explained before, the default
maximization algorithm for SML is BGFS.

summary(poisson.ran)

##

## Model: poisson

## Model estimated on: Tue Apr 01 12:41:57 2014

##

## Call:

## Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,

## family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),

## R = 10, method = "bfgs", iterlim = 2000)

##

## The estimation took: 0h:0m:45s

##

## Coefficients:

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 0.24215 0.12327 1.96 0.0495 *
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## fem -0.21443 0.06560 -3.27 0.0011 **

## mar 0.18122 0.07337 2.47 0.0135 *

## mean.kid5 -0.26565 0.06292 -4.22 2.4e-05 ***

## mean.phd -0.01816 0.03510 -0.52 0.6048

## mean.ment 0.03040 0.00354 8.59 < 2e-16 ***

## sd.kid5 0.32641 0.07691 4.24 2.2e-05 ***

## sd.phd 0.12990 0.01675 7.75 8.9e-15 ***

## sd.ment 0.01572 0.00295 5.32 1.0e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -1590

## Number of observations: 915

## Number of iterations: 115

## Exit of MLE: successful convergence

## Simulation based on 10 Halton draws

The result shows that indeed the three coefficients are random in the sample. We can also
say that :

pnorm(coef(poisson.ran)["mean.kid5"]/coef(poisson.ran)["sd.kid5"])

## mean.kid5

## 0.2079

a 21% of the individuals have a positive coefficient for kid5. Note also that the mean coeffi-
cient for phd is 0 (not significant). This is due to the fact that the unobserved heterogeneity
among scientists in the sample cancel out positive and negative effects. These observations
are not possible with a Poisson regression with fixed effect.

Suppose that now we want to test if H0 = σkid5 = σphd = σment = 0. This can be done by
using the function waldtest or lrtest from package lmtest:

waldtest(poisson.ran, poisson)

## Wald test

##

## Model 1: art ~ fem + mar + kid5 + phd + ment

## Model 2: art ~ fem + mar + kid5 + phd + ment

## Res.Df Df Chisq Pr(>Chisq)

## 1 906

## 2 909 -3 202 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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lrtest(poisson.ran, poisson)

## Likelihood ratio test

##

## Model 1: art ~ fem + mar + kid5 + phd + ment

## Model 2: art ~ fem + mar + kid5 + phd + ment

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 9 -1590

## 2 6 -1651 -3 122 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both test reject the null hypothesis. We can also specify different distribution of the param-
eters by using the S3 method update:

poisson.ran2 <- update(poisson.ran, ranp = c(kid5 = "u", phd = "t", ment = "cn"))

summary(poisson.ran2)

Now, we estimate the model poisson.ran, but assuming that the random parameters are
correlated:

poissonc.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment, data = Articles,

ranp = c(kid5 = "n", phd = "n", ment = "n"),

family = poisson, correlation = TRUE,

R = 10)

##

## Starting values Parameters:

## (Intercept) fem mar mean.kid5 mean.phd

## 0.30462 -0.22459 0.15524 -0.18488 0.01282

## mean.ment sd.kid5.kid5 sd.kid5.phd sd.kid5.ment sd.phd.phd

## 0.02554 0.00000 0.00000 0.00000 0.00000

## sd.phd.ment sd.ment.ment

## 0.00000 0.00000

summary(poissonc.ran)

##

## Model: poisson

## Model estimated on: Tue Apr 01 12:43:39 2014

##

## Call:

## Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,

## family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),

## R = 10, correlation = TRUE, method = "bfgs", iterlim = 2000)
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##

## The estimation took: 0h:1m:42s

##

## Coefficients:

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 0.22781 0.12539 1.82 0.06926 .

## fem -0.21160 0.06736 -3.14 0.00168 **

## mar 0.13569 0.07590 1.79 0.07381 .

## mean.kid5 -0.21418 0.06100 -3.51 0.00045 ***

## mean.phd -0.01125 0.03628 -0.31 0.75651

## mean.ment 0.02858 0.00400 7.15 8.5e-13 ***

## sd.kid5.kid5 0.30468 0.09019 3.38 0.00073 ***

## sd.kid5.phd 0.12742 0.04497 2.83 0.00460 **

## sd.kid5.ment -0.02534 0.00395 -6.42 1.4e-10 ***

## sd.phd.phd 0.11332 0.03060 3.70 0.00021 ***

## sd.phd.ment 0.00280 0.00356 0.79 0.43052

## sd.ment.ment 0.00335 0.00469 0.71 0.47519

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -1570

## Number of observations: 915

## Number of iterations: 178

## Exit of MLE: successful convergence

## Simulation based on 10 Halton draws

We can extract the Σ = LL′ matrix of variance-covariance matrix and the correlation matrix
of the random parameters using cov.Rchoice and cor.Rchoice:

cov.Rchoice(poissonc.ran)

## kid5 phd ment

## kid5 0.092830 0.038823 -0.0077220

## phd 0.038823 0.029077 -0.0029117

## ment -0.007722 -0.002912 0.0006614

cor.Rchoice(poissonc.ran)

## kid5 phd ment

## kid5 1.0000 0.7473 -0.9855

## phd 0.7473 1.0000 -0.6639

## ment -0.9855 -0.6639 1.0000
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5.3. Hierarchical Poisson Random Parameter Model

In this section we show how to estimate a Hierarchical Poisson Random Parameter Model.
In this case, we assume that there exist not only unobserved heterogeneity in the coefficients
for kid5, phd and ment, but also observed heterogeneity in the mean. Specifically, we assume
that:

βkid5,i = βkid5 + π1fem+ σkid5,kid5ωkid5,ir

βphd,i = βphd + π2fem+ σphd,kid5ωkid5,ir + σphd,phdωphd,ir

βment,i = βment + π3fem+ σment,kid5ωkid5,ir + σment,phdωphd,ir + σment,mentωment,ir

The formulation above implies that those three coefficients (or marginal effect on latent pro-
ductivity) varies also if the individual is female or male. Rchoice manages the variables in
the hierarchical model by the formula object: all the hierarchical variables are included after
the | symbol. For example, we can estimate this model by typing:

poissonH.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment | fem,

data = Articles,

ranp = c(kid5="n", phd = "n", ment = "n"),

family = poisson,

correlation = TRUE,

R = 10)

## Warning: Model assumes no constant in S variables...updating formula

##

## Starting values Parameters:

## (Intercept) fem mar mean.kid5 mean.phd

## 0.30462 -0.22459 0.15524 -0.18488 0.01282

## mean.ment kid5.fem phd.fem ment.fem sd.kid5.kid5

## 0.02554 0.00000 0.00000 0.00000 0.00000

## sd.kid5.phd sd.kid5.ment sd.phd.phd sd.phd.ment sd.ment.ment

## 0.00000 0.00000 0.00000 0.00000 0.00000

summary(poissonH.ran)

##

## Model: poisson

## Model estimated on: Tue Apr 01 12:46:24 2014

##

## Call:

## Rchoice(formula = art ~ fem + mar + kid5 + phd + ment | fem,

## data = Articles, family = poisson, ranp = c(kid5 = "n", phd = "n",

## ment = "n"), R = 10, correlation = TRUE, method = "bfgs",

## iterlim = 2000)

##
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## The estimation took: 0h:2m:45s

##

## Coefficients:

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 0.39314 0.15924 2.47 0.01356 *

## fem -0.59283 0.22640 -2.62 0.00883 **

## mar 0.15045 0.07728 1.95 0.05156 .

## mean.kid5 -0.17707 0.06545 -2.71 0.00682 **

## mean.phd -0.08937 0.04821 -1.85 0.06376 .

## mean.ment 0.03265 0.00457 7.14 9.4e-13 ***

## kid5.fem -0.06172 0.11432 -0.54 0.58930

## phd.fem 0.15122 0.07117 2.12 0.03359 *

## ment.fem -0.00495 0.00774 -0.64 0.52181

## sd.kid5.kid5 0.13224 0.06771 1.95 0.05081 .

## sd.kid5.phd -0.10946 0.04239 -2.58 0.00982 **

## sd.kid5.ment -0.00641 0.00538 -1.19 0.23369

## sd.phd.phd 0.13512 0.04100 3.30 0.00098 ***

## sd.phd.ment 0.02127 0.00371 5.73 9.9e-09 ***

## sd.ment.ment 0.00728 0.00451 1.61 0.10666

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -1580

## Number of observations: 915

## Number of iterations: 185

## Exit of MLE: successful convergence

## Simulation based on 10 Halton draws

The estimated parameters indicates that gender matters only for phd mean coefficient. We
can test if the interaction variables are jointly significant by using lrtest:

lrtest(poissonH.ran, poissonc.ran)

## Likelihood ratio test

##

## Model 1: art ~ fem + mar + kid5 + phd + ment | fem - 1

## Model 2: art ~ fem + mar + kid5 + phd + ment

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 15 -1578

## 2 12 -1573 -3 10.2 0.017 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.4. Plotting Conditional Means

It is important to note that the estimates of the model parameters provide the unconditional
estimates of the parameter vector, but we can form a person specific conditional estimator
(see Train 2009; Greene 2012). The estimator of the conditional mean of the distribution of
the random parameters, conditioned on the person specific data, is:

̂̄βi = Ê(βi|datai) =
R∑

r=1

Q̂irβ̂ir

where:

β̂ir = β̂ + Π̂si + L̂ωir

We can also estimate the standard deviation of this distribution by estimating:

Ê(β2
i |datai) =

R∑

r=1

Q̂irβ̂
2
ir,

then computing the square root of the estimated variance,

√
Ê(β2

i |datai)− Ê(βi|datai)2

With the estimates of the conditional mean and conditional variance, we can then compute
the limits of an interval that resembles a confidence interval as the mean plus and minus two
estimated standard deviation. This will construct an interval that contains at least 95 percent
of the conditional distribution of βi (Greene 2012).

Rchoice allows to plot the histogram and kernel density of conditional means of random
parameters using the function plot. For the histogram of the conditional mean of βment,i, we
can write:

plot(poissonH.ran, par = "ment", type = "histogram", bin = 0.005)
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and for the kernel density:

plot(poissonH.ran, par = "ment")
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As Greene (2012) points out, even if the analysis departs from normal marginal distributions
βi, the sample distribution of the n estimated conditional means is not necessarily normal.
Therefore, the kernel estimator based on the n estimators can have a variety of shapes.

We may also plot the individual confident interval for the conditional means for the first 50
individuals:

plot(poissonH.ran, par = "ment", ind = TRUE, id = seq(1, 50, 1))
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6. Binary and Ordered Model Examples

In this section, we show how to estimate Binary and Ordered (Probit or Logit) models. Since
the main characteristics of Rchoice package to estimate random parameter models were shown
in the previous section, in this section we briefly show how to use Rchoice for Binary and
Ordered models with random parameters. 5

The argument family allows to specify between ordinal and binomial models. We estimate
a Probit model with random parameters using the Workmroz data base:

data("Workmroz")

probit.ran <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,

ranp = c(k5 = "n", hc = "n"),

family = binomial('probit'),

data = Workmroz,

R = 100)

5MSL procedure is very complex. Sometimes, the model may not converge, or it may converge to a local
maximum, if the initial values are not chosen well enough. For this reason, we recommend users to always
use the argument codeprint.level in the estimation. If the model converges, but the Hessian is singular, we
recommend using a vector of zeros as initial values, use different prime numbers, or use a different method of
optimization. As default, the initial values correspond to those estimated by standard models with zeros for
the parameters of L and Π matrices.
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summary(probit.ran)

In order to analyze ordered models, we use the "Health" database:

data("Health")

We estimate a Random Parameter Ordered Probit model for the variable newhsat for year
1988 (see help(Health))

oprobit.ran <- Rchoice(newhsat ~ age + educ + hhinc + married + hhkids,

data = Health, family = ordinal('probit'),

subset = year == 1988,

ranp = c(age = "n", hhinc = "n"),

start = rep(0, 11))

summary(oprobit.ran)
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