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Abstract

We develop a new method to sample from posterior distributions in Bayesian hi-
erarchical models, as commonly used in marketing research, without using Markov
chain Monte Carlo. This method, which is a variant of rejection sampling ideas, is
generally applicable to high-dimensional models involving large data sets. Samples
are independent, so they can be collected in parallel, and we do not need to be con-
cerned with issues like chain convergence and autocorrelation. The method is scalable
under the assumption that heterogeneous units are conditionally independent, and it
can also be used to compute marginal likelihoods.



1 Introduction

The application of Bayesian methods in marketing is well-established. Rossi and Allenby

(2003) compiled a review of this work, including an annotated bibliography, and count-

less other papers that use Bayesian methods have been published in marketing journals

in the decade since. One reason Bayesian methods appeal to marketing researchers is

that they allow for a straightforward way to incorporate unobserved heterogeneity into

a model, and estimate posterior estimates of individual-level latent characteristics. We

often describe these models as “hierarchical” when latent parameters of sub-groups of

individual agents, such as customers or households, are distributed according to char-

acteristics of a larger population. (To simplify the exposition in the rest of this paper,

we will use the term “household” to refer to any heterogeneous agent). In many cases,

these sub-groups consist of a single household. With some notable exceptions (e.g., Yang

and Allenby 2003), hierarchical models in marketing assume that households are “condi-

tionally independent,” so that the only dependence across units comes from their having

common population-level parameters.

The marginal posterior densities of parameters of interest are typically not available in

closed form. Instead, we simulate random samples from the marginal posteriors, and

use the empirical distribution of the samples to estimate posterior moments and quan-

tiles. The challenge is in determining the best way to generate these samples. Markov

chain Monte Carlo (MCMC) has become perhaps the most popular simulation method

for Bayesian computation because of its general applicability. The idea is to construct a

Markov chain whose limiting distribution is the same as the “target” posterior density.

Once the chain has converged to that density, we can treat each iteration as a posterior

sample. Since the introduction of Gibbs sampling as an MCMC algorithm (Gelfand and

Smith 1990), the Bayesian computational literature has exploded with numerous meth-

ods for generating valid and efficient MCMC algorithms. It would be difficult to list all
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of them here, so we refer the reader to Gelman et al. (2003); Chen, Shao, and Ibrahim

(2000); Rossi, Allenby, and McCulloch (2005) and Brooks et al. (2010) and the hundreds

of references therein.

However, MCMC has two main drawbacks that limit its broader use in practical settings

with large datasets. First, although a proper MCMC algorithm will generate a Markov

chain that converges to the target density eventually, there is no guarantee that such

convergence will occur even after millions of iterations. Second, successive samples from

an MCMC algorithm are autocorrelated, meaning that the effective sample size can be

substantially less than the number of iterations. Thus, before starting the algorithm,

there is no way to know how long it will take to converge to the posterior, and how many

post-convergence iterations are required to conduct inference with an acceptable level of

precision. The performance of MCMC along these dimensions is completely dependent

on the structure of problem, the nature of the data, and the sampling algorithm that is

chosen. Yet, as articulated by Papaspiliopoulos and Roberts (2008), “to date, there has been

little theoretical analysis linking the stability of the Gibbs sampler to the structure of hierarchical

models.”

There is now substantial interest in developing methods for estimating parameters in

Bayesian hierarchical models that do not rely on MCMC. In this paper, we propose a new

estimation method that generates independent samples from a target posterior density.

We call this method Generalized Direct Sampling (GDS). In the GDS method, the only

restrictions are that one must be able to compute the unnormalized log posterior of

the parameters (or a good approximation of it); that the posterior distribution must be

bounded from above over the parameter space; and that one is able to locate any local

maxima of the log posterior function using available computing resources. One need not

derive conditional posterior distributions (as with blockwise Gibbs sampling), and there

are no conjugacy requirements. GDS also allows us to compute the marginal likelihood
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of the data under the model with little additional computation.

We derive the GDS algorithm in Section 2, but the basic idea is as follows. As a first step,

we find the mode of the log posterior density, and construct a proposal density (typically

a multivariate normal) with a mean at the posterior mode. We then repeatedly sample

from the proposal density to estimate the marginal density of a scalar auxiliary parameter.

Samples from this marginal density serve as thresholds for a rejection sampling step; the

source of the thresholds is what distinguishes GDS from traditional rejection sampling.

The final step is to repeatedly sample from the proposal until a threshold condition is

reached, and retain that last sample as a draw from the target posterior.

GDS generates posterior samples that are independent, so they can be collected in par-

allel, dramatically reducing execution time. This is in contrast to MCMC for which the

serial dependence of samples makes within-chain parallel execution impossible.1 This

feature of GDS allows the marketing researcher to exploit recent technological advances

by which multiple processors are readily available in both personal computers and dis-

tributed computing clusters.

In addition, under the assumption that households are conditionally independent, GDS

is scalable. For the purpose of this analysis, we call an algorithm “scalable” if the compu-

tational costs grow at most linearly in the number of households. This scalability comes

from the conditional independence assumption under which the Hessian matrix of the

log posterior density becomes increasingly sparse as the size of the dataset increases. By

exploiting this sparsity, we find that certain tasks within the GDS steps, such as finding

the posterior mode or sampling from a large-dimension multivariate normal distribution,

are much faster than if the Hessian were dense.

We are not claiming that GDS should replace MCMC in all cases. GDS may not be

1Running multiple chains in parallel can reduce the number of required post-convergence iterations,
but it does not avoid the need for each chain to converge independently.
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practical for models with discrete parameters, a very large number of modes, or for

which computing the log posterior density itself is difficult. GDS does not require that

the model be hierarchical, or that the conditional independence assumption holds, but

without those assumptions, it will not be as scalable. Nevertheless, we believe that many

models of the kind marketing researchers will encounter can be estimated well with GDS,

at least relative to the effort involved in using MCMC. Like MCMC and other non-MCMC

methods, GDS is another useful algorithm in the researcher’s and practitioner’s toolkits.

In Section 2, we present the details of the algorithm, along with the theoretical basis for it,

and compare it to other methods. Section 3 includes examples of GDS in action, including

two small models to demonstrate the accuracy of the method, and a moderately-sized

model for which MCMC is impractical. In Section 4, we explain when and why GDS is

scalable, and offer evidence to support that claim via a simulation study. In Section 5, we

show how to use GDS output to estimate the marginal likelihood of the data. Finally, in

Section 6, we discuss practical issues that one should consider when implementing GDS,

including limitations of the approach.

2 Generalized Direct Sampling: The Method

2.1 Theoretical basis

GDS is a variant on well-known importance sampling methods. The goal is to sample a

parameter vector q from a posterior density p(q|y), where p(q) is the prior on q, f (y|q)

is the data likelihood conditional on q, and L(y) is the marginal likelihood of the data.

Therefore,

p(q|y) = f (y|q)p(q)
L(y) =

D(q, y)
L(y) (1)
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where D(q, y) is the joint density of the data and the parameters (of the unnormalized

posterior density). In a marketing research context, under the conditional independence

assumption, the likelihood can be factored as

f (y|q) =
N

’
i=1

fi (yi|bi, a) (2)

where i indexes households. Each yi is a vector of observed data, each bi is a vector of

heterogeneous parameters, and a is a vector of homogeneous population-level parame-

ters. The bi are distributed across the population of households according to a mixing

distribution p(bi|a), which also serves as the prior on each bi. The elements of a may in-

fluence either the household-level data likelihoods, or the mixing distribution (or both).

In this example, q includes all b1 . . . bN and all elements of a. The prior itself can be

factored as

p(q) =
N

’
i=1

pi(bi|a)⇥ p(a). (3)

Let q⇤ be the mode of D(q, y), which is also the mode of p(q|y), since L(y) is a constant

that does not depend on q. One will probably use some kind of iterative numerical

optimizer to find q⇤, such as a quasi-Newton line search or trust region algorithm. Define

c1 = D(q⇤, y), and choose a proposal distribution g(q) that also has its mode at q⇤. Define

c2 = g(q⇤), and define the function

F(q|y) = f (y|q)p(q) · c2
g(q) · c1

(4)

Through substitution and rearranging terms, we can write the target posterior density as

p(q|y) = F(q|y) · g(q) · c1
c2 · L(y)

(5)
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An important restriction on the choice of g(q) is that the inequality 0 < F(q|y)  1 must

hold, at least for any q with a non-negligible posterior density. We discuss the choice of

g(q) in more detail a little later.

Next, let u|q, y be an auxiliary variable that is distributed uniformly on
✓

0,
F(q|y)
p(q|y)

◆
, so

that p(u|q, y) =
p(q|y)
F(q|y) =

c1
c2L(y)

g(q). Then construct a joint density of q|y and u|q, y,

where

p(q, u|y) = p(q|y)
F(q|y)1 [u < F(q|y)] (6)

By integrating Equation 6 over u, the marginal density of q|y is

p(q|y) = p(q|y)
F(q|y)

Z F(q|y)

0
du = p(q|y) (7)

Therefore, simulating from p(q|y) is equivalent to simulating from the target posterior

p(q|y).

Using Equations 5 and 6, the marginal density of u|y is

p(u|y) =
Z

q

p(q|y)
F(q|y)1 [u < F(q|y)] dq (8)

=
c1

c2L(y)

Z

q
1 [u < F(q|y)] g(q) dq (9)

=
c1

c2L(y)
q(u) (10)

where q(u) =
R

q 1 [u < F(q|y)] g(q) dq . This q(u) function is the probability that any

candidate draw from g(q) will satisfy F(q|y) > u.

The GDS sampler comes from recognizing that p(q, u|y) can written differently from, but
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equivalently to, Equation 6.

p(q, u|y) = p(q|u, y) p(u|y) (11)

The sampling method involves sampling a u from an approximation to p(u|y), and then

sampling from p(q|u, y). Using the definitions in Equations 4, 5, and 6, we get

p(q|u, y) =
p(q, u|y)
p(u|y) (12)

=
c1

c2L(y)p(u|y)1[u < F(q|y)] g(q) (13)

To sample directly from p(q, u|y), one needs only to sample from p(u|y) and then sample

repeatedly from g(q) until F(q|y) > u. The samples of q form the marginal distribution

p(q|y), and since sampling from p(q|y) is equivalent to sampling from p(q|y), they form

an empirical estimate of the target posterior density.

2.2 Implementation

But how does one simulate from p(u|y)? In Equation 8, we see that p(u|y) is proportional

to the function q(u). Walker et al. (2011) sample from a similar kind of density by first

taking M proposal draws from the prior to construct an empirical approximation to q(u),

and then approximating that continuous density using Bernstein polynomials. However,

in high-dimensional models, this approximation tends to be a poor one at the endpoints,

even with an extremely large number of Bernstein polynomial components. It is for this

reason that the largest number of parameters that Walker et al. tackle is 10.

Our approach is similar in that we effectively trace out an empirical approximation to

q(u) by repeatedly sampling from g(q), and computing F(q|y) for each of those proposal

draws. To avoid the endpoint problem in the Walker et al. method, we instead sample a

7



transformed variable v = � log u. Applying a change of variables, qv(v) = q(u) exp(�v).

With qv(v) denoting the “true” CDF of v, let bqv(v) be the empirical CDF of v after taking

M proposal draws from g(q), and ordering the proposals 0 < v1 < v2 < . . . < vM < •.

To be clear, bqv(v) is the proportion of samples that are strictly less than v.

Because bqv(v) is discrete, we can sample from a density proportional to q(u) exp(�v) by

partitioning the domain into M + 1 segments with a break point of each partition at each

vi. The probability of sampling a new v that falls between vi and vi+1 is now

vi = bqv(v) [exp(�vi)� exp(�vi+1)] , (14)

so we can sample an interval bounded by vi and vi+1 from a multinomial density with

weights proportional to vi. Once we have the i that corresponds to that interval, we can

sample the continuous v by sampling e from a standard exponential density, truncated

on the right at vi+1� vi, and setting v = vi + e. A simplified way to sample v is to sample

i with weight vi sample a standard uniform random variable h, and set

v = vi � log [1� h (1� exp(vi � vi+1)] . (15)

To sample R independent draws from the target posterior, we need R “threshold” draws

of v. Then, for each v, we repeatedly sample from g(q) until � log(F(q|y)) < v. Once we

have a q that meets this criterion, we save it as a valid sample from p(q|y). The complete

GDS algorithm is summarized as Algorithm 1.

2.3 The proposal distribution

The only restriction on g(q) is that the inequality 0 < F(q|y)  1 must hold, at least

for any q with a non-negligible posterior density. In principle, it is up to the researcher
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Algorithm 1 The GDS Algorithm to collect R samples from p(q|y)
1: R number of required samples from p(q|y)
2: M number of proposal draws for estimating bqv(v).
3: q⇤  mode of D(q, y)
4: c1  D(q⇤, y)
5: FLAG TRUE
6: while FLAG do
7: Choose new proposal distribution g(q)
8: FLAG FALSE
9: c2  g(q⇤).

10: for m := 1 to M do
11: Sample qm ⇠ g(q).
12: log F(qm|y) logD(qm, y)� log g(qm)� log c1 + log c2.
13: vm = � log F(qm|y)
14: if log F(qm|y) > 0 then
15: FLAG TRUE
16: break
17: end if
18: end for
19: end while
20: Reorder elements of v, so 0 < v1 < v2 < . . . < vM < •. Define vM+1 := •
21: for i := 1 to M do
22: bqv(vi) ÂM

j=1 1
⇥
vj < vi

⇤
.

23: vi  bqv(vi) [exp(�vi)� exp(�vi+1)].
24: end for
25: for r = 1 to R do
26: Sample j ⇠ Multinomial(v1 . . . vM).
27: Sample h ⇠ Uniform(0,1).
28: v⇤  vj � log

⇥
1� h

�
1� exp

�
vj � vj+1

��⇤
.

29: p 0
30: nr  0. {Counter for number of proposals}
31: while p > v⇤ do
32: Sample qr ⇠ g(q).
33: p � log F (qr|y).
34: nr  nr + 1.
35: end while
36: end for
37: return q1 . . . qR (plus n1 . . . nR and v1 . . . vM if computing a marginal likelihood).
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to choose g(q), and some choices may be more efficient than others. In all of our work

using GDS, we have found that a multivariate normal (MVN) proposal distribution, with

mean at q⇤, works well for the kinds of continuous posterior densities that marketing

researchers typically encounter. Note that the MVN density, with a covariance matrix

equal to the inverse Hessian of the log posterior at q⇤, is an asymptotic approximation

to the posterior density itself (Carlin and Louis 2000, sec. 5.2). By multiplying that

covariance matrix by a scaling constant s, we can derive a proposal distribution that has

the general shape of the target posterior near its mode. That proposal distribution will

be valid as long as s is large enough so that F(q|y) is between 0 and 1 for any plausible

value of q.

It is, of course, possible that g(q) could under-sample values of q in the tails of the

posterior. If M is large enough, we should know if this would be the case before starting

the rejection sampling phase of the algorithm since we would observe some q for which

log F(q|y) > 0. Heavier-tailed proposals, such as the multivariate-t distribution, can

fail because of high kurtosis at the mode. If, during the rejection sampling phase of

the algorithm, we propose a draw from which F(q|y) > 1, we can stop, rescale, and

try again. Although we believe that the potential cost from under-sampling the tails

is dwarfed by GDS’s relative computational advantage, we recognize that there may be

some applications for which sampling extreme values of q may be important. GDS may

not be the best algorithm for those applications. Otherwise, there is nothing special

about using the MVN for g(q). It is straightforward to implement with manual adaptive

selection of s. This is similar, in spirit, to the concept of tuning a Metropolis-Hastings

algorithm.
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2.4 Comparison to Other Methods

2.4.1 Rejection Sampling

At first glance, GDS looks quite similar to standard rejection sampling. With rejection

sampling, one samples a threshold value from a standard uniform distribution (p(u) =

1), and then repeatedly samples from a proposal distribution g(q) until p(q|y)/g(q) �

Ku, where K is a positive constant. This is different than GDS for which the threshold

values are sampled from a posterior p(u|y), and K is specifically defined as the ratio of

modal densities of the posterior to the proposal. The advantages that rejection sampling

has over GDS are that the distribution of u is exact, and that the proposal density does not

have to dominate the target density for all values of q. However, for any model with more

than a few dimensions, the critical ratio can be extremely small for even small deviations

of q away from the mode. Thus, the acceptance probabilities are virtually nil. With

GDS, we accept a discrete approximation of p(u|y) in exchange for higher acceptance

probabilities.

2.4.2 Direct Sampling

Walker et al. (2011) introduced and demonstrated the merits of a non-MCMC approach

called Direct Sampling (DS) for conducting Bayesian inference. As with GDS, DS removes

the need to concern oneself with issues like chain convergence and autocorrelation. They

also point out that their method generates independent samples from a target posterior

distribution in parallel. Walker et al. also prove that the sample acceptance probabili-

ties using DS are better than those from standard rejection algorithms. Put simply, for

many common Bayesian models, they demonstrate improvement over MCMC in terms

of efficiency, resource demands and ease of implementation.
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However, DS suffers from some important shortcomings that limit its broad applicability.

One is the failure to separate the specification of the prior from the specifics of the estima-

tion algorithm. Another is an inability to generate accepted draws for even moderately

sized problems; the largest number of parameters that Walker et al. consider is 10. GDS

allows us to conduct full Bayesian inference on hierarchical models in high dimensions,

with or without conjugacy, without MCMC.

Strictly speaking, GDS is not a generalization of the DS algorithm, but it does share some

important features with DS. DS and GDS differ in the following respects.

1. While DS focuses on the shape of the data likelihood alone, GDS is concerned with

the characteristics of the entire posterior density.

2. GDS bypasses the need for Bernstein polynomial approximations, which are inte-

gral to the DS algorithm.

3. While DS takes proposal draws from the prior (which may conflict with the data),

GDS samples proposals from a separate density that is ideally a good approxima-

tion to the target posterior density itself.

2.4.3 Markov chain Monte Carlo

We have already mentioned the key advantage that GDS has over traditional MCMC:

generating independent samples that can be collected in parallel. Thus, we do not need to

be concerned at all with issues like autocorrelation, convergence of estimation chains, and

so forth. Without delving into a discussion of all possible variations and improvements to

MCMC that have been proposed in the last few decades, there have been some attempts

to parallelize MCMC that deserve some mention. For a deeper analysis, see Suchard et al.

(2010).
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It is possible to run multiple independent MCMC chains that start from different starting

points. Once all of those chains have converged to the posterior distribution, we can

estimate the posterior by combining samples from all of the chains. The numerical effi-

ciency of that approximation should be higher than if we used only one chain, because

there should be no correlation between samples collected in different chains. However,

each chain still needs to converge to the posterior independently, and only after that

convergence could we start collecting samples. If it takes a long time for one chain to

converge, it will take at least that long for all chains to converge. Thus, the potential for

parallelization is much greater for GDS than it is for MCMC.

Another approach to parallelization is to exploit parallel processing power for individual

steps in an algorithm. One example is a parallel implementation of a multivariate slice

sampler (MSS), as in Tibbits, Haran, and Liechty (2010). The benefits of parallelizing

the MSS come from parallel evaluation of the target density at each of the vertices of

the multivariate slice, and from more efficient use of resources to execute linear alge-

bra operations (e.g, Cholesky decompositions). But the MSS itself remains a Markovian

algorithm, and thus will still generate dependent draws. Using parallel technology to

generate a single draw from a distribution is not the same as generating all of the re-

quired draws themselves in parallel. The sampling steps of GDS can be run in their

entirety in parallel.

3 Examples

We now provide some examples of GDS in action, and of some failures in MCMC. We

start with a couple of small models simply to show that GDS generates the correct pos-

terior distribution. Then, we run both MCMC and GDS on a moderately-sized problem

of 2,015 parameters. In that example, we show that even an advanced MCMC algorithm
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cannot generate a sufficient number of samples in a reasonable amount of time, while

GDS is a valid alternative with far lower computational expense. Then, we conduct a

simulation study to illustrate the scalability of GDS.

3.1 Two simple examples

Our first demonstration model has the observed data being generated from a normal

distribution with a mean of 100 and a standard deviation of 5. The prior on the mean is

itself a normal density, with mean zero and standard deviation of 1000, while the prior

on the standard deviation is uniform, from zero to 100. We simulated 20 observations

from the model, and sampled from the posterior using both MCMC and GDS. Table

1 summarizes the posterior means, along with the 0.025 and 0.975 quantiles that were

estimated from both methods. In addition, we report the frequentist point estimate of

the parameters along with the endpoints of the 95% confidence interval. We see that the

GDS intervals are closely aligned with the intervals from the other two methods.

Mean Std. Dev.
Method 2.5% 50% 97.5% 2.5% 50% 97.5%
gds 98.2 100.7 103.2 13.5 25.8 52.3
CI 98.4 100.7 103.0 13.7 23.6 50.5
mcmc 98.4 100.7 103.0 13.7 24.5 50.4

Table 1: Frequentist and posterior intervals for parameters in first example.

For the second example, we again let the observed data come from a normal distribution

with a mean of 100, but instead we fix the mean and sample t, where the standard

deviation is 1/t. The prior on t is a gamma distribution with a shape of 0.001 and scale

of 1000. The posterior distribution has an analytic solution, namely gamma with a shape

parameter of n/2 + .001, and a scale of 1000/(500 Ân
i=1((x� 100)2 + 1)). In Figure 1, we

plot histograms of the GDS samples for the posterior density of t along with the true

posterior density. Clearly, GDS is able to generate samples from the correct posterior
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distribution.
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Figure 1: Histogram of GDS samples from posterior density of t. The line represents the true
posterior density.

3.2 Hierarchical model

In this section, we estimate parameters of a non-conjugate heterogeneous hierarchical

model for a moderately-sized dataset, where some parameters are only weakly identified.

The data are described in Manchanda, Rossi, and Chintagunta (2004), and are available

in the bayesm package for R (Rossi. 2012). In this dataset, for each of 1,000 physicians,

we observe weekly prescription counts for a single drug (yit), weekly counts of sales

visits from representatives of the drug manufacturer (xit), and some time-invariant de-

mographic information (zi).. Although one could model the purchase data as conditional

on the sales visits, Manchanda et al. argue that the rate of these contacts is determined

endogenously, so that physicians who are expected to write more prescriptions, or who

are more responsive to the sales visits, will receive visits more often.

To maintain our focus on the relative performance of MCMC and GDS, we will estimate

the parameters for a simplified version of the endogenous Manchanda et al. model. We

model yit as a random variable that follows a negative binomial distribution with shape

r and mean µit, and we model xit as a Poisson-distributed random variable with mean hi.
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The expected number of prescriptions per week depends in the number of sales visits, so

we let log µit = bi0 + bi1xit, where bi is a vector of heterogeneous coefficients. We then

model the contact rate so it depends on the physician-specific propensities to purchase.

Thus, log hi = g0 + g1bi0 + g2bi1. Next, define zi as a vector of four physician-specific

demographics (including an intercept), and define D as a 2⇥ 4 matrix of population-level

coefficients. The mixing distribution for b (i.e., the prior on each bi), is MVN with mean

D0zi and covariance V. We place weakly informative MVN priors on g and the rows

of D, an inverse Wishart prior on V, and a gamma prior on r. There are 2,015 distinct

parameters to be estimated. This model differs from the one in Manchanda et al. 2004,

in that hi depends only on expected sales in the current period, and not the long-term

trend. We made this change to make it easier to run the baseline MCMC algorithm.

As our baseline MCMC algorithm, we use Hamiltonian Monte Carlo (HMC, Duane et al.

1987), which uses the gradient of the log posterior to simulate a dynamic physical system.

We refer the reader to Neal (2011) for a review of the details and theory that underlie

HMC. We selected HMC mainly because it is known to generate successive samples that

are less serially correlated than draws that one might sample using other methods like

Metropolis-Hastings. We used the “double averaging” method to adaptively scale the

step size (Hoffman and Gelman 2011), and we set the expected path length to 16.2 HMC

is a good benchmark for GDS because, like GDS, the model is specified only through a

function that returns the log posterior, and not a series of conditional posteriors, as in

Gibbs sampling. This similarity lets us use the same code for the log posterior that we

use for GDS. In short, we implemented HMC so it can compete with GDS on a level

playing field.

We ran four independent HMC chains for 700,000 iterations each, during a period of
2Shorter path lengths were less efficient, and longer ones frequently jumped so far from the regions of

high posterior mass that the computation of the log posterior would underflow. We had the same problem
with the No U-Turn Sampler (Hoffman et al. 2011). The HMC extensions in Girolami and Calderhead
(2011) are inappropriate for this problem because the Hessian is not guaranteed to be positive definite for
all parameter values.
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Figure 2: HMC traceplot of log posterior density for four chains. One chain was started at the
mode, and the others started at random values. Every 500th iteration is plotted.

more than three weeks. Searching for the posterior mode is considered, in general, to

be “good practice” for Bayesian inference, and especially with MCMC; see Step 1 of

the “Recommended Strategy for Posterior Simulation” in Section 11.10 of Gelman et al.

(2003). Since finding the mode of the log posterior is the first step of GDS anyway, so

we initialized one chain there, and the other three at randomly-selected starting values.

Figure 2 shows the trace plot of the log posterior density. The chains begin to approach

each other only after about 500,000 iterations. In Figure 3, we present the trace plots of the

population-level parameters. Some parameter chains appear to have converged to each

other, with little autocorrelation, but others seem to make no progress at all. In Table 2,

we report the effective sample sizes for estimates of the marginal posterior distributions

of population-level parameters, using the final 100,000 samples of the HMC chains. For

many of these parameters, it may require more than a million of additional iterations to

achieve an effective sample size large enough to make inferences about these parameters.

The convergence problems are even worse when we consider that each of the 16 steps

in the path length for iteration requires one evaluation for both the log posterior and
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Figure 3: HMC traceplot for value of population-level parameters in hierarchical model example,
starting at Iteration 500,000. Every 500th iteration is plotted.

its gradient. Using “reverse mode” automatic differentiation, the time to evaluate the

gradient is no more than five times the time it takes to evaluate the log posterior, re-

gardless of the number of variables (Griewank and Walther 2008). Therefore, each HMC

iteration requires resources that equate to 96 evaluations of the posterior. In other words,

the computational cost of 700,000 HMC iterations is equivalent to more than 67 million

evaluations of the log posterior. And this assumes that 700,000 iterations were sufficient

to collect enough samples from the true posterior.

So how much more efficient is GDS? We estimated the marginal density q(v) by taking

M = 100, 000 proposal draws from an MVN distribution with the mean at the posterior

mode, and the covariance matrix equal to the inverse of the Hessian at the mode, mul-

tiplied by a scaling factor of 1.3. This scaling factor is the smallest value that gave us

100,000 samples for which 0 < F(q|y)  1. We then collected 300 independent samples
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Chain
1 2 3 4

D1,1 295 250 266 267
D1,2 16 24 27 29
D1,3 6 12 26 14
D1,4 51 43 43 60
D2,1 4703 5933 5981 1444
D2,2 507 573 526 538
D2,3 407 445 400 407
D2,4 3708 4797 3680 4926
g1 3 4 6 2
g2 10 33 22 22
g3 3 15 3 3

Chol(V)1,1 553 513 500 511
Chol(V)2,1 7844 18761 13796 9852
Chol(V)2,2 530 523 517 477
mean(b1i) 6 5 12 12
mean(b2i) 21 22 28 10

Table 2: Effective sample sizes for estimates of marginal posterior distributions of population-level
parameters, using the final 100,000 samples of HMC chains.

from the target posterior, in parallel, using 12 processing cores in a mid-2010 vintage Mac

Pro. The median number of proposals required for each posterior sample was just under

40,000, the total number of likelihood evaluations was just under 18 million, and aver-

age acceptance rate was 1.7⇥ 10�5. In absolute terms, these numbers may appear to be

unfavorable to GDS. However, note that GDS can make better use of parallel comput-

ing infrastructure, leading to much shorter clock times. One could run multiple MCMC

chains in parallel, but one would have to wait until all of the chains, individually, con-

verge to the target posterior before sampling. Even then, there is no way to confirm that

the chain has, in fact, converged.

We can draw inferences about the accuracy of GDS by comparing its estimated marginal

densities to those that we get from HMC. Note that the HMC estimates are accurate only

if all of the chains converge to the target density, and we have a large-enough effective

sample size. This condition clearly does not hold, but we believe that it is sufficiently

close for the majority of the population-level parameters for us to use HMC samples
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as a standard against which we can evaluate the GDS estimates. Figure 4 illustrates a

comparison of the quantiles. We see that the densities for the elements of D and the

Cholesky decomposition of V are extremely close. For other parameters, the convergence

of the estimates is less clear. However, we can also see that the parameters for which the

densities of HMC and GDS are not aligned are the same parameters for which there is

high autocorrelation, and little movement, in the HMC chains. From these data, we infer

that GDS matches HMC very well in terms of the marginal densities that it generates,

with substantially less uncertainty and computational effort.
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Figure 4: Estimated marginal distributions for population-level parameters using GDS and HMC.

4 Scalability and Sparsity

The ability for GDS to generate independent samples in parallel already makes it an at-

tractive alternative to MCMC. In this section, we present an argument in favor of GDS’s
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scalability. Our criterion for scalability is that the cost of running the algorithm grows

close to linearly in the number of households. Our analysis considers the fundamental

computational tasks involved in running GDS: computing the log posterior, its gradient

and its Hessian; computing the Cholesky decomposition of the Hessian; and sampling

from an MVN proposal distribution. We will show that scalability can be achieved be-

cause, under the conditional independence assumption, the Hessian of the log posterior

is sparse, with a predictable sparsity pattern.

4.1 Computing Log Posteriors, Gradients and Hessians

Under the conditional independence assumption, the log posterior density is the sum of

the logs of Equations 2 and 3, with a heterogeneous component

N

Â
i

log fi (yi|bi, a) + log pi(bi|a) (16)

and a homogeneous component log p(a). This homogeneous component is the hyper-

prior on the population-level parameters, so its computation does not depend on N,

while each additional household adds another element to the summation in Equation 16.

Therefore, computation of the log posterior grows linearly in N. In the subsequent text,

let k be the number of elements in each bi and let p be the number of elements in a.

There are two reasons why we might need to compute the gradient and Hessian of the

log posterior, namely to use in a derivative-based optimization algorithm to find the

posterior mode, and for estimating the precision matrix of an MVN proposal distribu-

tion.3 Ideally, we would derive the gradient and Hessian analytically, and write code

to estimate it efficiently. For complicated models, the required effort for coding analytic

gradients may not be worthwhile. An alternative would be numerical approximation
3GDS does not require either derivative-based optimization or using MVN proposals, but these are most

likely the best choices for differentiable, unimodal posteriors.
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through finite differencing. The fastest, yet least accurate, method for finite differencing

for gradients, using either forward or backward differences, requires Nk + p + 1 evalu-

ations of the log posterior. Since the computational cost of the log posterior also grows

linearly with N, computing the gradient this way will grow quadratically in N. The cost

of estimating a Hessian using finite differencing grow even faster in N. Also, if the Hes-

sian is estimated by taking finite differences of gradients, and those gradients themselves

were finite-differences, the accumulated numerical error can be so large that the Hessian

estimates are useless.

Instead, we can turn to automatic differentiation (AD, also sometimes known as algo-

rithmic differentiation). A detailed explanation of AD is beyond the scope of this paper,

so we refer the reader to Griewank et al. (2008), or Section 8.2 in Nocedal and Wright

(2006). Put simply, AD treats a function as a composite of subfunctions, and computes

derivatives by repeatedly applying the chain rule. In practical terms, AD involves coding

the log posterior using a specialized numerical library that keeps track of the derivatives

of these subfunctions. When we compile the function that computes the log posterior, the

AD library will “automatically” generate additional functions that return the gradient,

the Hessian, and even higher-order derivatives.4

The remarkable feature of AD is that computing the gradient of a scalar-valued function

takes no more than five times as long as computing the log posterior, regardless of the

number of parameters (Griewank et al. 2008, p. xii). If the cost of the log posterior grows

linearly in N, so will the cost of the gradient.

In most statistical software packages, like R, the default storage mode for any matrix is in

4There are a number of established AD tools available for researchers to use for many different program-
ming environments. For C++, we use CppAD (Bell 2013), although ADOL-C (Walther and Griewank 2012)
is also popular. When using the R statistical platform (R Development Core Team 2012), we call our C++
functions through the Rcpp interface (Eddelbuettel and François 2011; Bates and Eddelbuettel 2013). Al-
ternatively, R users (among others) can compute their log posterior using AD Model Builder (Fournier
et al. 2012), and call the log posterior and gradient functions using the R2admb package (Bolker and
Skaug 2012). Matlab users have access to ADMAT (Coleman and Verma 2000), among other options.
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a “dense” format; each element in the matrix is stored explicitly, regardless of the value.

For a model with n variables, this matrix consists of n2 numbers, each consuming 8 bytes

of memory at double precision. If we have a dataset in which N = 10000, k = 5 and p

is small, the Hessian for this model with 50, 000 + p variables will consume more than

20GB of RAM. Furthermore, the computational effort for matrix-vector multiplication is

quadratic in the number of columns, and matrix-matrix multiplication is cubic. To the

extent that either of these operations is used in the mode-finding or sampling steps, the

computational effort will grow much faster than the size of the dataset. Since multiplying

a triangular matrix is roughly one-sixth as expensive as multiplying a full matrix, we

could gain some efficiency by working with the Cholesky decomposition of the Hessian

instead. However, the complexity of the Cholesky decomposition algorithm itself will

still be cubic in N (Golub and Van Loan 1996, Ch. 1).

The source of scalability for GDS is in the sparsity of the Hessian. If the vast majority

of elements in a matrix are zero, we do not need to store them explicitly. Instead, we

need to store only the non-zero values, the row numbers of those values, and the index

of the values that begin each column.5 Under the conditional independence assumption,

the cross-partial derivatives between heterogeneous parameters across households are all

zero. Thus, the Hessian becomes sparser as the size of the dataset increases.

To illustrate, suppose we have a hierarchical model with six households, two heteroge-

neous parameters per household, and two population-level parameters for a total of 14

parameters. Figure 5 is a schematic of the sparsity structure of the Hessian; the vertical

lines are the non-zero elements, and the dots are the zeros. There are 196 elements in this

matrix, but only 169 are non-zero, and only 76 values are unique. Although the savings

in RAM is modest in this illustration, the efficiencies are must greater when we add more

households. If we had 1,000 households, with k = 3 and p = 9, there would be 3009
5This storage scheme is known as the Compressed Sparse Column (CSC) format. This common format

is used by the Matrix package in R, and the Eigen numerical library, but it is not the only way to store a
sparse matrix.
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[1,] | | . . . . . . . . . . | |
[2,] | | . . . . . . . . . . | |
[3,] . . | | . . . . . . . . | |
[4,] . . | | . . . . . . . . | |
[5,] . . . . | | . . . . . . | |
[6,] . . . . | | . . . . . . | |
[7,] . . . . . . | | . . . . | |
[8,] . . . . . . | | . . . . | |
[9,] . . . . . . . . | | . . | |

[10,] . . . . . . . . | | . . | |
[11,] . . . . . . . . . . | | | |
[12,] . . . . . . . . . . | | | |
[13,] | | | | | | | | | | | | | |
[14,] | | | | | | | | | | | | | |

Figure 5: Example of sparsity pattern under conditional independence.

parameters, and more than 9 million elements in the Hessian, yet no more than 63,000

are non-zero, of which about 34,500 are unique. As we add households, the number of

non-zero elements of the Hessian grows only linearly in N.

The cost of estimating a dense Hessian using AD grows linearly with the number of

variables (Griewank et al. 2008). When the Hessian is sparse, with a pattern similar to

Figure 5, we can estimate the Hessian so that the cost is only a multiple of the cost of

computing the log posterior. We achieve this by using a graph coloring algorithm to

partition the variables into q groups (or “colors” in the graph theory literature), such that

a small change in the variable in one group does not affect the partial derivative of any

other variable in the same group. This means we could perturb all of the variables in the

same group at the same time, recompute the gradient, and after doing that for all groups,

still be able to recover an estimate of the Hessian. Thus, the computational cost for

computing the Hessian grows with the number of groups, not the number of parameters.

Because the household-level parameters are conditionally independent, we do not need

to add groups as we add households. For the Hessian sparsity pattern in Figure 5, we

need only four groups: one for each of the heterogeneous parameters across all of the

households, and one for each of the two population-level parameters. In the upcoming
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binary choice example in Section 4.4, for which k = 3, there are 1
2
�
k2 + 5k

�
= 12 groups,

no matter how many households we have in the dataset.

Curtis, Powell, and Reid (1974) introduce the idea of reducing the number of evaluations

to estimate sparse Jacobians. Powell and Toint (1979) describe how to partition vari-

ables into appropriate groups, and how to recover Hessian information through back-

substitution. Coleman and Moré (1983) show that the task of grouping the variables

amounts to a classic graph-coloring problem. Most AD software applies this general prin-

ciple to computing sparse Hessians. Alternatively, R users can use the sparseHessianFD

package (Braun 2013b) to efficiently estimate sparse Hessians through finite differences

of the gradient, as long as the sparsity pattern is known in advance, and as long as the

gradient was not itself estimated through finite differencing. This package is an interface

to the algorithms in Coleman, Garbow, and Moré (1985b) and Coleman, Garbow, and

Moré (1985a).

4.2 Finding the posterior mode

For simple models and small datasets, standard default algorithms (like the optim func-

tion in R) are sufficient for finding posterior modes and estimating Hessians. For larger

problems, one should choose optimization tools more thoughtfully. For example, many

of the R optimization algorithms default to finite differencing of gradients when a gradi-

ent function is not provided explicitly. Even if the user can provide the gradient, many

algorithms will store a Hessian, or an approximation to it, densely. Neither feature is

attractive when the number of households is large.

For this section, let’s assume that the log posterior is twice-differentiable and unimodal.6

There are two approaches that one can take. The first is to use a “limited memory”

6Neither assumption is required for GDS, but most marketing models satisfy them, and maintaining
them simplifies our exposition.
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optimization algorithm that approximates the curvature of the log posterior over succes-

sive iterations. Many algorithms are described in Nocedal et al. (2006), and are imple-

mented in R using the default optim function, or contributed packages like nloptwrap

(Borchers 2013). Once the algorithm finds the posterior mode, there remains the need to

compute the Hessian exactly.

The second approach is to run a quasi-Newton algorithm, and compute the Hessian

at each iteration explicitly, but store the Hessian in a sparse format. For example, the

trustOptim package for R (Braun 2013d) implements a trust-region algorithm that ex-

ploits the sparsity of the Hessian. The user can supply a Hessian that is derived an-

alytically, computed using AD, or estimated numerically using sparseHessianFD. Since

memory requirements and matrix computation costs will grow only linearly in N, finding

the posterior mode becomes feasible for large problems, compared to similar algorithms

that ignore sparsity.

We should note that we cannot predict the time to convergence for general problems.

Log posteriors with ridges or plateaus, or that require extensive computation themselves,

may still take a long time to find the local optimum. Whether any mode-finding algo-

rithm is “fast enough” depends on the specific application. However, if one optimization

algorithm has difficulty finding a mode, another algorithm may do better.

4.3 Sampling from an MVN distribution

Once we find the posterior mode, and the Hessian at the mode, generating proposal

samples from an MVN(q⇤, sH�1) distribution is straightforward. Let 1
s H = LL0 represent

the Cholesky decomposition of the precision of the proposal, and let z be a vector of

Nk + p samples from a standard normal distribution. To sample q from an MVN, solve

the triangular linear system L0q = x, and then add q⇤. Since E(z) = 0, E(q) = q⇤, and
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since E(zz0) = I, cov(q) = L0�1L�1 = (LL0)�1 = sH�1.

Because L is sparse, the costs of both solving the triangular system, and the premultipli-

cation, grow linearly with the number of nonzero elements, which itself grows linearly

in N (Davis 2006). If L were dense, then the cost of solving the triangular system would

grow quadratically in N. Furthermore, computing the MVN density would involve pre-

multiplying z by a triangular matrix, whose cost is cubic in N (Golub et al. 1996).

Computation of the Cholesky decomposition can also benefit from the sparsity of the

Hessian. If H were dense Nk + p square, symmetric matrix, then, holding k and p con-

stant, the complexity order of the Cholesky decomposition is N3 (Golub et al. 1996). There

are a number of different algorithms that one can use for decomposing sparse Hessians,

as discussed in Davis (2006). The typical strategy is to first permute the rows and columns

of H to minimize the number of nonzero elements in L, and then compute the sparsity

pattern. This part can be done just once. With the sparsity pattern in hand, the next step

is to compute those nonzero elements in L. The time for this step grows with the sum of

the squares of the number of nonzero elements in each column of L(Davis 2006). Because

each additional household adds k columns to L, with an average of p + 1
2(k + 1) nonzero

elements per column, we can compute the sparse Cholesky decomposition in time that

is linear in N. Most numerical libraries that support sparse matrices, including Eigen

(for C++) and the Matrix package (for R), provide ready-to-use algorithms for sparse

Cholesky decompositions.

4.4 Scalability Test

Next, we provide some empirical evidence of the scalability of GDS through a simulation

study. For a hypothetical dataset with N households, let yi be the number of times

household i visits a store during a T week period. The probability of a visit in a single
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Figure 6: Average computation time for 100 evaluations of log posterior, gradient and Hessian.

week is pi, where logit pi = b0ixi, and xi is a vector of k covariates. The distribution of

bi across the population is MVN with mean b̄ and covariance S. In all conditions of the

test, we set k = 3 and T = 52, and vary the number of households by setting N to one

of 10 discrete values from 500 to 50,000. The “true” values of b̄ are -10, 0 and 10, and the

“true” S is 0.1I. We place weakly informative priors on both b̄ and S.

In Figure 6, we plot the average time, across 100 replications, to compute the log pos-

terior, the gradient, and the Hessian. As expected, each of these computations grows

linearly in N. In Figure 7, we plot average times for the steps involved in sampling from

an MVN: adding a vector to columns of a dense matrix, computing a sparse Cholesky

decomposition, multiplying a sparse triangular matrix by a dense matrix, sampling stan-

dard normal random variates, and solving a sparse triangular linear system. Again, we

see that the time for all of these steps is linear in N.

Table 3 summarizes the acceptance rates and scale factors when generating 50 samples

from the posterior using GDS for different values of N. Although there is a weak trend

of increasing acceptance rates with N,we really cannot say with any certainty that accep-

tance rates will always be either larger or smaller for larger datasets. This is because the
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Figure 7: Computation time, averaged over 100 replications, for adding a vector to matrix columns
(add); a sparse Cholesky decomposition (chol); multiplying a sparse triangular matrix by a dense
matrix (mult); sampling standard normal random variates (rnorm); and solving a sparse triangu-
lar linear system (solve)

N 500 1,000 2,000 5,000 10,000 15,000 20,000 30,000 40,000 50,000
scale factor 1.22 1.16 1.10 1.08 1.04 1.03 1.03 1.03 1.03 1.02
acc. rate (⇥10�5) 2.1 1.5 2.6 0.7 2.9 2.6 3.6 3.9 2.7 3.3

Table 3: GDS acceptance rates for binary choice simulation. For each condition, k = 3, so there
are 6 population-level parameters and 3N heterogeneous parameters.

acceptance rate could be influenced by using different scale factors on the Hessian for the

MVN proposal density. However, we would expect higher acceptance rates as the target

posterior density approaches an MVN asymptotically. Thus, since none of the GDS steps

grows faster than linearly in N, we are confident in the scalability of the overall GDS

algorithm.

5 Estimating Marginal Likelihoods

Now, we turn to another advantage of GDS: the ability to generate accurate estimates

of the marginal likelihood of the data with little additional computation. A number of
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researchers have proposed methods to approximate the marginal likelihood, L(y) from

MCMC output (Gelfand and Dey 1994; Newton and Raftery 1994; Chib 1995; Raftery et

al. 2007), but none has achieved universal acceptance as being unbiased, stable and easy

to compute. In fact, Lenk (2009) demonstrated that methods which depend solely on

samples from the posterior density could suffer from a “pseudo-bias,” and he proposes

an importance-sampling method to correct for it. This bias arises because the convex hull

of MCMC samples defines only a subset of the posterior support, while L(y) is defined

as an integral of the data likelihood over the prior distribution. Lenk demonstrates that

his method dominates other popular methods, although with substantial computational

effort. Thus, the estimation of the marginal likelihood remains a difficult problem in

MCMC-based Bayesian statistics.

GDS allows us to estimate the marginal likelihood using quantities that we can collect

during the course of the estimation procedure. Recall that q(u) is the probability that,

given a threshold value u, a proposal from g(q) is accepted as a sample from p(q|y).

Therefore, one can express the expected marginal acceptance probability for any one

posterior sample as

g =
Z 1

0
q(u)p(u|y) du. (17)

Substituting in Equation 8,

g =
c1

c2L(y)

Z 1

0
q2(u) du (18)

Applying a change of variables so v = � log u, and then rearranging terms,

L(y) = � c1
c2g

Z •

0
q2(v) exp(�v) dv. (19)

The values for c1 and c2 are immediately available from the GDS algorithm. One can
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estimate g from the observed acceptance rate ĝ as the inverse of the mean of the average

number of proposals per accepted sample.

What remains is estimating the integral in Equation 19, for which we use the same pro-

posal draws that we already collected for estimating bqv(v). The empirical CDF of these

draws is discrete, so we can partition the support of qv(v) at v1 . . . vM. Also, since bqv(v)

is the proportion of proposal draws less than v, we have qv(vi) =
i

M . Therefore,

Z •

0
q2(v) exp(�v)dv ⇡

M

Â
i=1

Z vi+1

vi

✓
i

M

◆2
exp(�vi)dv (20)

=
1

M2

M

Â
i=1

i2 [exp(�vi)� exp(�vi+1)] (21)

=
1

M2

M

Â
i=1

(2i� 1) exp(�vi) (22)

Putting all of this together, we can estimate the marginal likelihood as

L(y) ⇡ c1
M2c2ĝ

M

Â
i=1

(2i� 1) exp(�vi) (23)

As a demonstration of the accuracy of this estimator, we use the same linear regression

example that Lenk (2009) uses.

yit ⇠ N(x0i b, s2), i = 1 . . . n, t = 1 . . . T (24)

b|s ⇠ N(b0, s2V0) (25)

s2 ⇠ IG(r, a) (26)

For this model, L(y) is a multivariate-t density (MVT), which we can compute analyti-

cally. This allows us to compare the GDS estimates of L(y) with the “truth.” To do this,

we conducted a simulation study for simulated datasets of different numbers of obser-

vations n 2 {200, 2000} and numbers of covariates k 2 {5, 25, 100}. For each n, k pair,
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we simulated 25 datasets. For each dataset, each vector xi includes an intercept and k iid

samples from a standard normal density. Thus, there are k + 2 parameters, correspond-

ing to the elements of b, plus s. The true intercept term is 5, and the remaining true b

parameters are linearly spaced from �5 to 5. In all cases, there are T = 25 observations

per unit. Hyperpriors are set as r = 2, a = 1, b0 as a zero vector and V0 = 0.2 · Ik.

For each dataset, we collected 250 draws from the posterior density using GDS, with

different numbers of proposal draws (M = 1, 000 or 10, 000), and scale factors (s =

0.5, 0.6, 0.7, or 0.8}) on the Hessian (sH is the precision matrix of the MVN proposal den-

sity, and lower scale factors generate more diffuse proposals). We excluded the s = 0.8,

n = 200 case because the proposal density was not sufficiently diffuse to ensure that

F(q|y) was between 0 and 1 across the M proposal draws.

Table 4 presents the true log marginal likelihood (MVT), along with estimates using

GDS, the importance sampling method in Lenk (2009), and the harmonic mean estimator

Newton et al. (1994). We also included the mean GDS acceptance probabilities. We can

see that the GDS estimates for the log marginal likelihood are remarkably close to the

MVT densities, and are robust when we use different scale factors. Accuracy appears to

be better for larger datasets than smaller ones; improving the approximation of p(u) by

increasing the number of proposal draws offers negligible improvement. Note that the

performance of the GDS method is comparable to that of Lenk, but is much better than

the harmonic mean estimator. The GDS method is similar to Lenk’s in that it computes

the probability that a proposal draw falls within the support of the posterior density.

However, note that the inputs to the GDS estimator are intrinsically generated as the GDS

algorithm progresses. In contrast, the Lenk estimator requires an additional importance

sampling run after the MCMC draws are collected.
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MVT GDS Lenk HME Mean
k n M scale mean sd mean sd mean sd mean sd Acc %
5 200 1000 0.5 -309 6.6 -309 6.6 -311 6.8 -287 7.1 22.1
5 200 1000 0.6 -309 6.6 -309 6.7 -310 6.9 -287 6.9 40.5
5 200 1000 0.7 -309 6.6 -309 6.7 -310 6.5 -287 6.3 57.1
5 200 10000 0.5 -309 6.6 -309 6.6 -311 6.7 -287 6.7 24.0
5 200 10000 0.6 -309 6.6 -309 6.6 -310 7.5 -287 6.8 40.9
5 200 10000 0.7 -309 6.6 -309 6.7 -310 7.0 -287 7.1 55.2
5 2000 1000 0.5 -2866 46.2 -2865 46.3 -2868 46.2 -2836 46.2 22.1
5 2000 1000 0.6 -2866 46.2 -2866 46.2 -2868 45.7 -2836 45.5 37.8
5 2000 1000 0.7 -2866 46.2 -2866 46.3 -2867 45.9 -2836 45.9 49.6
5 2000 1000 0.8 -2866 46.2 -2866 46.2 -2867 46.3 -2835 46.3 64.6
5 2000 10000 0.5 -2866 46.2 -2866 46.4 -2867 46.7 -2836 46.9 25.3
5 2000 10000 0.6 -2866 46.2 -2866 46.2 -2867 45.8 -2836 46.3 36.3
5 2000 10000 0.7 -2866 46.2 -2866 46.4 -2867 46.0 -2836 46.3 51.4
5 2000 10000 0.8 -2866 46.2 -2866 46.2 -2867 46.5 -2835 46.3 72.0

25 200 1000 0.5 -387 8.1 -385 8.2 -391 7.6 -292 8.5 2.8
25 200 1000 0.6 -387 8.1 -386 8.1 -390 9.5 -292 8.8 8.1
25 200 1000 0.7 -387 8.1 -386 8.3 -390 8.0 -292 8.8 16.2
25 200 10000 0.5 -387 8.1 -385 8.5 -390 8.2 -292 8.4 1.7
25 200 10000 0.6 -387 8.1 -385 8.2 -390 8.9 -292 8.8 6.2
25 200 10000 0.7 -387 8.1 -386 8.2 -390 8.7 -292 9.1 20.0
25 2000 1000 0.5 -2990 28.7 -2989 28.8 -2994 28.3 -2865 28.8 2.7
25 2000 1000 0.6 -2990 28.7 -2989 28.7 -2993 28.4 -2864 29.0 4.6
25 2000 1000 0.7 -2990 28.7 -2989 28.9 -2991 30.0 -2864 29.5 15.4
25 2000 1000 0.8 -2990 28.7 -2990 28.7 -2992 29.6 -2864 29.4 43.1
25 2000 10000 0.5 -2990 28.7 -2988 29.2 -2992 28.5 -2864 28.9 .8
25 2000 10000 0.6 -2990 28.7 -2989 29.1 -2993 29.4 -2864 28.9 3.7
25 2000 10000 0.7 -2990 28.7 -2990 29.0 -2993 28.9 -2864 28.9 17.1
25 2000 10000 0.8 -2990 28.7 -2990 28.6 -2993 28.2 -2865 28.2 43.3

100 200 1000 0.5 -660 6.7 -661 6.5 -683 8.8 -292 9.2 .3
100 200 1000 0.6 -660 6.7 -660 6.6 -678 8.5 -286 9.0 .3
100 200 1000 0.7 -660 6.7 -659 7.1 -673 7.8 -282 8.0 .4
100 200 10000 0.5 -660 6.7 -659 6.9 -682 9.1 -288 10.4 .1
100 200 10000 0.6 -660 6.7 -660 5.7 -678 8.8 -286 8.9 .1
100 200 10000 0.7 -660 6.7 -658 6.7 -674 7.3 -282 8.4 .1
100 2000 1000 0.5 -3364 24.4 -3364 24.8 -3370 27.5 -2871 27.1 .3
100 2000 1000 0.6 -3364 24.4 -3362 24.6 -3369 24.3 -2868 25.3 .6
100 2000 1000 0.7 -3364 24.4 -3361 23.9 -3371 25.6 -2870 25.4 1.1
100 2000 1000 0.8 -3364 24.4 -3362 23.9 -3370 26.0 -2868 26.1 3.2
100 2000 10000 0.5 -3364 24.4 -3362 24.0 -3372 25.3 -2870 25.2 .1
100 2000 10000 0.6 -3364 24.4 -3360 24.9 -3368 25.3 -2867 25.4 .1
100 2000 10000 0.7 -3364 24.4 -3360 24.6 -3370 25.5 -2869 25.5 .4
100 2000 10000 0.8 -3364 24.4 -3362 24.5 -3367 24.3 -2867 24.4 3.0

Table 4: Results of simulation study for effectiveness of estimator for log marginal likelihood.
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6 Discussion of practical considerations and limitations

To many marketing researchers who use Bayesian methods, having spent long work

hours dealing with MCMC convergence and efficiency issues, the utility of an algorithm

like GDS is appealing. GDS allows researchers to sample from a posterior density in

parallel, without having to worry about whether an MCMC estimation chain has con-

verged. If heterogeneous units (like households) are conditionally independent, then the

sparsity of the Hessian of the log posterior lets us construct a sampling algorithm whose

complexity grows only linearly in the number of units. We believe that GDS makes

Bayesian inference more attractive to practitioners who might otherwise be put off by the

inefficiencies of MCMC.

This is not to say that GDS is guaranteed to generate perfect samples from the target

posterior distribution. One area of potential concern is that the empirical distribution

bqv(v) is only a discrete approximation to qv(v). That discretization could introduce some

error into the estimate of the posterior density. This error can be reduced by increasing M

(the number of proposal draws that we use to compute bqv(v) ), at the expense of costlier

computation of bqv(v) and, possibly, lower acceptance rates. In our experience with GDS,

we have not found this to be a problem, but some applications for which this may be an

issue might exist.

Like many other methods that collect random samples from posterior distributions, the

efficiency of GDS depends in part on a prudent selection of the proposal density g(q).

For the examples in this paper, we used a multivariate normal density that is centered

at the posterior mode with a covariance matrix that is proportional to the inverse of the

Hessian at the mode. One might then wonder if there is an optimal way to determine just

how “scaled out” the proposal covariance needs to be. At this time, we think that trial

and error is, quite frankly, the best alternative. For example, if we start with a small M
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(say, 100 draws), and find that F(q|y) > 1 for any of the M proposals, we have learned

that the proposal density is not valid at little computational or real-time cost. We can

then re-scale the proposal until F(q|y) < 1, and then gradually increase M until we get a

good approximation to p(u). In our experience, even if an acceptance rate appears to be

low (say, 0.0001), we can still collect draws in parallel, so the “clock time” remains much

less than the time we spend trying to optimize selection of the proposal. This scaling

phase evaluation in the GDS method is no different, in principle, than the tuning step in

a Metropolis-Hasting algorithm.

There are many popular models, such as multinomial probit, for which the likelihood of

the observed data is not available in closed form. When direct numerical approximations

to these likelihoods (e.g., Monte Carlo integration) are not tractable, MCMC with data

augmentation is a possible alternative. Recent advances in parallelization using graphical

processing units (GPUs) might make numerical estimation of integrals more practical

than it was even 10 years ago (Suchard et al. 2010). If so, then GDS could be a viable,

efficient alternative to data augmentation in these kinds of models. Multiple imputation

of missing data could suffer from the same kinds of problems, since a latent parameter,

introduced for the data augmentation step, is only weakly identified on its own. If the

number of missing data points is small, one could treat the representation of the missing

data points as if they were parameters. But the implications of this require additional

research.

Another consideration is the case of multimodal posteriors. GDS does require finding the

global posterior mode, and all the models discussed in this paper have unimodal poste-

rior distributions. When the posterior is multimodal, one could instead use a mixture of

normals as the proposal distribution. The idea is to not only find the global mode, but any

local ones as well, and center each mixture component at each of those local modes. The

GDS algorithm itself remains unchanged, as long as the global posterior mode matches
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the global proposal mode. We recognize that finding all of the local modes could be a

hard problem, and there is no guarantee that any optimization algorithm will find all

local extrema in a reasonable amount of time. In practical terms, MCMC, offers no such

guarantees either.

For researchers who use R for statistical analysis, there are a number of packages that

can help with implementation of GDS. The bayesGDS package (Braun 2013a) includes

functions to run the rejection sampling phase (lines 20-36 in Algorithm 1). To use these

functions, the user will supply the log F(qm|y) for the M proposal draws, along with

functions that compute the log posterior, sample from the proposal distribution, and

compute the proposal density. This package also includes a function that estimates the

log marginal likelihood from the GDS output. If the proposal distribution is MVN, and

either the covariance or precision matrix is sparse, then one can use the sparseMVN

(Braun 2013c) package to sample from the MVN by taking advantage of that sparsity.

The sparseHessianFD (Braun 2013b) package estimates a sparse Hessian by taking finite

differences of gradients of the function, as long as the user can supply the sparsity pattern

(which should be the case under conditional independence). Finally, the trustOptim

package (Braun 2013d) is a nonlinear optimization package that uses a sparse Hessian to

include curvature information in the algorithm.
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