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Abstract

blockcluster is a newly developed R package for co-clustering of binary, contingency,
continuous and categorical data. The core library is written in C++ and blockcluster

API acts as a bridge between C++ core library and R statistical computing environment.
The package is based on recently proposed [4],[2],[3] latent block models for simultaneous
clustering of rows and columns. This tutorial is based on the package version 2.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as pattern recognition,
information retrieval, micro-array, data mining, and so forth. Although many clustering pro-
cedures such as hierarchical clustering, k-means or self-organizing maps, aim to construct an
optimal partition of objects or, sometimes, of variables, there are other methods, called block
clustering methods, which consider simultaneously the two sets and organize the data into ho-
mogeneous blocks. Let x denotes a n× d data matrix defined by x = {(xij); i ∈ I and j ∈ J},
where I is a set of n objects (rows, observations, cases etc) and J is a set of d variables (columns,
attributes etc). The basic idea of these methods consists in making permutations of objects and
variables in order to draw a correspondence structure on I × J . For illustration, consider Fig-
ure 1 where a binary data set defined on set of n = 10 individuals I = A,B,C,D,E, F,G,H, I, J
and set of d = 7 binary variables J = 1, 2, 3, 4, 5, 6, 7 is re-organized into a set of 3× 3 clusters
by permuting the rows and columns.
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Figure 1: Binary data set (a), data reorganized by a partition on I (b), by partitions on I and
J simultaneously (c) and summary matrix (d).

Owing to ever increasing importance of Co-clustering in variety of scientific areas, we have
recently developed a R package for the same called blockcluster. The R package blockcluster
allows to estimate the parameters of the co-clustering models [[4]] for binary, contingency,
continuous and categorical data. This package is unique from the point of view of generative
models it implements (latent block models), the used algorithms (BEM, BCEM) and, apart from
that, special attention has been given to design the library for handling very huge data sets in
reasonable time. The R package is already available on CRAN at http://cran.r-project.

org/web/packages/blockcluster/index.html.
This aim of this tutorial is to elaborate the usage of R package blockcluster and to fa-

miliarize its users with its various capabilties. The rest of the article is organized as follows.
Section 2 gives various details of the package as well as demonstrate it’s usage on similated
binary data-set. Section 3 provides two examples with real data-sets.

2 Package details

This package contains two main functions namely cocluster and cocluststrategy to perform
co-clustering and to set various input parameters respectively. The package also contains two
helper functions namely summary and plot to get the summary of estimated model parameters
and to plot the results respectively. We will first go through the details of two main functions.
The helper functions are self-explanatory and I will use them in various examples for better
understanding.

2.1 cocluster function

This is the main function of blockcluster package that performs Co-clustering for binary, con-
tingency and continuous data. The prototype of the function is as follows:

cocluster(data, datatype, semisupervised = FALSE, rowlabels = numeric(0), colla-
bels = numeric(0), model = character(0), nbcocluster, strategy = cocluststrategy())

The various inputs of cocluster functions are as follows:

• data: Input data as matrix (or list containing data matrix, numeric vector for row effects
and numeric vector column effects in case of contingency data with known row and column
effects.)
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• datatype: This is the type of data which can be ”binary” , ”continuous” or ”contin-
gency”.

• semisupervised: Boolean value specifying whether to perform semi-supervised co-clustering
or not. Make sure to provide row and/or column labels if specified value is true. The
default value is false.

• rowlabels: Vector specifying the class of rows. The class number starts from zero.
Provide -1 for unknown row class.

• collabels: Vector specifying the class of columns. The class number starts from zero.
Provide -1 for unknown column class.

• model: This is the name of model. The various models that are available in package are
given in Table 1.

• nbcocluster: Integer vector specifying the number of row and column clusters respec-
tively.

• strategy: This input can use to control various input parameters. It can be created using
the function cocluststrategy as explained in Section 2.2.

The only mandatory inputs to the function cocluster are data, datatype and nbcocluster.
The default model for each data-type is the most general model with free row and column
proportions and unequal dispersion/variance for each block. Furthermore we have default set
of input parameters which works well in most cases which are explained in further details in
Section 2.2. The package also comes with OpenMP support (If supported by your Operating
system and R). OpenMP will automatically set the number of threads depending on your system.

Model Datatype Proportions Dispersion/Variance Initialization

pik rhol epsilonkl binary unequal unequal CEM
pik rhol epsilon binary unequal equal CEM
pi rho epsilonkl binary equal unequal CEM
pi rho epsilon binary equal equal CEM

pik rhol sigma2kl continuous unequal unequal CEM
pik rhol sigma continuous unequal equal CEM
pi rho sigma2kl continuous equal unequal CEM
pi rho sigma2 continuous equal equal CEM

pik rhol unknown contingency unequal N.A CEM
pi rho unknown contingency equal N.A CEM
pik rhol known contingency unequal N.A Random
pi rho known contingency equal N.A Random
pik rhol multi categorical unequal N.A Random
pi rho multi categorical equal N.A Random

Table 1: Various models available in package blockcluster.

2.2 cocluststrategy function

In the package blockcluster, we have a function called cocluststrategy which can be used to
set the values of various input parameters. The prototype of the function is as follows:
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cocluststrategy(algo = ”BEM”, initmethod = character(), stopcriteria = ”Param-
eter”, semisupervised = FALSE, nbiterationsxem = 50, nbiterationsXEM = 500,
nbinititerations = 10, initepsilon = 0.01, nbiterations int = 5, epsilon int = 0.01,
epsilonxem = 1e-04, epsilonXEM = 1e-10, nbtry = 2, nbxem = 5,bayesianform =
FALSE, hyperparam = numeric(0))

In the following example, we call the function cocluststrategy without any arguments and
then we called the overloaded function summary to see default values of various input param-
eters.

R > defaultstrategy <- cocluststrategy ()

R > summary(defaultstrategy)

******************************************************************

Algorithm: BEM

Initialization method(There is no default value):

Stopping Criteria: Parameter

Various Iterations

******************

Number of global iterations while running initialization: 10

Number of iterations for internal E-step: 5

Number of EM iterations used during xem: 50

Number of EM iterations used during XEM: 500

Number of xem iterations: 5

Number of tries: 2

Various epsilons

****************

Tolerance value used while initialization: 0.01

Tolerance value for internal E-step: 0.01

Tolerance value used during xem: 1e-04

Tolerance value used during XEM: 1e-10

Bayesian form: FALSE

Hyper -parameters:

******************************************************************

One thing which is worth noting in the summary output (above) is that there is no default value
for initialization method. It will be set automatically depending on the type of input model. To
set these input parameters, we have to pass appropriate arguments to function cocluststrategy

as shown in example below where we set nbtry, nbxem and algo parameters.

R > newstrategy <- cocluststrategy(nbtry=5, nbxem=10, algo=’BCEM’)

The newstrategy object can then be passed to function cocluster to perform Co-clustering
using the newly set input parameters. The various input arguments for the function coclust-

strategy are as follows:

• algo: The valid values for this parameter are ”BEM” (Default), ”BCEM” and ”BSEM”
which are respectively Block EM, Block Classifiaction EM and Block Stochastic EM al-
gorithms.

• stopcriteria: It specifies the stopping criteria. It can be based on either relative change
in parameters value (preferred) or relative change in log-likelihood. Valid criterion values
are ”Parameter” and ”Likelihood”. Default criteria is ”Parameter”.
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• initmethod: Method to initialize model parameters. The valid values are ”CEMInit”,
”FuzzyCEMInit” and ”RandomInit”. For now only one kind of initialization exist for
every model currently available in the package. Hence default value for initialization is
set according to the model.

• nbinititerations: Number of Global iterations used in initialization step. Default value
is 10.

• initepsilon: Tolerance value used inside initialization. Default value is 1e-2.

• nbiterations int: Number of iterations for internal E step. Default value is 5.

• epsilon int: Tolerance value for relative change in Parameter/likelihood for internal E-
step. Default value is 1e-2.

• nbtry: Number of tries (XEM steps). Default value is 2.

• nbxem: Number of xem steps. Default value is 5.

• nbiterationsxem: Number of EM iterations used during xem step. Default value is 50.

• nbiterationsXEM: Number of EM iterations used during XEM step. Deafault value is
500.

• epsilonxem: Tolerance value used during xem step. Default value is 1e-4.

• epsilonXEM: Tolerance value used during XEM step. Default value is 1e-10.

To understand many of the above input parameters, we need to have some basic idea about
the algorithms and the way they are run inside package blockcluster, which is why there is a
separate dedicated section 2.2.1 for the same.

2.2.1 Understanding various input parameters

You might be wondering why there are so many types of iterations and tolerances inside the
package. Well, to get some basic understanding about various input parameters, it is impor-
tant to know a bit about the algorithms. We will not go through full fledged theory of these
algorithms here but will provide enough details to make you understand the meaning of all the
input parameters. From now on everything will be explained using BEM but it is applicable
in same way to BCEM as well as to BSEM algorithm. The BEM algorithm can be defined as
follows in laymen language.

1. Run EM algorithm on rows.

2. Run EM algorithm on columns.

3. Iterate between above two steps until convergence.

The following strategy is employed to run various algorithms.

1. Run the BEM Algorithm for ’nbxem’ number of times (with high tolerance and low
number of iterations) and keep the best model parameters (based on likelihood) among
these runs. We can this step as ’xem’ step.

2. Starting with the best model parameters, run the algorithm again but this time with a
low value of epsilon (low tolerance) and a high number of iterations. We can this step as
’XEM’ step.
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3. Repeat above two steps for ’nbtry’ number of times and keep the best model estimation.

With this background, the various input parameters are explained as follows.

• nbxem, nbtry: As explained above these numbers represents the number of time we run
’xem’ step and ’xem’+’XEM’ step respectively. The tuning of the values of ’nbxem’

and ’nbtry’ need to be done intuitively, and could have a substantial effect on final
results. A good way to set these values is to run co-clustering few number of times and
check if final log-likelihood is stable. If not, one may need to increase these values. In
practice, it is better to increment ’nbxem’ as it could lead to better (stable) results
without compromising too much the running time.

• nbiterationsxem, nbiterationsXEM: These are number of iterations for BEM algo-
rithm i.e the number of times we run EM on rows and EM on columns. As the name
suggests, they are respectively for ’xem’ and ’XEM’ steps.

• nbiterations int: This is the number of iterations for EM algorithm on rows/columns.

• epsilonxem, epsilonXEM: These are tolerance values for BEM algorithm during ’xem’

and ’XEM’ step respectively.

• epsilon int: This is the tolerance value for EM algorithm on rows/columns.

• initepsilon, nbinititerations: These are the tolerance value and number of iterations
respectively used during initialization of model parameters.

• bayesianform: Boolean parameter to indicate whether to run algorithms in bayesian
settings or not. Algorithms under bayesian settings are currently only implemented for
binary and categorical models. Default value is false.

• hyperparam: Hyper-parameters (”a” and ”b”) in case of Bayesian settings. If the
assigned value of ”a” and ”b” is 1, then the algorithms are no different than their original
form.

2.3 Model Parameters

When summary function is called on the output cocluster fuction, it gives the estimated val-
ues of various model parameters. The parameters that are common among all the models are
row and column mixing proportions. The model parameter for various data-types are as follows.

Binary Models

The parameters α of the underlying distribution of a binary data set is given by the matrix
p = (pkℓ) where pkℓ ∈]0, 1[ ∀ k = 1, . . . , g and ℓ = 1, . . . ,m and the probability distribution
fkℓ(xij ;p) = f(xij ; pkℓ) is the Bernoulli distribution

f(xij ; pkℓ) = (pkℓ)
xij (1− pkℓ)

1−xij .

we re-parameterize the model density as follows:

fkℓ(xij ;α) = (εkj)
|xij−akℓ|(1− εkj)

1−|xij−akℓ|

where
{

akℓ = 0, εkℓ = pkℓ if pkℓ < 0.5
akℓ = 1, εkℓ = 1− pkℓ if pkℓ > 0.5.

Hence the parameters pkℓ of the Bernoulli mixture model are replaced by the following
parameters:
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• The binary value akℓ, which acts as the center of the block k, ℓ and which gives, for each
block, the most frequent binary value,

• The value εkℓ belonging to the set ]0, 1/2[ that characterizes the dispersion of the block
k, ℓ and which is, for each block, represents the probability of having a different value than
the center.

Continuous Models

In this case, the continuous data is modeled using unidimensional normal distribution. Hence
the density for each block is given by:

fkℓ(xij ;α) =
1

√

2πσ2

kℓ

exp−{
1

2σ2

kℓ

(xij − µkℓ)
2}

The parameters of the model are α = (α11, . . . ,αgm) where αkℓ = (µkℓ, σ
2

kℓ) i.e the mean and
variance of block k, l.

Contingency Models

In this case, it is assumed that for each block k, ℓ, the values xij are distributed according to
Poisson distribution P(µiνjγkℓ) where the Poisson parameter is split into µi and νj the effects
of the row i and the column j respectively and γkℓ the effect of the block kℓ. Then, we have

fkℓ(xij ;α) =
e−µiνjγkℓ(µiνjγkℓ)

xij

xij !

where α = (µ,ν,γ) with µ = (µ1, . . . , µn), ν = (ν1, . . . , νd) and γ = (γ11, . . . , γgm). The
row and column effects are either provided by the user for models pik rhol known and
pi rho known or estimated by the package itself for models pik rhol unknown and pi rho unknown.

Categorical Models

The idea behind categorical models is simple extension of binary models for more than 2 modal-
ities. Hence instead of Bernoulli distribution, we used Multinomial (categorical) distribution.
Hence the model parameters for each block k, l are αkℓ = (αh

kℓ)h=1,..r and
∑

hα
h
kℓ = 1 where r

is the number of modalities.

2.4 Example using simulated Binary dataset

The various parameters used to simulate this binary data-set are given in Table 2. The class
mean and dispersion are respectively represented by a and ǫ whereas π and ρ represents row
and column proportions respectively. The data consist of 1000 rows (samples) and 100 columns
(variables) with two clusters on rows and three clusters on columns. The following R com-
mands shows how to load the library, process the data and visualize/summarize results using
blockcluster.

a, ǫ
0, 0.1 0, 0.3 1, 0.1
1, 0.3 1, 0.2 0, 0.1

π .6 .4

ρ .3 .3 .4

Table 2: Parameters for simulation of binary data.

R > library("blockcluster")

R > data("binarydata")

R > out <-cocluster(binarydata , datatype = "binary", nbcocluster=c(2,3))
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(a) (b)

Figure 2: Original and co-clustered binary data (a), and distributions for each block along with
various mixture densities (b).

R > summary(out)

******************************************************************

Model Family : Bernoulli Latent block model

Model Name : pik_rhol_epsilonkl

Co -Clustering Type : Unsupervised

ICL value: -45557.09

Model Parameters ..

Class Mean:

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 1 0 0

Class Dispersion:

[,1] [,2] [,3]

[1,] 0.1006313 0.30176929 0.2003679

[2,] 0.1011803 0.09798013 0.3022391

Row proportions: 0.382 0.618

Column proportions: 0.34 0.29 0.37

Pseudo -likelihood: -0.4552042

******************************************************************

Note that you also get the Integrated complete likelihood (ICL) value in case binary and
categorical models. This value can be used for model selection. The following R command is
used to plot the original and co-clustered data (Figure 2(a)) with default value of asp which
is 0 (FALSE). When asp is FALSE, R graphics will optimize the output figure for the display,
hence the original aspect ratio may not be conserved. To conserve the original aspect ratio, set
the value of asp as 1 or TRUE.
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R > plot(out , asp = 0)

To Plot various block distributions (Figure 2(b)), the following R command is used with type

argument of overloaded plot function set to ’distribution’ (type is ’cocluster’ by default which
plots the original and Co-clustered data as shown in (Figure 2(a))).

R > plot(out , type = ’distribution ’)

3 Examples with real datasets

This section demonstrates the applicability of package on real data. Two examples are used:
one for Image segmentation and other for document (co-)clustering.

3.1 Image segmentation

Automatic image segmentation is an important technique and have numerous application espe-
cially in fields of Medical imaging. Here I present an interesting application of co-clustering (as
pre-processing step) for segmenting object(s) in image. I assume that the object pixels follows
Gaussian distribution. Hence I run the blockcluster package with Gaussian Family model
pik rhol sigma2kl on image shown in Figure 3. It can be clearly seen that the image got
nicely segmented into snake and insect in two different blocks.

Figure 3: Original and co-clustered (segmented) image.

3.2 Document clustering

Document clustering is yet another data mining technique where co-clustering seems to be very
useful. Here we run our package on one of the datasets being used in [1] which is publicly avail-
able at ftp://ftp.cs.cornell.edu/pub/smart. We mix Medline (1033 medical abstracts)
and Cranfield (1398 aeronautical abstracts) making a total of 2431 documents. Furthermore,
we used all the words (excluding stop words) as features making a total of 9275 unique words.
The data matrix consist of words on the rows and documents on the columns with each entry
giving the term frequency, that is the number of occurrences of corresponding word in cor-
responding document. I assume that the term frequency follows Poisson distribution. Hence
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we can apply the model pik rhol unknown available in our package for contingency (Poisson
Family) datasets with unknown row and column effects. Table 3 shows the confusion matrix and
compare our results with classical bipartite spectral graph partitioning algorithm of [[1]] where
we have obtained 100 percent correct classification. Figure 4 depicts the 2 × 2 checkerboard
pattern in the data matrix, hence confirming the more frequent occurrence of particular set of
words in one document and vice-versa. Please note that the data matrix images are extremely
sparse (data points almost invisible) and have been processed using simple image processing
tools for visualization purpose only.

Medline Cranfield

Medline 1026 0

Cranfield 7 1400

(a)

Medline Cranfield

Medline 1033 0

Cranfield 0 1398

(b)

Table 3: Confusion Matrix: Results reported in [1] (a), and Results using blockcluster (b).
The difference in number of Cranfield documents is because we made use of the already available
data extracted from the documents and there are two less documents data in the same.
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Figure 4: Original data matrix with words on rows and documents on columns (a), and checker-
board pattern in words by documents matrix obtained after performing co-clustering (b).

4 Remarks

This tutorial gives a brief introduction about the blockcluster R package. It demonstrates
the use of package using Binary data-set but the package can be used in similar fashion for
other types of data namely Contingency, Continuous and Categorical. Please note that
this tutorial is based on version 3. If you have any questions,suggestions or remarks, do not
hesitate to put it on public forum at https://gforge.inria.fr/forum/forum.php?forum_

id=11190&group_id=3679.
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