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Abstract

Here we present an R package for the Combined Analysis of Epistasis and Pleiotropy, or
cape. This package implements a method, originally described in Carter et al. (2012), that
infers directed interaction networks between genetic variants for predicting the influence
of genetic perturbations on phenotypes. This method takes advantage of complementary
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information in partially pleiotropic genetic variants to resolve directional influences between
variants that interact epistatically. cape can be applied to a variety of genetic variants, such
as single nucleotide polymorphisms (SNPs), copy number variations (CNVs) or structural
variations (SVs). Here we demonstrate the functionality of cape by inferring a predictive
network between quantitative trait loci (QTL) in a cross between the non-obese, non-diabetic
(NON) mouse and the New Zealand obese (NZO) mouse (Reifsnyder, 2000).

Loading Data

For the purposes of demonstration, we will reanalyze a data set described in Reifsnyder
(2000). This data set was established to find quantitative trait loci (QTL) for obesity and
other risk factors of type II diabetes in a reciprocal back-cross of non-obese non-diabetic
NON/Lt mice and diabetes-prone, New Zealand obese (NZO/HILt) mice. The study found
multiple main-effect QTL influencing phenotypes associated with diabetes and obesity as
well as multiple epistatic interactions. In addition, maternal environment (i.e. whether the
mother was obese) was found to interact with several markers and epistatic pairs to influence
the risk of obesity and diabetes of the offspring. The complex nature of diabetes and obesity,
along with their complex and polygenic inheritance patterns, make this data set ideal for an
analysis of epistasis and pleiotropy.

Included in this dataset are 204 male mice genotyped at 85 markers across the genome. The
phenotypes included are the body weight (g), insulin levels (ng/mL), and plasma glucose
levels (mg/dL), all measured at age 24 weeks. In addition, there is a variable called “mom”
indicating whether the mother of each mouse was normal weight (0) or obese (1). After
installing cape, load the package and the dataset type the following in the R command line.

> library(cape)

> data(obesity.cross)

To load your own data, use the function read.population(). This function is similar to the
function read.cross() used in the R package qtl (Broman et al., 2003), and accepts the
basic R/qtl CSV format. For more information about this function type ?read.population.
In this function the data file can be specified as an argument.

> obesity.cross <- read.population("Obesity.Cross.csv")

Alternatively, the filename can be left blank to choose a file through the file system. The
following code will bring up a window for choosing the desired file:

> obesity.cross <- read.population()

If the phenotypes are not specified in read.population() the default behavior is to read
in all phenotypes. The functions delete.pheno() and select.pheno() can be used after
reading in the data to narrow down the phenotypes for analysis. For cape analysis there
must be between two and 12 phenotypes. At least two phenotypes must be used because the
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fundamental concept of cape uses partial pleiotropy to refine models of epistasis. However,
too many phenotypes may reduce power to detect interactions.

Upon being read in, the data are formatted and stored in an object. This object is referred
to as data.obj in the argument lists of most functions in cape. The main functions in this
analysis return data.obj with any results appended to it. The structure of this object can
be viewed at any time by using the core R function str(). For example, the data that we
have just loaded is named obesity.cross, and its structure can be seen here:

> str(obesity.cross)

List of 5

$ pheno : num [1:204, 1:4] 58.6 49.9 56 53.7 48.7 41.1 45.4 44.1 40.4 40.1 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:4] "body_weight" "glucose" "insulin" "mom"

$ geno : num [1:204, 1:85] 0.5 0.5 0.5 0 0.5 0 0.5 NA 0 0 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:85] "1" "2" "3" "4" ...

$ chromosome : chr [1:85] "1" "1" "1" "1" ...

$ marker.names : chr [1:85] "D1Mit296" "D1Mit211" "D1Mit411" "D1Mit123" ...

$ marker.location: num [1:85] 2.08 10.59 12.62 17.67 22.88 ...

Individual elements of this list can be accessed by name by using the following syntax:

data.obj$name

When the cross is first loaded into cape it contains the following elements:

• $pheno - The phenotype matrix in which individuals are in rows and phenotype values
are in columns.

• $geno - The genotype matrix in which individuals are in rows and genetic loci are in
columns. Each cell of the genotype matrix contains the probability that individual i
has the reference allele at that position. By default, the reference allele is the allele
that is alphabetically first if the original data file used letter designations for genotypes,
or “0” if the original data file used numeric genotype designations. In the example
backcross, NON/Lt is the reference allele and the heterozygote state is coded as the
perturbation. Thus cape will model the effects of NZO/HILt variants.

• $chromosome - The chromosome on which each genetic locus is situated

• $marker.names - The alphanumeric names of markers.

• $marker.location - The position of each locus on each chromosome

Most functions performed on data.obj will add elements to this list containing the results
of the analyses.
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Manipulating the Data Object

There are a number of functions available for simple manipulation of the data object.
For example, after the data have been read in, phenotypes may be removed from the
phenotype matrix using delete.pheno(). To select specific phenotypes, use the function
select.pheno().

> obesity.cross <- select.pheno(obesity.cross,

+ phenotypes = c("body_weight", "glucose", "insulin", "mom"))

In cape covariates are imported as phenotypes and must be reassigned as genetic markers.
To code a variable, such as sex, experimental treatment, or another environmental variable,
as a covariate, use the function create.covar() to transfer a variable from the phenotype
matrix to the genotype matrix. Here we convert the factor maternal environment (“mom”)
to a covariate.

> obesity.cross <- create.covar(obesity.cross, "mom")

The data object can also be subset by chromosome (select.by.chr()) or by individual
(select.by.ind()) before the analysis if desired. Individuals can be selected based either
on phenotype or genotype value. For example, to use only individuals with a plasma insulin
level less than than 25 ng/mL:

> obesity.cross <- select.by.ind(obesity.cross, "pheno", "insulin < 25")

Finally, it is also possible to remove all individuals from the cross with missing phenotype
data (remove.ind.with.missing.pheno()).

Examining the Data

Before proceeding with an analysis it is recommended that the data be examined by eye.
The R package qtl has sophisticated plotting tools for examining genetic cross data, which
we do not try to duplicate here. It is straightforward enough, however, to examine phenotype
distributions for normality, batch effects and other quality control issues using standard R
functions. Using the function hist(), we can look as the distribution of each phenotype:
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While body weight looks relatively normally distributed, glucose and insulin have obviously
non-normal distributions.
Examination of the Q-Q plots of pairs of phenotypes, using the core R function qqplot(),
can reveal phenotyping errors and other pathologies. Here we see a threshold and ceiling
effect in the relationship between the distributions of insulin and the other two phenotypes.
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In general we recommend mean centering and normalizing all phenotypes before proceeding
with the analysis. Phenotype normalization can be achieved through log transformation,
quantile normalization, or another method before the analysis. The function norm.pheno()

uses quantile normalization to fit the phenotypes to a normal distribution. Briefly, this
process sorts the values of the phenotype and replaces each with a corresponding value
drawn from a normal distribution with the same standard deviation and mean as the original
distribution. Mean centering subtracts the mean phenotype value from each phenotype value
yielding a distribution centered around 0.
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> obesity.cross <- norm.pheno(obesity.cross, mean.center = TRUE)

Plotting the histograms of the normalized data confirms the normalization. Only insulin
still has a ceiling effect, which cannot be removed by normalization because rank cannot be
determined among equal values.
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We can also see that the Q-Q plots from before show the example phenotypes have been
converted to the same distribution. The ceiling effect is still visible in the insulin measurement,
but this cannot be removed through normalization, and overall, the distribution is more
similar to those of the other phenotypes than before normalization. Knowing that this ceiling
effect is present will be important in interpreting the results of the analysis.
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At this point, if we decide to exclude insulin from the analysis because its distribution cannot
be normalized, we can simply remove it from the data object using delete.pheno().

> obesity.cross <- delete.pheno(obesity.cross, phenotypes = "insulin")
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For the example here, however, we will include it in the analysis.

A Note on Phenotype Selection

Phenotype selection is an important component of the cape analysis and should be given
considerable thought. This method relies on the selection of two or more phenotypes that
have common genetic factors but are not identical across all individuals. Such phenotypes
may describe multiple aspects of a single complex trait, such as obesity or diabetes, and
may encompass a combination of molecular phenotypes, such as plasma glucose levels, and
phenotypes, such as body weight, that are measured at the organismal level. The central
assumption of this method is that different genetic interactions found for a single gene pair in
the context of different phenotypes represent multiple manifestations of a single underlying
gene network. By measuring the interactions between genetic variants in different contexts
we can gain a clearer picture of the network underlying statistical epistasis (Carter et al.,
2012).

The phenotypes in the Reifsnyder (2000) data set are ideal for the cape analysis. They
measure different aspects of the diabetes and obesity, two complex traits that are known to
be related biologically and are highly correlated. The phenotypes themselves range from
molecular phenotypes to organismal phenotypes. By examining the correlations between
phenotypes, we can see that the phenotypes measured in this experiment are correlated, but
not identical across all individuals. Ideally, phenotypes used in cape should have a Pearson
correlation coefficient r between 0.4 and 0.8.
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Note that all mice in the example backcross are male. For multisex populations, sex is
usually a covariate and correlation should be assessed for each sex separately.
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Decomposing the Phenotypes

Although cape can find genetic variants associated with raw phenotypes, the analysis was
designed to work on composite traits called “eigentraits.” Eigentraits are calculated by
factoring the matrix of phenotypes by singular value decomposition (SVD):

Y = U · V ·W T

Where Y is a matrix containing one column for each mean-centered, normalized phenotype
and one row for each individual. If Y contains more individuals than phenotypes, the U
matrix has the same dimensions as Y with each column containing one eigentrait. V contains
the singular values, and W T contains the right singular vectors in rows. See Carter et al.
(2012) for more details.

The SVD de-correlates the phenotypes concentrating phenotypic features into individual
eigentraits. One benefit of this process is that variants that are weakly correlated to several
phenotypes due to common underlying processes may be strongly correlated to one of the
eigentraits. This eigentrait captures the information of the underlying process, making
strong main effects distributed between phenotypes easier to detect and identify as potential
interaction loci and/or covariates. Thus, analysis of eigentraits is recommended over the
analysis of raw traits.

To decompose the phenotypes to eigentraits use the function get.eigentraits() If the
phenotypes have not already been mean centered and normalized, this step can be performed
here. In this example, we do not carry out these steps, as they have already been performed.

> obesity.cross <- get.eigentraits(obesity.cross, scale.pheno = FALSE,

+ normalize.pheno = FALSE)

This function performs the SVD and returns the matrix of eigentraits in a new element of the
list called ET. The result of the decomposition can be viewed with the function plotSVD().

> plotSVD(obesity.cross, orientation = "vertical")
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In the example illustrated here, the first eigentrait captures more than 70% of the variance in
the three phenotypes. This eigentrait describes the processes by which body weight, glucose
levels, and insulin levels all vary together. The correlations between obesity and risk factors
for obesity, such as elevated insulin and fasting glucose levels are well known (Permutt et al.,
2005; Das and Elbein, 2006; Haffner, 2003). The second eigentrait captures nearly 20% of
the variance in the phenotypes. It captures the processes through which glucose and body
weight vary in opposite directions. This eigentrait may be important in distinguishing the
genetic discordance between obesity and diabetes. While obesity is a strong risk factor for
diabetes, not all those who are obese have diabetes, and not all those with diabetes are
obese (Permutt et al., 2005; Burcelin et al., 2002).

The third eigentrait is less interpretable biologically, as it describes the divergence of blood
glucose and insulin levels. It may represent a genetic link between glucose and body weight
that is non-insulin dependent. Because we are primarily interested in the connection between
diabetes and insulin, we will use only the first two eigentraits for the analysis. In many cases
in which more than two phenotypes are being analyzed, the first two or three eigentraits
will capture the majority of the variance in the data and capture obvious features. Other
eigentraits may capture noise or systematic bias in the data. Often the amount of total
variance captured by such eigentraits is small, and they can be removed from the analysis.

Ultimately, there is no universal recipe for selecting which eigentraits should be included in
the analysis, and the decision will be based on how the eigentraits contribute to the original
phenotypes and how much variance in the data they capture.

To select eigentraits for the analysis, use the function select.eigentraits(). Here we
select the first two eigentraits.
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> obesity.cross <- select.eigentraits(obesity.cross, traits.which = c(1,2))

Single-Variant Scan

Once the eigentraits for the analysis have been selected, the single-locus scan is run to
investigate how individual markers are associated with each eigentrait. Note that this scan
performs a linear regression at each marker. A more sophisticated single-locus analysis can
be performed by R/qtl (Broman et al., 2003). This single-marker scan in cape performs the
following regression for each locus on each eigentrait:

U j
i = βj

0
+ xiβ

j + ǫji

The index i runs from 1 to the number of individuals, and j runs from 1 to the number of
eigentraits or phenotypes. xi is the probability of the presence of the reference allele for
individual i at locus j. The purpose of this scan is two-fold:

• In large data sets the number of possible variant pairs may be too large to test
exhaustively. The single-variant scan can be used as a filtering step to choose variants
that will be included in the pair scan.

• Large main effects can obscure interactions. In sufficiently powered studies, conditioning
on the large QTL can aid in the discovery of interactions, variants with large main-effects
can be used as covariates in the pair scan.

The function singlescan() runs the single-marker scan and has several arguments associated
with selecting markers to include in the pairwise scan as well as for selecting markers to use
as covariates in the pairwise scan.

> obesity.cross <- singlescan(obesity.cross, n.perm = 100, covar = "mom",

+ scan.what = "eigentraits", auto.covar.selection = FALSE,

+ alpha.for.covar = 0.01, alpha.for.pairs = 0.1, verbose = FALSE)

Markers can be selected for inclusion in the pairwise scan based on their having significant
main effects as determined through permutation testing. The significance threshold is
set with the argument alpha.for.pairs. After the single-locus scan, if filtering markers
by significance is desired, the function select.markers.for.pairscan selects only those
markers exceeding this significance cutoff for inclusion in the pairscan. If no filtering is
desired, this threshold is ignored.

The function singlescan() can also automatically select markers to include as covariates
in the pairwise scan. Like the marker inclusion selection, marker covariate selection is
also based on marker effect size, and the alpha for this threshold is set by the argument
alpha.for.covar. Automatic covariate selection is recommended in populations in which
genetic markers are independent of one another, but not in populations in which markers
are linked (see Covariate Selection). To use automatic covariate selection, set the argument
auto.covar.selection to TRUE.
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Covariates to be used in the single-marker scan should be specified through the argument
covar. These covariates should have already been moved to the marker matrix by create.covar().
An additional argument scan.what determines whether “eigentraits” or “raw.traits” will be
used as the dependent variable in the regression.

The single-marker scan currently does not support markers on sex chromosomes. Because
the X chromosome is hemizygous in males, sex differences in phenotype can lead to false
associations, and markers on this chromosome require special consideration (Broman et al.,
2006). Before the single-marker scan is performed, any markers on the X and Y chromosomes
are removed from the data object. The results of the single variant scan can be visualized
with the function plotSinglescan().

> plotSinglescan(obesity.cross, mark.chr = TRUE, mark.covar = FALSE)
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In this figure the t-statistic (β/σ) of each marker is plotted as a vertical line. Results for
both eigentraits are shown here as ET1 and ET2, and chromosome numbers are written
along the x axis. If markers were being filtered for inclusion in the pair scan, the markers
above the covariate line at p = 0.01 would be selected for inclusion in the pair scan. The
alpha value can be adjusted to include more or fewer markers in the pair scan as desired.
The value of this threshold is stored in obesity.cross$pairscan.thresh and can also be
assigned manually using set.pairscan.thresh(). This threshold is useful for large data
sets for which it is impractical to test all marker pairs. Here we use all marker in the pairwise
scan. In this example we will not filter the markers.

The higher dashed line represents the alpha value defined by the argument alpha.for.covar,
which here was set to the default value of 0.01. This threshold can be used for automatic
covariate selection. If the argument automatic.covar.selection is set to TRUE all markers
exceeding the alpha.for.covar threshold will automatically be designated as covariates.
This automated selection is generally only recommended for populations in which variants
segregate independently. For more details on covariate selection, see Covariate Selection.

Covariate Selection

As mentioned previously, conditioning on large main effects may aid in the discovery of
interactions. Therefore cape allows specification of genetic markers as covariates, which
can be done either manually or automatically. Automatic covariate selection is particularly
useful in populations in which variants segregate independently. For example, Drosophila
have virtually no linkage between markers (Mackay et al., 2012); therefore most markers can
be assumed to assort independently. Similarly, mutations to genes on different chromosomes
in a yeast population segregate independently. In these and other similar cases, automatic
covariate selection is appropriate because markers achieving the significance threshold can
be assumed to be independent of each other and will not reduce the significance of other
markers due to linkage if used as covariates.

In a mouse F2 intercross or backcross, on the other hand, markers on a single chromosome
tend to be linked, and groups of markers may be significantly associated with a phenotype
due to linkage with a causative locus. In this case, markers from a single linkage block carry
partially redundant information and, if treated as independent covariates, will obfuscate
interactions between makers in the linkage block and other truly independent markers. Thus,
if markers in the study population are linked, it is recommended that any marker covariates
be set manually and that only one covariate should be selected from each linkage block.

To use automatic covariate selection, set auto.covar.selection to TRUE when running
singlescan. All markers above the alpha.for.covar threshold will be automatically
included as covariates in the pair scan. If this option is chosen, is is still possible to adjust
the covariate threshold after the single-marker scan to include more or fewer covariates as
desired. In general we recommend that only the markers with the very strongest effects
are treated as covariates to avoid overfitting the model. The function get.covar() sets
the covariate threshold in the data object and recalculates which markers are to be used as
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covariates in the pair scan.

> obesity.cross <- get.covar(obesity.cross, covar.thresh = 4.5)

If selecting covariates manually, set auto.covar.selection to FALSE when running singlescan.
The plots from the single-marker scan can then be examined to determine which markers
should be used as covariates. The function set.covar() can then be used to set covariates
individually.

Here, because of the large effects of maternal environment on ET1, we make this marker
a covariate. The function set.covar() optionally includes a plot to verify the covariate
selection. Covariates are marked in red.

> obesity.cross <- set.covar(obesity.cross, pheno = "ET1",

+ markers = c("mom"), is.covar = TRUE, plot.covar = TRUE)
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Pairwise Scan

The purpose of the pairwise scan is to find interactions, or epistasis, between variants. The
epistatic models are then combined across phenotypes or eigentraits to infer a parsimonious
network that takes data from all eigentraits into account.

To find epistatic interactions pairscan() tests the following model for each variant 1 and 2:

U j
i = βj

0
+

2∑

c=1

xc,iβ
j
c

︸ ︷︷ ︸

covariates

+x1,iβ
j
1
+ x2,iβ

j
2

︸ ︷︷ ︸

main effects

+x1,ix2,iβ
j
12

︸ ︷︷ ︸

interaction

+ǫji
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The terms in this equation are the same as those in the equation for the single-variant
scan except for the addition of the term for the interaction between the two variants being
tested. This additional term brings further complications to the model, and restricts which
markers can be tested. Because many markers, including covariates, may be included in the
model, we need to be careful about including only markers that are linearly independent of
each other. Linear dependence between markers occurs when two markers are fully linked
and therefore perfectly correlated. The two markers provide the same genetic information,
and one can be discarded without loss of information. Before running the pair scan, it is
important that we reduce the genetic matrix to only markers that are linearly independent
of one another. This step is performed by the function select.markers.for.pairscan().
It calculates the correlation between all pairs of markers. If any are found to be perfectly
correlated, the first marker is removed.

select.markers.for.pairscan() also filters markers for inclusion in the pair scan by the
significance threshold, if this has been specified by use.pairs.threshold. This is useful in
large crosses in which it may be impossible to test all possible pairs of markers in a reasonable
amount of time. The significance threshold is determined by the argument alpha.for.pairs
in the function singlescan().

> obesity.cross <- select.markers.for.pairscan(obesity.cross,

+ use.pairs.threshold = FALSE)

The number of markers removed is printed to the screen, and the names of these markers
are written to the file markers.removed.txt in the current working directory. This filtering
step adds two elements to the data object. One is a filtered genotype matrix called
geno.for.pairscan. The other, covar.for.pairscan, indicates which markers are to be
used as covariates in the pair scan.

The results of the filtering can be visualized with ploSinglscan(). This visualization
can be helpful in seeing the locations of discarded markers, especially if many have
been removed. To indicate which markers have been selected for the pair scan, set
show.selected.markers to TRUE. To indicate which markers have been rejected from
the pair scan, set show.rejected.markers to TRUE.

> plotSinglescan(obesity.cross, mark.chr = TRUE, show.rejected.markers = TRUE,

+ standardized = TRUE)
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After ensuring that all markers are linearly independent and thresholded satisfactorily, the
pair scan can be run using pairscan().

obesity.cross <- pairscan(obesity.cross, scan.what = "eigentraits",

n.perm = 100, min.per.genotype = 6, verbose = FALSE)

The arguments here are familiar from singlescan(), with the exception of one additional
argument. min.per.genotype is a threshold that prevents empty cells in genotype matrices.
In an intercross, there are three possible genotypes at each marker, giving a total of nine
possible genotypes for the pair. For example, for two markers each with the genotypes AA,
AB, and BB, the pairwise genotypes are the following:
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AA AB BB

AA

AB

BB

In a backcross each marker only has two possible genotypes, AA and AB, yielding four
possible pairwise genotypes. In both cases, insufficient representative individuals of single
genotypes indicates that the two markers in question are linked. This linkage leads to false
associations in both the effects and permutations. False associations in permutations results
in a heavy-tailed null distribution, which artificially inflates the threshold of significance and
reduces power to find true interactions. Because of this effect, linked marker pairs are not
tested. The threshold used to determine insufficient recombination between markers is given
by min.per.genotype. The default behavior is to reject any marker pair for which there
are fewer than six individuals in any of the genotype cells. This value can be adjusted, but
caution should be used in interpreting the results if min.per.genotype is very low or 0.

The n.perm argument in pairscan() sets the number of permutations performed per marker
pair. To calculate empirical p values, the permutations are combined across all markers to
result in one large null distribution. Thus, large null distributions can be achieved with
relatively few permutations per pair. This is useful, as even with relatively sparse genotyping
the number of tests performed can be large and take many hours to perform.

The results of the pair scan can be plotted with plotPairscan(). This plot shows the
resulting β coefficient for each pair of markers. The t statistics of each interaction (β/σ) can
be plotted by setting standardized = TRUE. Gray and white bars show the boundaries of
the chromosomes.

plotPairscan(obesity.cross, phenotype = c("ET1", "ET2"), standardized = FALSE,

pdf.label = "Pairscan.Regression.pdf")
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Combined Analysis for Detection of Interactions

From the pair scan, each pair of markers 1 and 2 receives a set of β coefficients describing
the main effect of each marker on each eigentrait j (βj

1
and βj

2
) as well as the interaction

effect of both markers on each eigentrait (βj
12
) (See figure below). The central idea of cape

is that these coefficients can be combined across eigentraits and reparameterized to calculate
how each pair of markers influences each other directly and independently of eigentrait.
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The first step in this reparameterization is to define two new parameters (δ1 and δ2) in
terms of the interaction coefficients. δ1 can be thought of as the additional genetic activity
of marker 1 when marker 2 is present. Together the δ terms capture the interaction term,
and are interpreted as the extent to which each marker influences the effect of the other on
downstream phenotypes. For example, a negative δ2 indicates that the presence of marker 2
represses the effect of marker 1 on the phenotypes or eigentraits. The δ terms are related to
the main effects and interaction effects as follows:
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(1)

In multiplying out this equation, it can be seen how the δ terms influence each main effect
term to give rise to the interaction terms independent of phenotype.

βj
1
δ1 + βj

2
δ2 = βj

12
(2)

If δ1 = 0 and δ2 = 0, there are no addition effects exerted by the markers when both are
present. Substitution into the equations above shows that the interaction terms βj

12
are 0

and thus the interaction terms have no effect on the phenotype.

Alternatively, consider the situation when δ1 = 1 and δ2 = 0. The positive δ1 indicates that
marker 1 should exert an additional effect when marker 2 is present. This can be seen again
through substitution into equation 2:

β1
j = βj

12

These non-zero terms show that there is an interaction effect between marker 1 and marker
2. The positive δ1 indicates that this interaction is driven through an enhanced effect of
marker 1 in the presence of marker 2.

The δs are calculated by solving for equation 1 using matrix inversion:
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This inversion is exact for two eigentraits, and cape implements pseudo-inversion for up to
12 eigentraits.

The δ terms are then translated into directed variables defining the marker-to-marker
influences m12 and m21. Whereas δ2 described the change in activity of marker 2 in the
presence of marker 1, m12 can be thought of as the direct influence of marker 2 on marker 1,
with negative values indicating repression and positive values indicating enhancement. The
terms m12 and m21 are self-consistent and defined in terms of δ1 and δ2:

δ1 = m12(1 + δ2), δ2 = m21(1 + δ1)

Rearranging these equations yields the solutions:

m12 =
δ1

1 + δ2
, m21 =

δ2
1 + δ1

.
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These directed influence variables provide a map of how each marker influences each other
marker independent of phenotype. The significance of these influences is determined through
standard error analysis on the regression parameters (Bevington, 1994; Carter et al., 2012).
This step is particularly important as matrix inversion can lead to large values but larger
standard errors, yielding insignificant results. As an example, the variance ofm12 is calculated
by differentiating with respect to all model parameters:

σ2
m12

∼=
∑

ij

σ2

β
j
i

(

∂m12

∂βj
i

)2

+ 2
∑

i<k,j<l

σ2

β
j
i β

l
k

(

∂m12

∂βj
i

)(

∂m12

∂βl
k

)

In this equation, the indices i and k run over regression parameters and j and l run from
1 to the number of traits. The calculations of the δ and the m terms, as well as the error
propagation are performed by the function error.prop().

obesity.cross <- error.prop(obesity.cross, perm = FALSE, verbose = FALSE)

This function is applied to both the results from the pairwise scan, as well as the permutations
of the pairwise scan for later calculation of p values. To apply the calculations to the pairwise
scan permutations, set perm = TRUE.

obesity.cross <- error.prop(obesity.cross, perm = TRUE, verbose = FALSE)

For large scans it might be desirable to observe the progress of the calculations. This
can be done by setting verbose = TRUE. After these calculations have been performed the
results of the permutation testing can be used to calculate empirical p values for each of the
variant-to-variant effects.

obesity.cross <- calc.p(obesity.cross, pval.correction = "fdr")

This function also adjusts the empirical p values for multiple testing. The default correction
is Holm’s stepdown procedure (Holm, 1979). Two other methods, false discovery rate (FDR)
(Benjamini and Hochberg, 1995) and local false discovery rate (lFDR) (Liao et al., 2004)
are also available. The latter methods of correction for multiple testing are less stringent
than the Holm’s step-down procedure. The function calc.p() adds two elements to the
data object. The purpose and returned results of each function is summarized below. For
tables of all functions, see the Tables of Functions section at end of this document.

The final step in calculating the network of directed influences is to translate the effect of
each marker on the eigentraits to effects on the original phenotypes. The effects of variants
on eigentraits are defined in terms of the interaction coefficients m12 and m21 as well as
the main effect of each variant βj

i . To translate these effects to be in terms of the original
phenotypes, the coefficient matrices are multiplied by the singular value matrices V ·W T .
With two phenotypes and two eigentraits this conversion results in no loss of information.
It should also be noted that the translation back to phenotype space does not affect the
variant-to-variant influences.

The translation to phenotype space is performed by the function direct.influence().
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Functions for Parsing Pair Scan Results

Function Behavior Result Label Structure Columns

error.prop propagates errors of
coefficients calculated in
the pair scan

var.to.var.influences or
var.to.var.influences.perm

matrix marker1, marker2,
m12, m21, m12 σ,
m21 σ

calc.p calculates empirical and
corrected p values or
fdr of interactions using
permutations

empirical.p list of 2 matrices
(m12, m21)

marker1, marker2,
source, target,
influence coefficient,
influence σ,
empirical p value,
adjusted p value or
fdr

obesity.cross <- direct.influence(obesity.cross, pval.correction = "fdr")

In these calculations each marker is assigned multiple direct influences on each phenotype
dependent on the marker it was paired with. To reduce the results to a single direct influence
of each marker on each phenotype, direct.influence() selects the maximum influence
observed for each marker. These effects are stored in max.var.to.pheno.influence. All
effects are accessible in the element variant.to.phenotype.influences. To save memory,
data from the permutations are not saved by default; however, if save.permutations is
set to TRUE all data are saved in the object permutation.data.RData. For details on the
elements added to obesity.cross and those saved in permutation.data.RData, see the
Tables of Functions section at end of this document.

The function direct.influence() also performs correction for multiple testing for each of
the influences. Holm step-down correction (Holm, 1979), FDR Benjamini and Hochberg
(1995), and local FDR (Liao et al., 2004) are all available as correction methods.

The marker-to-marker and marker-to-phenotype influences can be plotted with the function
plotVariantInfluences(). This function plots the adjacency matrix of the final network.
It shows all significant influences between variants and between variants and phenotypes.

plotVariantInfluences(obesity.cross, p.or.q = 0.01,

all.markers = FALSE, standardize = FALSE, not.tested.col = "lightgray")
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There are several arguments in this function to note. The argument p.or.q takes in the p, q,
or local fdr value at which interactions are considered significant. Only significant interactions
are plotted. Non-significant interactions are colored white. It should be noted that some
of the white boxes have gray dots in them. These dots indicate that these pairs were not
tested for interactions because they were filtered out due to insufficient representation of
individual phenotypes. This usually occurs because the markers are linked and there is low
recombination between them. These pairs are marked with dots to distinguish them from
pairs that were tested but did not have significant interactions between them. The color
of the dots can be changed with the argument not.tested.col. The default is lightgray.
This can be changed to FALSE or NA if no distinction between not-tested and not-significant
is desired. Gray and white bars along the margins of the plot indicate the boundaries of the
chromosomes.

It should also be noted that not all of the original markers from the single-locus scan are
represented in the final figure. This figure is showing only those markers that were included
in the pair scan. The figure can be changed to show all markers by setting all.markers to
TRUE. However, with large numbers of markers, especially if not all markers are included
in the pair scan, the figure can get quite crowded if all markers are included. Finally,
the argument standardize determines whether the function plots the raw direct influence
coefficients or the coefficients divided by standard error.

The table of significant influences can be written to a file using the function
writeVariantInfluences().
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writeVariantInfluences(obesity.cross, p.or.q = 0.05,

filename = "Significant.Influences.txt")

Interpretation of Results

The table of variant-to-variant and variant-to-phenotype influences is the primary output of
cape. The function for plotting results, plotVariantInfluences(), plots an asymmetric
adjacency matrix, which is useful for identifying patterns in variant interactions.
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Another useful visualization of the network can be plotted using plotNetwork(). This
function plots the chromosomes linearly and shows interactions as arrows between locations
on chromosomes (see figures below). Main effects are plotted beneath the chromosomes.
Before plotting the network in this format, the function get.network() must be be run
to create a network object. The function get.network() network offers the option of
condensing markers based on their linkage. The minimum Pearson R2 threshold separating
two markers is provided in the argument r2.thresh. The argument p.or.q determines the
p, q, or local FDR value at which marker influences are determined significant.

obesity.cross <- get.network(obesity.cross, p.or.q = 0.01,

collapse.linked.markers = TRUE, r2.thresh = 0.8, standardize = FALSE)

plotNetwork(obesity.cross, collapsed.net = TRUE)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Cov.

glucose || | | | || || | | | | |
insulin || | | | || || | | | | |

body_weight || | | | || || | | | | |

Linkage Block Influences
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If no collapse by linkage is desired, the argument collapse.linked.markers can be set to
FALSE and r2.thresh will be ignored.

obesity.cross <- get.network(obesity.cross, p.or.q = 0.01,

collapse.linked.markers = FALSE, standardize = FALSE)

plotNetwork(obesity.cross, collapsed.net = FALSE)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Cov.

glucose ||||||| | | || ||||| | || || | |
insulin ||||||| | | || ||||| | || || | |

body_weight ||||||| | | || ||||| | || || | |

Variant Influences

Both the network figure and the adjacency matrix show direct influences of markers on
the phenotypes as well as interactions between markers. As expected, NZO variants on
multiple chromosomes show positive effects on plasma insulin and glucose levels as well
as on body weight. Maternal obesity was found to suppress the effects of markers on
Chromosome 15, and a marker on Chromosome 2 suppressed the effects of a marker on
Chromosome 18. In the latter interaction, neither marker had an individual main effect,
although the Chromosome 18 marker has a marginally significant effect (q = 0.018) on
body weight that is completely suppressed by the Chromosome 1 marker. NZO variants
in a region on Chromosome 1 increased all three phenotypes individually and were the
hub of a small epistatic network suppressing the effects of markers on Chromosomes 10 and 12.

The interaction between Chromosomes 1 and 12 is illustrative of the R/cape strategy.
Although both loci have a significant effect on body weight, their joint effect is less than
additive (See figure below). This finding suggests one locus might be suppressing the effect
of the other, but is ambiguous about the potential direction of that suppression. In contrast,
only the Chromosome 1 locus has an effect on insulin and this effect is independent of the
Chromosome 18 locus. This second phenotype provides R/cape the information necessary
to infer the directionality of the interaction from Chromosome 1 to 12, since a reversed
interaction would imply epistasis for insulin along with body weight, which was not observed.
R/cape thus provides a more stringent hypothesis for gene candidates in the two loci through
the constraint of directional genetic effects.
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These findings illustrate how cape is designed to find interactions that simultaneously model
all phenotypes under the assumption that interactions between variants across multiple
contexts represent a single underlying interaction network. Thus we recommend users assess
single-phenotype epistasis using functions in cape or in parallel analyses using tools such as
R/qtl and R/qtlbim (Yandell et al., 2007).

Tables of Functions
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Basic cape Functions

Reading and Writing Data

read.population read in population data

writeVariantInfluences write out a table of the variant influences to each other and the
variant influences on traits.

Data Manipulation

create.covar assign a phenotypic value as a covariate in the genotype matrix

delete.pheno delete the specified phenotypes from the phenotype matrix

get.covar automatically select covariates for the pairwise scan based on a
user-defined threshold of β/σ

norm.pheno use rank Z normalization to normalize the phenotypes

select.eigentraits select a subset of eigentraits to use in the analysis

select.pheno select a subset of phenotypes to use in the analysis

select.by.chr select a subset of chromosomes to use in the analysis

select.by.ind subset the individuals in the population by either phenotypic or
genotypic values

set.covar manually set markers to be used as covariates for individual traits

set.pairscan.thresh manually set the threshold for inclusion of markers in the pairscan

Plotting Functions

plotNetwork plot a network view of the significant influences of variants on each
other and variants on traits

plotSinglescan plot the results of the single-locus scan or markers selected for
pairscan

plotPairscan plot the results of the pair scan

plotSVD plot the results of the singular value decomposition

plotVariantInfluences plot the adjacency matrix showing the significant influences of
variants on each other and variants on traits
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