

Randomized layouts and sample size computations
using dae in R

1. Completely randomized design .. 2
2. Randomized complete block design ... 3
3. Generalized randomized complete block design 5
4. Latin square design .. 7
5. Sets of Latin Squares ... 8
6. Factorial experiments ... 10
7. Two-level factorial experiments .. 12

a) Replicated two-level factorial experiments 13
b) Unreplicated two-level factorial experiments 13
c) Confounded two-level factorial experiments 13
d) Fractional two-level factorial experiments 16

8. Split-plot experiments ... 18
9. Incomplete block designs ... 20
10. Balanced lattice square designs ... 21
11. Youden square designs .. 22
12. Power and sample size for designed experiments 23

a) Computing the power for given sample size 24
b) Computing the sample size to achieve specified power 25

13. References ... 26

This document describes the randomization of simple experimental designs in R
using the following functions:

factor(x): creates a factor.
rep(x, times = y): replicates each value of x the number of times specified by

the corresponding element of y; x and y must be of equal length.
rep(x, each = r, times = n): each value of x is replicated r times and then

the whole of the result of that is repeated n times where n is a scalar.
fac.divide(combined.factor, factor.names, order="standard"): a

nonstandard function that takes a combined.factor and divides into the
factors specified in the list factor.names.

fac.gen (generate, each=1, times=1, order="standard"): generates
the levels values of a set of factors, storing them in a data frame.

fac.layout (unrandomized, nested.factors=NULL, randomized,
seed=NULL): generates the randomized layout for an experiment by
randomizing the randomized factors to the unrandomized factor taking into
account the nesting amongst the unrandomized factors.

The functions fac.divide, fac.gen and fac.layout are in the package dae
available from cran: http://http://cran.r-project.org/.

1

http://http/cran.r-project.org/

1. Completely randomized design

The following general expressions are used to obtain a randomized layout for a
completely randomized design in R. You will need to a) assign a value to n, t, and r
b) to replace the italicized names with ones for your particular experiment and c)
choose a value for s to set the seed.

Obtaining randomized layout for a CRD

CRD.unit <- list(Unit = n)
Treat <- factor(rep(1:t, times = r), labels=c("A","B",…))
CRD.lay <- fac.layout(unrandomized=CRD.unit, randomized=Treat,
 seed=s)
CRD.lay
#remove Treat object in workspace to avoid using it by mistake
remove(Treat)

Example: a rat experiment

For example, consider an experiment in which the effects of three diets on rats is to
be investigated. Suppose I have 6 rats to be fed one of three diets, 3 rats to be fed
diet A, 2 diet B and 1 diet C.

The following output shows the use of the R function fac.layout from the dae
package to produce the randomized layout for this example. The unrandomized
argument gives the single unrandomized factor indexing the units in the experiment.
The randomized argument specifies the factor, Diets, that is to be randomized. The
seed argument is used so that the same randomized layout for a particular
experiment can be generated at a later date. In general a different random small
integer value, say between 0 and 1023, should be supplied as for this argument each
time a new experimental layout is being obtained.

> #
> # Obtaining randomized layout for a CRD
> #
> n <- 6
> CRDRat.unit <- list(Rat = n)
> Diet <- factor(rep(c("A","B","C"), times = c(3,2,1)))
> CRDRat.lay <- fac.layout(unrandomized=CRDRat.unit, randomized=Diet, seed=695)
> CRDRat.lay
 Units Permutation Rat Diet
1 1 4 1 A
2 2 1 2 C
3 3 5 3 B
4 4 3 4 A
5 5 6 5 A
6 6 2 6 B
> #remove Diet object in workspace to avoid using it by mistake
> remove(Diet)

The process starts with the unrandomized and randomized factors in a systematic
layout as follows:

2

> data.frame(fac.gen(CRDRat.unit), Diet)
 Rat Diet
1 1 A
2 2 A
3 3 A
4 4 B
5 5 B
6 6 C

Next a permutation of the Rats is selected. In our case there are 6! Possible
permutations and the one chosen is shown in the Rat column of the following output:

> CRDRat.lay[CRDRat.lay$Permutation,]
 Units Permutation Rat Diet
4 4 3 4 A
1 1 4 1 A
5 5 6 5 A
3 3 5 3 B
6 6 2 6 B
2 2 1 2 C

Applying this permutation leads to the randomization given above.
 ■

2. Randomized complete block design

The following general expressions are used to obtain a randomized layout for an
RCBD in R, the layout being stored in the data frame RCBD.lay. To use these
expressions to generate a layout for a particular case, you will need to assign values
to b, t and n prior to using them and to substitute the actual names for Blocks, Units,
Treats and the design object to contain them. Also, the labels for the treatments are
optional. The crucial feature, that makes this design different from a completely
randomized design, is that there are two unrandomized factors indexing the units and
there is nesting between these factors: Units are nested within Blocks. This is
because our aim is to randomize the treatments to the Units within each Block. The
nested.factors argument to fac.layout is used to specify this.

RCBD.unit <- list(Blocks = b, Units = t)
RCBD.nest <- list(Units = "Blocks")
Treat <- factor(rep(1:t, times = b), labels=c("A","B",…))
data.frame(fac.gen(RCBD.unit), Treat) #basic systematic layout
RCBD.lay <- fac.layout(unrandomized = RCBD.unit,
 nested.factors = RCBD.nest,
 randomized = Treat, seed = s)
RCBD.lay
RCBD.lay[RCBD.lay$Permutation,]

These expressions will output three sets of factor values: a) the systematic layout on
which the randomization is based; b) the randomized layout; c) the permutation of the
unrandomized factors that was selected for the randomization and used to get from
the systematic to the randomized layout.

3

Example: Penicillin yield

In this example, (Box, Hunter and Hunter, 2005, section 4.2) the effects of four
treatments (A, B, C and D) on the yield of penicillin are to be investigated. It was
known that corn steep liquor, an important raw material in producing penicillin, is
highly variable from one blending of it to another. So, to ensure that the results of the
experiment apply to more than one blend, several blends are to be used in the
experiment. Thus the trial was conducted using the same blend in four flasks and
randomizing the four treatments to these four flasks. Altogether five blends were
utilized.

The names to be used for the blocks, units and treatments for this example are
Blends, Flask and Treat, respectively. Also, b = 5 and t = 4 so that n = 20. Assigning
these values and substituting these names into the expressions above, yields the
following output for this case:

> b <- 5
> t <- 4
> n <- b*t
> RCBDPen.unit <- list(Blend=b, Flask=t)
> RCBDPen.nest <- list(Flask = "Blend")
> Treat <- factor(rep(1:t, times=b), labels=c("A","B","C","D"))
> data.frame(fac.gen(RCBDPen.unit), Treat) #basic systematic layout
 Blend Flask Treat
1 1 1 A
2 1 2 B
3 1 3 C
4 1 4 D
5 2 1 A
6 2 2 B
7 2 3 C
8 2 4 D
9 3 1 A
10 3 2 B
11 3 3 C
12 3 4 D
13 4 1 A
14 4 2 B
15 4 3 C
16 4 4 D
17 5 1 A
18 5 2 B
19 5 3 C
20 5 4 D
> RCBDPen.lay <- fac.layout(unrandomized = RCBDPen.unit,
+ nested.factors = RCBDPen.nest,
+ randomized = Treat, seed = 311)
> RCBDPen.lay
 Units Permutation Blend Flask Treat
1 1 11 1 1 C
2 2 12 1 2 B
3 3 10 1 3 D
4 4 9 1 4 A
5 5 13 2 1 C
6 6 15 2 2 D
7 7 16 2 3 B
8 8 14 2 4 A
9 9 8 3 1 D
10 10 7 3 2 C
11 11 5 3 3 A
12 12 6 3 4 B
13 13 17 4 1 A

4

14 14 19 4 2 D
15 15 20 4 3 B
16 16 18 4 4 C
17 17 4 5 1 A
18 18 2 5 2 D
19 19 1 5 3 B
20 20 3 5 4 C
> RCBDPen.lay[RCBDPen.lay$Permutation,]
 Units Permutation Blend Flask Treat
11 11 5 3 3 A
12 12 6 3 4 B
10 10 7 3 2 C
9 9 8 3 1 D
13 13 17 4 1 A
15 15 20 4 3 B
16 16 18 4 4 C
14 14 19 4 2 D
8 8 14 2 4 A
7 7 16 2 3 B
5 5 13 2 1 C
6 6 15 2 2 D
17 17 4 5 1 A
19 19 1 5 3 B
20 20 3 5 4 C
18 18 2 5 2 D
4 4 9 1 4 A
2 2 12 1 2 B
1 1 11 1 1 C
3 3 10 1 3 D

So with the first blend, the Treatments are to be done in the order C, B, D, A. ■

3. Generalized randomized complete block design

The following general expressions are used to obtain a randomized layout for a
generalized RCBD in R — they are similar to those for the RCBD in the previous
section. To use these expressions to generate a layout for a particular case, you will
need to assign values to b, t, g, u and n prior to using them and to substitute the
actual names for Blocks, Units, Treats and the design object to contain them. Also,
the labels for the treatments are optional.

GRCBD.unit <- list(Blocks=b, Units=u)
GRCBD.nest <- list(Units="Blocks")
Treat <- factor(rep(1:t, times=b*g),

labels=c("A","B","C","D"))
data.frame(fac.gen(GRCBD.unit), Treat)
GRCBD.lay <- fac.layout(unrandomized=GRCBD.unit,
 nested.factors=GRCBD.nest,
 randomized=Treat, seed=s)
GRCBD.lay

5

Example: Design for a wheat experiment

> b <- 2
> t <- 4
> g <- 3
> u <- t*g
> n <- b*u
> GRCBDWheat.unit <- list(Blocks=b, Plots=u)
> GRCBDWheat.nest <- list(Plots="Blocks")
> Treat <- factor(rep(1:t, times=b*g), labels=c("A","B","C","D"))
> data.frame(fac.gen(GRCBDWheat.unit), Treat)
 Blocks Plots Treat
1 1 1 A
2 1 2 B
3 1 3 C
4 1 4 D
5 1 5 A
6 1 6 B
7 1 7 C
8 1 8 D
9 1 9 A
10 1 10 B
11 1 11 C
12 1 12 D
13 2 1 A
14 2 2 B
15 2 3 C
16 2 4 D
17 2 5 A
18 2 6 B
19 2 7 C
20 2 8 D
21 2 9 A
22 2 10 B
23 2 11 C
24 2 12 D
> GRCBDWheat.lay <- fac.layout(unrandomized=GRCBDWheat.unit,
+ nested.factors=GRCBDWheat.nest,
+ randomized=Treat, seed=399)
> GRCBDWheat.lay
 Units Permutation Blocks Plots Treat
1 1 20 1 1 C
2 2 22 1 2 D
3 3 24 1 3 D
4 4 18 1 4 C
5 5 17 1 5 B
6 6 21 1 6 B
7 7 23 1 7 A
8 8 13 1 8 A
9 9 14 1 9 D
10 10 19 1 10 A
11 11 16 1 11 B
12 12 15 1 12 C
13 13 7 2 1 D
14 14 5 2 2 A
15 15 1 2 3 D
16 16 3 2 4 C
17 17 8 2 5 A
18 18 6 2 6 D
19 19 12 2 7 B
20 20 2 2 8 A
21 21 10 2 9 B
22 22 11 2 10 B
23 23 4 2 11 C
24 24 9 2 12 C

6

4. Latin square design

The general set of expressions for obtaining a Latin Square layout are:

t <- 4
n <- t*t
LS.unit <- list(Rows=t, Columns=t)
Treats <- factor(c(the unrandomized layout for the Latin Square),

labels=c("A","B" …))
LS.lay <- fac.layout(unrandomized=LS.unit, randomized=Treats,

seed=s)
remove("Treats")
LS.lay

To use this set of expressions to generate a layout for a particular case, you will need
to assign the actual values for t and n and substitute the actual names for Rows,
Columns, Treats and the design object to contain them. Also, you will need to put in
an unrandomized Latin square layout and, optionally, the labels for the treatments.
Note that, like the randomized complete block design the Latin square involves two
unrandomized factors, Rows and Columns say, that index the units. However, for the
Latin square, as the Rows and Columns are to be randomized independently, they
are not nested (they are crossed), and so the nested.factors argument is not set
and so will be NULL.

Example: Pollution effects of petrol additives

Suppose that four cars and four drivers are employed in a study of possible
differences between four petrol additives as far as their effect on pollution is
concerned (Box, Hunter and Hunter, 2005, section 4.4). Even if the cars are identical
models, consistent differences are likely to occur between individual cars. Even
though each driver may do their best to drive in the manner required by the test,
consistent differences are likely to occur between the drivers. It would be desirable to
isolate both car-to-car and driver-to-driver differences. A 4 × 4 Latin square would
enable this to be done.

The names to be used for the rows, columns and treats for this example are Cars,
Drives and Additives, respectively. Also, t = 4 and a suitable design was obtained
from Box, Hunter and Hunter. Substituting these into the expressions above, yields
the following expressions to be used in this case:

> t <- 4
> n <- t*t
> LSPolut.unit <- list(Drivers=t, Cars=t)
> Additives <- factor(c(1,2,3,4, 4,3,2,1, 2,1,4,3, 3,4,1,2),
+ labels=c("A","B","C","D"))
> LSPolut.lay <- fac.layout(unrandomized=LSPolut.unit, randomized=Additives,
+ seed=941)
> remove("Additives")

7

> LSPolut.lay
 Units Permutation Drivers Cars Additives
1 1 11 1 1 B
2 2 12 1 2 A
3 3 10 1 3 C
4 4 9 1 4 D
5 5 7 2 1 A
6 6 8 2 2 B
7 7 6 2 3 D
8 8 5 2 4 C
9 9 15 3 1 D
10 10 16 3 2 C
11 11 14 3 3 A
12 12 13 3 4 B
13 13 3 4 1 C
14 14 4 4 2 D
15 15 2 4 3 B
16 16 1 4 4 A

Thus the randomized layout is:

4 x 4 Latin square

 Car
 1 2 3 4
 I B A C D
 II A B D C

 Drivers III D C A B
 IV C D B A
 (Additives A, B, C, D)

 ■

5. Sets of Latin Squares

Examples: Pollution effects of petrol additives (continued)

In the above example of a single Latin square, Pollution effects of petrol additives,
four cars and four drivers are employed in a study of possible differences between
four petrol additives as far as their effect on pollution is concerned. To isolate both
car-to-car and driver-to-driver differences a 4 × 4 Latin square was employed.
However, this allowed only 6 degrees of freedom for the Residual sum of squares. To
overcome this problem sets of Latin squares were considered in which the Latin
square was repeated using:

1. using the same drivers (rows) and cars (columns) in each set;
2. using new drivers (rows) but the same cars (columns);
2b. using the same drivers (rows) but new cars (columns); or
3. using new cars (rows) and drivers (columns).

The unrandomized factors that index the units for all cases of sets of Latin squares
are the same as is the randomized factor. The only thing that varies is the nesting
between the unrandomized factors and so it is only the nested.factor argument
that varies between cases. The common R expressions are:

8

r <- 2
t <- 4
n <- r*t*t
LSRepeat.unit <- list(Occasion=r, Drivers=t, Cars=t)
Additives <- factor(rep(c(1,2,3,4, 4,3,2,1, 2,1,4,3, 3,4,1,2),
 times=r), labels=c("A","B","C","D"))

Having run these expressions in R, the additional R expressions required for each
case are as follows:

Sets of Latin squares - case 1

LSRepeat1.lay <- fac.layout(unrandomized=LSRepeat.unit,
 randomized=Additives, seed=914)
LSRepeat1.lay

Sets of Latin squares - case 2

LSRepeat2.nest <- list(Drivers="Occasion")
LSRepeat2.lay <- fac.layout(unrandomized=LSRepeat.unit,
 nested.factors=LSRepeat2.nest,
 randomized=Additives, seed=149)
LSRepeat2.lay

Sets of Latin squares - case 2b

LSRepeat2b.nest <- list(Cars="Occasion")
LSRepeat2b.lay <- fac.layout(unrandomized=LSRepeat.unit,
 nested.factors=LSRepeat2b.nest,
 randomized=Additives, seed=194)
LSRepeat2b.lay

Sets of Latin squares - case 3

LSRepeat3.nest <- list(Cars="Occasion", Drivers="Occasion")
LSRepeat3.lay <- fac.layout(unrandomized=LSRepeat.unit,
 nested.factors=LSRepeat3.nest,
 randomized=Additives, seed=419)
LSRepeat3.lay

The layouts these expressions produce are given in chapter 3, Sets of Latin squares.
The randomized layout for a set consisting of any number of r squares can be
obtained by setting r to the number of squares desired. In these examples, where

2r = , there are 2 copies. Also, one could employ different starting squares for each
square in the set in case 3 by suitable defining the factor Additives. Of course, for
a different experiment, the names of the factors and the starting square would need
to be changed with Occasions corresponding to the sets, Drivers the rows and Cars
the columns. Also, because of the order of the factors in LSRepeat.unit, the layout
will be listed in standard order for Sets then Rows then Columns. However, this can
be changed by varying the order of the factors in LSRepeat.unit.

9

6. Factorial experiments

Layouts for factorial experiments can be obtained in R using the expressions for the
chosen design when only a single-factor is involved. The difference with factorial
experiments is that the several treatment factors need to be entered. Their values
can be generated using the fac.gen function. It is likely to be necessary to use
either the each or times arguments to generate the replicate combinations.

Example: Fertilizing oranges

Suppose an experimenter is interested in investigating the effect of nitrogen and
phosphorus fertilizer on yield of oranges. It was decided to investigate 3 levels of
Nitrogen (viz 0,30,60 kg/ha) and 2 levels of Phosphorus (viz. 0,20 kg/ha). The yield
after six months was measured.

For a factorial experiment, the treatments are all possible combinations of the 3
Nitrogen × 2 Phosphorus levels: 3×2 = 6 treatments. The treatment combinations, in
standard order, are:

Treatment N P
1 0 0
2 0 20
3 30 0
4 30 20
5 60 0
6 60 20

A layout for this experiment in a CRD with three replicates of each treatment is
generated in R as shown in the following output.

> #
> # CRD
> #
> n <- 18
> CRDFac2.unit <- list(Seedling = n)
> CRDFac2.ran <- fac.gen(list(N = c(0, 30, 60), P = c(0, 20)), times = 3)
> CRDFac2.lay <- fac.layout(unrandomized = CRDFac2.unit,
+ randomized = CRDFac2.ran, seed = 105)
> remove("CRDFac2.unit", "CRDFac2.ran")
> CRDFac2.lay
 Units Permutation Seedling N P
1 1 2 1 30 20
2 2 18 2 0 0
3 3 4 3 30 0
4 4 5 4 30 0
5 5 7 5 30 20
6 6 12 6 30 0
7 7 15 7 60 0
8 8 13 8 0 0
9 9 6 9 60 0
10 10 1 10 60 0
11 11 10 11 30 20
12 12 16 12 60 20
13 13 8 13 0 20
14 14 14 14 0 20
15 15 3 15 0 0
16 16 11 16 60 20

10

17 17 9 17 60 20
18 18 17 18 0 20

Note the assignment of the treatment factor names and associated levels to a list
Note the assignment of the generation of treatment values using fac.gen that
creates 3 copies of the levels combinations of the two factors N and P, that have 3
and 2 levels respectively, and stores these in the data.frame CRDFac2.ran.

Again, R can be used to obtain the layout as shown in the following output:

> #
> # RCBD
> #
> b <- 3
> t <- 6
> n <- b*t
> RCBDFac2.unit <- list(Blocks=b, Seedling=t)
> RCBDFac2.nest <- list(Seedling = "Blocks")
> RCBDFac2.ran <- fac.gen(list(N = c(0, 30, 60), P = c(0, 20)), times = 3)
> RCBDFac2.lay <- fac.layout(unrandomized = RCBDFac2.unit,
+ nested.factors = RCBDFac2.nest,
+ randomized = RCBDFac2.ran, seed = 555)
> remove("RCBDFac2.ran", "RCBDFac2.unit", "RCBDFac2.nest")
> RCBDFac2.lay
 Units Permutation Blocks Seedling N P
1 1 2 1 1 30 20
2 2 6 1 2 0 0
3 3 5 1 3 60 0
4 4 1 1 4 60 20
5 5 3 1 5 30 0
6 6 4 1 6 0 20
7 7 16 2 1 0 0
8 8 13 2 2 0 20
9 9 17 2 3 60 0
10 10 14 2 4 30 0
11 11 15 2 5 60 20
12 12 18 2 6 30 20
13 13 7 3 1 0 20
14 14 8 3 2 30 20
15 15 10 3 3 60 0
16 16 12 3 4 0 0
17 17 9 3 5 30 0
18 18 11 3 6 60 20

Finally, the experiment could be laid out in a 6×6 Latin square. Once you have
obtained a standard Latin square, R can be used to obtain the layout as shown in the
following output.

> #
> # LS
> #
> t <- 6
> n <- t*t
> Treats <- c(1,2,3,4,5,6, 2,1,6,5,3,4, 3,6,2,1,4,5,
+ 4,3,5,2,6,1, 5,4,1,6,2,3, 6,5,4,3,1,2)
> LSFac2.ran <- fac.divide(Treats, list(N=c(0,30,60), P=c(0, 20)))
> LSFac2.unit <- list(Rows=t, Columns=t)
> LSFac2.lay <- fac.layout(unrandomized = LSFac2.unit,
+ randomized = LSFac2.ran, seed = 559)
> remove("Treats", "LSFac2.unit", "LSFac2.ran")

11

> LSFac2.lay
 Units Permutation Rows Columns N P
1 1 29 1 1 0 20
2 2 27 1 2 30 0
3 3 30 1 3 60 0
4 4 26 1 4 0 0
5 5 28 1 5 60 20
6 6 25 1 6 30 20
7 7 35 2 1 60 0
8 8 33 2 2 0 0
9 9 36 2 3 60 20
10 10 32 2 4 30 20
11 11 34 2 5 30 0
12 12 31 2 6 0 20
13 13 11 3 1 30 0
14 14 9 3 2 60 20
15 15 12 3 3 30 20
16 16 8 3 4 0 20
17 17 10 3 5 60 0
18 18 7 3 6 0 0
19 19 23 4 1 0 0
20 20 21 4 2 0 20
21 21 24 4 3 30 0
22 22 20 4 4 60 20
23 23 22 4 5 30 20
24 24 19 4 6 60 0
25 25 17 5 1 60 20
26 26 15 5 2 30 20
27 27 18 5 3 0 20
28 28 14 5 4 60 0
29 29 16 5 5 0 0
30 30 13 5 6 30 0
31 31 5 6 1 30 20
32 32 3 6 2 60 0
33 33 6 6 3 0 0
34 34 2 6 4 30 0
35 35 4 6 5 0 20
36 36 1 6 6 60 20

Note the use of fac.divide to create the N and P factors from a factor for
treatments numbered 1–6; fac.gen cannot be used here because the treatments
are not in a patterned order. ■

7. Two-level factorial experiments

In these experiments we will generally use "-" and "+" for the two levels of each
factor. These will be stored in the object mp (minus-plus) using the assignment

mp <- c("-", "+")

Also, a one-line function mpone that converts the first two levels of a factor in –1 and
+1 respectively will be used where multiplication of the levels of factors needs to be
performed. The function, available from the library dae is:

mpone <- function(factor){2 * as.numeric(factor) - 3}

12

a) Replicated two-level factorial experiments

In this example (Box, Hunter and Hunter, 2005, section 5.4), a 23 experiment with
factors Te, C and K are to be replicated twice. The replicates of each treatment
combinations are generated using each = 2.

> #
> # Replicated two-level factorial
> #
> n <- 16
> mp <- c("-", "+")
> Fac3.2Level.Rep.ran <- fac.gen(generate = list(Te = mp, C = mp, K = mp), each =
2,
+ order="yates")
> Fac3.2Level.Rep.unit <- list(Runs = n)
> Fac3.2Level.Rep.lay <- fac.layout(unrandomized = Fac3.2Level.Rep.unit,
+ randomized = Fac3.2Level.Rep.ran, seed = 625)
> Fac3.2Level.Rep.lay
 Units Permutation Tests Te C K
1 1 5 1 - - +
2 2 8 2 + - +
3 3 14 3 + + -
4 4 7 4 + + -
5 5 6 5 - - -
6 6 12 6 - + -
7 7 4 7 + - -
8 8 3 8 - - -
9 9 10 9 + + +
10 10 1 10 - - +
11 11 2 11 - + +
12 12 16 12 - + -
13 13 11 13 + + +
14 14 15 14 + - -
15 15 13 15 - + +
16 16 9 16 + - +

b) Unreplicated two-level factorial experiments

> #
> # Unreplicated two-level factorial
> #
> n <- 8
> mp <- c("-", "+")
> Fac3.2Level.Unrep.ran <- fac.gen(list(A = mp, B = mp, C = mp), order="yates")
> Fac3.2Level.Unrep.unit <- list(Runs = n)
> Fac3.2Level.Unrep.lay <- fac.layout(unrandomized = Fac3.2Level.Unrep.unit,
+ randomized = Fac3.2Level.Unrep.ran, seed=333)
> remove("Fac3.2Level.Unrep.ran")
> Fac3.2Level.Unrep.lay
 Units Permutation Runs A B C
1 1 4 1 - - +
2 2 2 2 + - -
3 3 8 3 + + +
4 4 5 4 - - -
5 5 1 5 + + -
6 6 7 6 - + +
7 7 6 7 + - +
8 8 3 8 - + -

c) Confounded two-level factorial experiments

To obtain layouts for the designs involving total confounding in R, use fac.gen to
generate the combinations of the treatment factors to be observed, compute the

13

Block factors from the treatment factors and use instructions similar to the
randomized complete block design to randomize the order of the blocks and the
treatment combinations within blocks. Note the use of the one-line function mpone
from the library dae to convert the first two levels of a factor into the numeric values –
1 and +1.

Example: Complete sets of factorial treatments in 2 blocks

The output, including expressions, for producing a layout for this design is given
below. Note that, in practice, one would need to choose a random number between 0
and 1023 to use for the seed— the alternative is to leave the argument out but then
the layout cannot be reproduced.

> #
> # 3 factors in two blocks
> #
> # set up treatment factors
> #
> mp <- c("-", "+")
> Fac3Conf.2Blocks.ran <- fac.gen(generate = list(A = mp, B = mp, C = mp),
order="yates")
> attach(Fac3Conf.2Blocks.ran)
> Blocks <- factor(mpone(A)*mpone(B)*mpone(C), labels=c("1", "2"))
> detach(Fac3Conf.2Blocks.ran)
> Fac3Conf.2Blocks.ran <- Fac3Conf.2Blocks.ran[order(Blocks),]
> remove("Blocks")
> #
> # randomize
> #
> b <- 2
> m <- 4
> n <- b*m
> Fac3Conf.2Blocks.nest <- list(Runs = "Blocks")
> Fac3Conf.2Blocks.unit <- list(Blocks=b, Runs=m)
> Fac3Conf.2Blocks.lay <- fac.layout(unrandomized = Fac3Conf.2Blocks.unit,
+ nested.factors = Fac3Conf.2Blocks.nest,
+ randomized = Fac3Conf.2Blocks.ran, seed = 395)
> Fac3Conf.2Blocks.lay
 Units Permutation Blocks Runs A B C
1 1 6 1 1 - - +
2 2 5 1 2 - + -
3 3 8 1 3 + - -
4 4 7 1 4 + + +
5 5 3 2 1 + + -
6 6 2 2 2 - - -
7 7 1 2 3 - + +
8 8 4 2 4 + - +

Example: Repeated two block experiment

The expressions for a repeated two-block experiment are similar to those for the
unreplicated experiment — the major differences are the use of the each (or times)
argument in fac.gen and the generation of an extra factor, Reps say, indexing the
replications. The output, including expressions, for producing a layout for this design
is given below. Note that, in practice, one would need to choose a random number
between 0 and 1023 to use for the seed— the alternative is to leave the argument
out but then the layout cannot be reproduced.

14

> #
> # repeats of 3 factors in two blocks
> #
> #
> # set up treatment factors
> #
> mp <- c("-", "+")
> Fac3Conf.2Blocks.Reps.ran <- fac.gen(generate = list(A = mp, B = mp, C = mp),
+ times = 2, order="yates")
> attach(Fac3Conf.2Blocks.Reps.ran)
> Reps = factor(rep(1:2, each=8))
> Blocks <- factor(mpone(A)*mpone(B)*mpone(C), labels=c("1", "2"))
> detach(Fac3Conf.2Blocks.Reps.ran)
> Fac3Conf.2Blocks.Reps.ran <- Fac3Conf.2Blocks.Reps.ran[order(Reps, Blocks),]
> remove("Reps","Blocks")
> #
> # randomize
> #
> set.seed(911)
> b <- 4
> m <- 4
> n <- b * m
> Fac3Conf.2Blocks.Reps.nest <- list(Runs = "Blocks")
> Fac3Conf.2Blocks.Reps.unit <- list(Blocks=b, Runs=m)
> Fac3Conf.2Blocks.Reps.lay <- fac.layout(
+ unrandomized = Fac3Conf.2Blocks.Reps.unit,
+ nested.factors = Fac3Conf.2Blocks.Reps.nest,
+ randomized = Fac3Conf.2Blocks.Reps.ran,
+ seed = 911)
> Fac3Conf.2Blocks.Reps.lay
 Units Permutation Blocks Runs A B C
1 1 7 1 1 - - +
2 2 8 1 2 - + -
3 3 6 1 3 + + +
4 4 5 1 4 + - -
5 5 4 2 1 - + +
6 6 2 2 2 + - +
7 7 1 2 3 - - -
8 8 3 2 4 + + -
9 9 15 3 1 + + +
10 10 14 3 2 - - +
11 11 13 3 3 + - -
12 12 16 3 4 - + -
13 13 11 4 1 + - +
14 14 12 4 2 + + -
15 15 10 4 3 - - -
16 16 9 4 4 - + +

Example: Repeated four block experiment

The output, including expressions, for producing a layout for this design is given
below. Note that, in practice, one would need to choose a random number between 0
and 1023 to use for the seed— the alternative is to leave the argument out but then
the layout cannot be reproduced.

> #
> # repeats of 3 factors in four blocks
> #
> #
> # set up treatment factors
> #
> Fac3Conf.4Blocks.Reps.ran <- fac.gen(generate = list(A = mp, B = mp, C = mp),
+ times = 2, order="yates")
> attach(Fac3Conf.4Blocks.Reps.ran)

15

> Reps = factor(rep(1:2, each=8))
> B1 <- factor(mpone(A)*mpone(B), labels=c("1", "2"))
> B2 <- factor(mpone(A)*mpone(C), labels=c("1", "2"))
> Blocks <- fac.combine(list(B1,B2))
> detach(Fac3Conf.4Blocks.Reps.ran)
> Fac3Conf.4Blocks.Reps.ran <- Fac3Conf.4Blocks.Reps.ran[order(Reps,Blocks),]
> remove("Reps","B1", "B2", "Blocks")
> #
> # randomize
> #
> set.seed(111)
> b <- 8
> m <- 2
> n <- b*m
> Fac3Conf.4Blocks.Reps.nest <- list(Runs = "Blocks")
> Fac3Conf.4Blocks.Reps.unit <- list(Blocks=b, Runs=m)
> Fac3Conf.4Blocks.Reps.lay <- fac.layout(
+ unrandomized = Fac3Conf.4Blocks.Reps.unit,
+ nested.factors = Fac3Conf.4Blocks.Reps.nest,
+ randomized = Fac3Conf.4Blocks.Reps.ran,
+ seed = 111)
> Fac3Conf.4Blocks.Reps.lay
 Units Permutation Blocks Runs A B C
1 1 14 1 1 + + -
2 2 13 1 2 - - +
3 3 15 2 1 - - +
4 4 16 2 2 + + -
5 5 4 3 1 + - -
6 6 3 3 2 - + +
7 7 9 4 1 - + -
8 8 10 4 2 + - +
9 9 5 5 1 - - -
10 10 6 5 2 + + +
11 11 7 6 1 + + +
12 12 8 6 2 - - -
13 13 1 7 1 - + +
14 14 2 7 2 + - -
15 15 12 8 1 - + -
16 16 11 8 2 + - +

d) Fractional two-level factorial experiments

The steps to be carried out to obtain the treatments for a 2k p− fractional factorial
design are:

1. Use fac.gen to generate the levels combinations of the first k p− factors in a

design because the design will be complete in this number of factors.
2. From the generators, such as can be obtained from the Table of fractional

factorial designs given in section VIII.D, Fractional factorial designs at two levels,
compute and add to the design the remaining factors —the one-line function
mpone from the library dae is used to convert the first two levels of a factor into
the numeric values –1 and +1.

If required, randomize the layout using the same instructions as for the unreplicated
2k experiment.

16

Example: A bike experiment

The following expressions are used to generate a randomized layout for the first
fraction of the experiment described in Box, Hunter and Hunter (2005, section 6.5).
The layout is stored in a data.frame named Frf7Bike.lay:

mp <- c("-", "+")
fnames <- list(Seat = mp, Dynamo = mp, Handbars = mp)
Frf7Bike.ran <- fac.gen(generate = fnames, order = "yates")
attach(Frf7Bike.ran)
Frf7Bike.ran$Gear <- factor(mpone(Seat)*mpone(Dynamo), labels = mp)
Frf7Bike.ran$Raincoat <- factor(mpone(Seat)*mpone(Handbars), labels = mp)
Frf7Bike.ran$Brekkie <- factor(mpone(Dynamo)*mpone(Handbars), labels = mp)
Frf7Bike.ran$Tyres <- factor(mpone(Seat)*mpone(Dynamo)*mpone(Handbars),
 labels = mp)
detach(Frf7Bike.ran)
Frf7Bike.unit <- list(Runs = 8)
Frf7Bike.lay <- fac.layout(unrandomized = Frf7Bike.unit,
 randomized = Frf7Bike.ran)
Frf7Bike.lay

Note that fac.gen generates only the first 3 of the 7 factors as this design is
complete in just these 3 factors. The remaining 4 factors are generated as
combinations of these first 3 factors.

The following expressions generate a randomized layout for the second fraction
(Box, Hunter and Hunter, 2005, section 6.8) in a data.frame named
Frf7Bike2.lay and then combines the two fractions into a single data.frame
named Frf7Bike.Both.lay:

Frf7Bike2.ran <- Frf7Bike.ran
attach(Frf7Bike2.ran)
Frf7Bike2.ran$Gear <- factor(-mpone(Seat)*mpone(Dynamo), labels = mp)
detach(Frf7Bike2.ran)
Frf7Bike2.lay <- fac.layout(unrandomized = Frf7Bike.unit,
 randomized = Frf7Bike2.ran)
Frf7Bike.Both.lay <- rbind(Frf7Bike.lay,Frf7Bike2.lay)
Frf7Bike.Both.lay <- data.frame(Block = factor(rep(1:2, each=8)),
 Frf7Bike.Both.lay)
Frf7Bike.Both.lay

17

8. Split-plot experiments

The general set of expressions for using R to obtain a layout for the standard split-
plot experiment, with r blocks, a main-plot treatments and b subplot treatments, is as
follows:

The general expressions for using R to obtain a layout for the standard split-plot
experiment, with r blocks, a main-plot treatments and b sub-plot treatments, are given
below. To use these expressions to generate a layout for a particular case, you will
need to assign values to r, a, and b prior to using them and to substitute the actual
names for Blocks, MainPlots, SubPlots, A, B and the Experiment. Also, the labels for
the treatments are optional.

fnames <- list(A = a, B = b)
Experiment.ran <- fac.gen(generate = fnames, times = r)
Experiment.unit <- list(Blocks=r, MainPlots=a, SubPlots=b)
Experiment.nest <- list(MainPlots = "Blocks",
 SubPlots = c("Blocks", "MainPlots"))
Experiment.lay <- fac.layout(unrandomized = Experiment.unit,
 nested.factors = Experiment.nest,
 randomized = Experiment.ran,
 seed = 1025)
Experiment.lay

It is very important that the order in the fac.gen function has the main-plot
treatment factor (A) before the subplot treatment factor (B). This is because fac.gen
generates the levels combinations in standard order and so the first factor will
correspond to the generation of MainPlots and the second factor to SubPlots.

Example: Production rate experiment

Johnson and Leone (1964, section 15.7) describe an experiment in which the
researcher is interested in comparing the effects of 3 methods of work organization
and 3 sources of raw material on the production rate of a certain product. It is
decided that four factories are to be used in the experiment and that each factory is
to be divided into three areas. The methods of work organization are to be assigned
at random to areas. Each area is to be subdivided into 3 parts and the source of raw
material for each part is obtained by randomizing the three sources to the three parts.
The layout for this experiment can be obtained using the following R expressions:

> #
> # standard split-plot
> #
> r <- 4
> a <- 3
> b <- 3
> fnames <- list(Methods = c(1:a), Sources = c("A","B","C"))
> SPLProd.ran <- fac.gen(generate = fnames, times = r)
> SPLProd.unit <- list(Factories=r, Areas=c("I","II","III"), Parts=b)
> SPLProd.nest <- list(Areas = "Factories", Parts = c("Factories", "Areas"))
> SPLProd.lay <- fac.layout(unrandomized = SPLProd.unit,
+ nested.factors = SPLProd.nest,
+ randomized = SPLProd.ran, seed = 1025)
> SPLProd.lay

18

 Units Permutation Factories Areas Parts Methods Sources
1 1 32 1 I 1 2 C
2 2 33 1 I 2 2 A
3 3 31 1 I 3 2 B
4 4 35 1 II 1 3 B
5 5 34 1 II 2 3 A
6 6 36 1 II 3 3 C
7 7 30 1 III 1 1 B
8 8 28 1 III 2 1 C
9 9 29 1 III 3 1 A
10 10 9 2 I 1 2 C
11 11 7 2 I 2 2 B
12 12 8 2 I 3 2 A
13 13 2 2 II 1 1 A
14 14 3 2 II 2 1 B
15 15 1 2 II 3 1 C
16 16 5 2 III 1 3 A
17 17 4 2 III 2 3 B
18 18 6 2 III 3 3 C
19 19 26 3 I 1 2 B
20 20 25 3 I 2 2 A
21 21 27 3 I 3 2 C
22 22 20 3 II 1 3 C
23 23 19 3 II 2 3 B
24 24 21 3 II 3 3 A
25 25 24 3 III 1 1 B
26 26 23 3 III 2 1 A
27 27 22 3 III 3 1 C
28 28 13 4 I 1 3 B
29 29 14 4 I 2 3 C
30 30 15 4 I 3 3 A
31 31 12 4 II 1 1 C
32 32 11 4 II 2 1 A
33 33 10 4 II 3 1 B
34 34 16 4 III 1 2 B
35 35 17 4 III 2 2 A
36 36 18 4 III 3 2 C

19

9. Incomplete block designs

The expressions for obtaining a randomized layout for an incomplete block design
are a modification of the expressions for randomizing an RCBD to take into account
that there are now k, instead of t, units per block. Also, you will have to set up a
factor, say Treat, that contains the design obtained from a textbook. The general R
expressions are given below. To use these expressions to generate a layout for a
particular case, you will need to assign values to b, k and t prior to using them and to
substitute the actual names for Blocks, Units, Treats and BIBD. Also, the labels for
the treatments are optional.

BIBD.unit <- list(Blocks=b, Plots=k)
BIBD.nest <- list(Plots = "Blocks")
Treats <- factor(c(the unrandomized layout for the BIBD),
 labels=c("A","B" …))
BIBD.lay <- fac.layout(unrandomized = BIBD.unit,
 nested.factors = BIBD.nest,
 randomized = Treats, seed = 987)
remove("Treats")
BIBD.lay

Example: BIBD for four treatments in blocks of three

The following expressions obtain the randomized layout for a BIBD with b = 4, k = 3
and t = 4.

b <- 4
k <- 3
t <- 4
BIBD.unit <- list(Blocks=b, Plots=k)
BIBD.nest <- list(Plots = "Blocks")
BIBD.ran <- Treat <- factor(c(1,2,3, 1,2,4, 1,3,4, 2,3,4),
 labels=c("A","B","C","D"))
BIBD.lay <- fac.layout(unrandomized = BIBD.unit, nested.factors = BIBD.nest,
 randomized = Treat, seed = 987)
remove("Treats")
BIBD.lay

20

10. Balanced lattice square designs

The expressions for obtaining a randomized layout for a balanced lattice square
design are a modification of the expressions for randomizing a set of Latin squares
(case 3) to take into account that there are now k, instead of t, rows and columns.
Also, you will have to set up a factor, say Treat, that contains the design obtained
from a textbook. The general expressions are given below. To use these expressions
to generate a layout for a particular case, you will need to assign values to k prior to
using them and to substitute the actual names for Squares, Rows, Columns, Treats
and the design object to contain them. Also, the labels for the treatments are
optional.

Balanced lattice squares

r <- (k+1)/2
t <- k*k
BalLattSq.unit <- list(Squares=r, Rows=k, Cols=k)
BalLattSq.nest <- list(Rows = "Squares", Cols = "Squares")
Treats <- factor(c(1,2,3, 4,5,6, 7,8,9, 1,6,8, 9,2,4, 5,7,3))
Treats <- factor(c(the unrandomized layout for the BLS),
 labels=c("A","B" …))
BalLattSq.lay <- fac.layout(unrandomized = BalLattSq.unit,
 nested.factors = BalLattSq.nest,
 randomized = Treats, seed = 419)
remove("Treats")
BalLattSq.lay

Example: 3 3 balanced lattice square

The following expressions obtain the randomized layout for a 3 ´ 3 balanced lattice
square (k = 3).

Balanced lattice squares

k <- 3
r <- (k+1)/2
t <- k*k
BalLattSq.unit <- list(Squares=r, Rows=k, Cols=k)
BalLattSq.nest <- list(Rows = "Squares", Cols = "Squares")
Treats <- factor(c(1,2,3, 4,5,6, 7,8,9, 1,6,8, 9,2,4, 5,7,3))
BalLattSq.lay <- fac.layout(unrandomized = BalLattSq.unit,
 nested.factors = BalLattSq.nest,
 randomized = Treats, seed = 419)
remove("Treats")
BalLattSq.lay

21

11. Youden square designs

The expressions for obtaining a randomized layout for a Youden square design are a
modification of the expressions for randomizing a Latin square to take into account
that there are now k, instead of t, columns. Also, you will have to set up a factor, say
Treat, that contains the design obtained from a textbook. The general expressions
are given below. To use these expressions to generate a layout for a particular case,
you will need to assign values to n, k and t prior to using them and to substitute the
actual names for Rows, Columns, Treats and YDN. Also, the labels for the
treatments are optional.

YDN.unit <- list(Rows=t, Columns=k)
Treats <- factor(c(the unrandomized layout for the YS),
 labels=c("A","B" …))
YDN.lay <- fac.layout(unrandomized = YDN.unit,
 randomized = Treats, seed = 859)
remove("Treats")
YDN.lay

Example: Wear testing

The following expressions obtain the randomized layout for a 7 ´ 4 Youden square
(Box, Hunter and Hunter, 2005, section 4.5):

t <- 7
k <- 4
n <- k*t
YDNWear.unit <- list(Machines=t, Positions=k)
Fabrics <- factor(c(3,5,6,7, 4,6,7,1, 5,7,1,2, 6,1,2,3, 7,2,3,4, 1,3,4,5,
 2,4,5,6), labels=c("A","B","C","D","E","F","G"))
YDNWear.lay <- fac.layout(unrandomized = YDNWear.unit,
 randomized = Fabrics, seed = 859)
remove("Fabrics")
YDNWear.lay

22

12. Power and sample size for designed experiments

In power and sample size calculations, in addition to specifying delta, sigma, power
and alpha, one has to supply a number of quantities that vary with the design of the
experiment. The following table summarizes these for the common designs, giving
the degrees of freedom of the denominator as a function of r. Note that rm is the
number of replicates in means being compared. For treatment means, this will be the
product of the pure replication of the treatments, r, times a multiple, m, for the
product of the number of levels of factors not involved in means being compared.

Design m r m df.num (ν1) df.denom (ν2)
CRD 1 r 1t − (1)t r −
RCBD 1 b 1t − ()()1 1t b− −
LS 1 ()r t= 1r − ()()1 2r r− −
Factorial
A b br 1a − CRD ()1ab r − ,

RCBD ()()1 1ab r− −

or LS ()()1 2r r− −

B a ar 1b −
A:B 1 r ()()1 1a b− −

Standard split-plot
A b br 1a − ()()1 1a r− −
B a ar 1b − ()()1 1a b r− −
A:B 1 r ()()1 1a b− − ()()1 1a b r− − †
†only approximate for effects not at the same level of A

23

a) Computing the power for given sample size

The function power.exp from the dae library is used for computing the power in
detecting the difference between means for some, not necessarily proper, subset of
the factors from a designed experiment.

The usage and arguments for this function are:

power.exp(rm=5,df.num=1, df.denom=10, delta=1, sigma=1,

alpha=0.05, print=FALSE)

rm: the number of observations used in computing a mean.
df.num: the degrees of freedom of the numerator of the F for testing the term

involving the means;
df.denom: the degrees of freedom of the denominator of the F for testing the term

involving the means;
delta: the true difference between a pair of means;
sigma: population standard deviation;
alpha: the significance level to be used
print: T or F to have or not have a table of power calculation details printed out.

Note that the values given for the arguments in the above expression for power.exp
are the default values assigned to the arguments if they are not set in a call to the
function.

Example: Penicillin yield

Suppose it was expected that the minimum difference between a pair of treatment
means is 5 and that α = 0.05. In the analysis of variance for this experiment, the
Residual MSq was 18.83 so we will take σ2 ≈ 20. Also 5r = and 1m = . The output
from the power.exp call to compute the power is given below. Note that alpha is not
set in this call and so the default value of 0.05 will be used. Also, the expressions
3 * (rm - 1) and sqrt(20) will be evaluated prior to the call to the function. To
get the correct value of rm used in evaluating the expression 3 * (rm - 1, rm
needs to be set prior to calling power.exp.

> rm <- 5
> power.exp(rm=rm, df.num=3, df.denom=3*(rm-1), delta=5, sigma=sqrt(20),
+ print=TRUE)
 rm df.num df.denom alpha delta sigma lambda powr
1 5 3 12 0.05 5 4.472136 3.125 0.2159032
[1] 0.2159032

24

b) Computing the sample size to achieve specified power

The function no.reps from the dae library is used to compute the required number
of pure replicates, r, of the treatments in a designed experiment to achieve a
specified power in detecting a difference between the means for some, not
necessarily proper, subset of the treatment factors. The usage and arguments for this
function are as follows:

no.reps(multiple=1, df.num=1,
 df.denom=expression((df.num+1)*(r-1)),
 delta=1, sigma=1, alpha=0.05, power =0.8,
 tol = 0.025, print=FALSE)

multiple: the multiplier, m, which when multiplied by the number of pure replicates

of a treatment, r, gives the number of observations ()rm used in computing
means for the treatment factor subset; m is the replication arising from other
treatment factors. However, for single treatment factor experiments the subset
can only be the treatment factor and 1m =

df.num: the degrees of freedom of the numerator of the F for testing the term
involving the treatment factor subset;

df.denom: an expression for the degrees of freedom of the denominator of the F for
testing the term involving the treatment factor subset — it must involve r, the
number of pure replicates, can involve other arguments to no.reps such as
multiple and df.num, and must be enclosed in an expression function so
that it is not evaluated when no.reps is called but will be evaluated as different
values of r are tried during execution of no.reps;

delta: the true difference between a pair of means for some, not necessarily proper,
subset of the treatment factors;

sigma: population standard deviation;
alpha: the significance level to be used;
power: the minimum power to be achieved;
tol: the maximum difference tolerated between the power required and the power

computed in determining the number of replicates;
print: T or F to have or not have a table of power calculation details printed out.

Example II.1.Penicillin yield (continued)

We now determine the number of replicates required to achieve a power of 0.80 in
detecting ∆ = 5 with α = 0.05. We continue to take σ2 ≈ 20. The output from the use of
no.reps is as follows:

> no.reps(multiple=1, df.num=3, df.denom=expression(df.num*(r-1)), delta=5,
+ sigma=sqrt(20), power=0.8, print=FALSE)
$nreps
[1] 19

$power
[1] 0.8055926

25

13. References

Box, G. E. P., Hunter, J.S. and Hunter, W.G. (2005). Statistics for experimenters:
design, innovation, and discovery. Hoboken, N.J., Wiley-Interscience.

Johnson, N. L. and F. C. Leone (1964). Statistics and experimental design in
engineering and the physical sciences. New York, Wiley.

26

	Randomized layouts and sample size computations using dae in R
	1. Completely randomized design
	Example: a rat experiment

	2. Randomized complete block design
	Example: Penicillin yield

	3. Generalized randomized complete block design
	Example: Design for a wheat experiment

	4. Latin square design
	Example: Pollution effects of petrol additives

	5. Sets of Latin Squares
	Examples: Pollution effects of petrol additives (continued)

	6. Factorial experiments
	Example: Fertilizing oranges

	7. Two-level factorial experiments
	a) Replicated two-level factorial experiments
	b) Unreplicated two-level factorial experiments
	c) Confounded two-level factorial experiments
	Example: Complete sets of factorial treatments in 2 blocks
	Example: Repeated two block experiment
	Example: Repeated four block experiment

	d) Fractional two-level factorial experiments
	Example: A bike experiment

	8. Split-plot experiments
	Example: Production rate experiment

	9. Incomplete block designs
	Example: BIBD for four treatments in blocks of three

	10. Balanced lattice square designs
	Example: 3 (3 balanced lattice square

	11. Youden square designs
	Example: Wear testing

	12. Power and sample size for designed experiments
	a) Computing the power for given sample size
	Example: Penicillin yield

	b) Computing the sample size to achieve specified power
	Example II.1.Penicillin yield (continued)

	13. References

