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Abstract

We introduce and examine dbEmpLikeGOF, an R language for performing goodness-
of-fit tests based on sample entropy. This package also performs the two sample distri-
bution comparison test. For a given vector of data observations, the provided function
dbEmpLikeGOF tests the data for the proposed null distributions, or tests for distribu-
tion equality between two vectors of observations. The proposed methods represent a
distribution-free density-based empirical likelihood technique applied to nonparametric
testing. The proposed procedure performs exact and very efficient p values for each test
statistic obtained from a Monte-Carlo (MC) resampling scheme. Note by using an MC
scheme, we are assured exact level α tests that approximate nonparametrically most pow-
erful Neyman-Pearson decision rules. Although these entropy based tests are known in the
theoretical literature to be very efficient, they have not been well addressed in statistical
software. This article briefly presents the proposed tests and introduces the package, with
applications to real data. We apply the methods to produce a novel analysis of a recently
published dataset related to coronary heart disease.
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1. Introduction

1.1. Empirical likelihood

Empirical likelihood (EL) allows researchers the benefit of employing powerful likelihood
methods (maximizing likelihoods) without having to choose a parametric family for the data.
A thorough overview of empirical likelihood methods can be found in Owen (2001). The
research in this area continues to grow while empirical likelihood methods are being extended
to many statistical problems as in, for example, Vexler, Yu, Tian, and Liu 2010; Yu, Vexler,
and Tian 2010.

In short, an outline of the EL approach can be presented as follows. Given independently
identically distributed observations X1, . . . , Xn, the EL function has the form of Lp = Πn

i=1pi
where the components pi, i = 1, . . . , n maximize the likelihood Lp (maximum likelihood esti-
mation) provided that empirical constraints, based on X1, . . . , Xn are in effect (

∑n
i=1 pi =

1,
∑n

i=1 piXi = 0, under the hypothesis EX1 = 0). Computation of the EL’s compo-
nents pi, i = 1, . . . , n used to be an exercise in Lagrange multipliers. This nonparametric
approach is a product of the consideration of the ‘distribution-functions’-based likelihood
Πn
i=1F (Xi) − F (Xi−) over all distribution functions F where F (Xi−) denotes the left hand

limit of F at Xi.

The following extensions from these methods involve a density-based likelihood methodology
for goodness-of-fit testing. The proposed extensions have been motivated by developing test
statistics that approximate nonparametrically most powerful Neyman-Pearson test statistics
based on likelihood ratios. A density-based EL methodology can be introduced utilizing the
EL concept as in Vexler and Gurevich 2010a,b; Gurevich and Vexler 2011. Following the EL
methodology, the likelihood function Lf = Πn

i=1f(Xi) where f(·) is a density function of Xi

can be approximated by Πn
i=1fi, where values of fi should maximize Πn

i=1fi provided that
an empirical constraint which corresponds to

∫
f(u)du = 1 under an underlying hypothesis

is in effect. Outputs of the density based EL approach have a structure that utilize sample
entropy (for example, Vexler and Gurevich 2010a). To date, density based EL tests have not
been presented in R packages (R Development Core Team 2009) but are known to be very
efficient in practice. Moreover, despite the fact that many theoretical articles have considered
very powerful entropy-based tests, to our knowledge there does not exist software procedures
to execute procedures based on sample entropy in practice.

1.2. Goodness-of-fit tests

Goodness-of-fit tests commonly arise when researchers are interested in checking whether the
data come from an assumed parametric model. In certain situations, this question manifests to
test whether two datasets come from the same parametric model. Commonly used goodness-
of-fit tests include the Shapiro-Wilks (SW) test, Kolmogorov-Smirnov (KS) test, the Lilliefors
(L) test, Wilcoxon rank sum test (WRS), the Cramér-von-Mises test, and the Anderson-
Darling test (Darling 1957; Lilliefors 1967; Hollander, Wolfe, and Wolfe 1973; Royston 1991).

Recently several new goodness-of-fit tests have been developed using density based empirical
likelihood methods. These powerful new tests offer exact level α tests with critical values that
can be easily obtained via Monte-Carlo approaches.
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1.3. EL ratio test for normality

The derivation of the EL ratio test for normality can be found in Vexler and Gurevich (2010b).
To outline this method, we suppose that the data consist of n independent and identically
distributed observations X1, . . . , Xn. Consider the problem of testing the composite hypoth-
esis that a sample X1, . . . , Xn is from a normal population. Notationally, the null hypothesis
is

H0 : X1, . . . , Xn ∼ N(µ, σ2), (1)

where N(µ, σ2) denotes the normal distribution with unknown mean µ and unknown standard
deviation σ. Generally speaking when the density functions fH1 and fH0 corresponding to
the null and alternative hypotheses, are completely known, the most powerful test statistic is
the likelihood ratio:

n∏
i=1

fH1(Xi)

n∏
i=1

fH0(Xi)

=

n∏
i=1

fH1(Xi)

(2πσ2)−n/2exp (−
∑n

i=1(Xi − µ)2/2σ2)
, (2)

where, under the null hypothesis, X1, . . . , Xn are normal with mean µ and variance σ2. In
the case of the unknown µ and σ2, the maximum likelihood estimation applied to (2) changes
the ratio to,

n∏
i=1

fH1(Xi)

(2πes2)−n/2
, (3)

where s represents the sample standard deviation.

Applying the maximum EL method to (3) forms the likelihood ratio test statistic

Tmn = (2πes2)n/2
n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) , (4)

where m is assumed to be less than n/2. Using empirical likelihood modifications, the maxi-
mum EL method applied to (3), and following Vexler and Gurevich (2010b), to test the null
hypothesis at (1) we can use the test statistic,

Vn = min
1≤m<n1−δ

(2πes2)n/2
n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) (5)

where 0 < δ < 1, s denotes the sample standard deviation, and X(1), . . . , X(n) represent the
order statistics corresponding to the sample X1, . . . , Xn. Note, here, X(j) = X(1) if j ≤ 1 and
X(j) = X(n) if j ≥ n.

We employ the following decision rule, we reject the null hypothesis if and only if

log(Vn) > C, (6)

where C is a test threshold and Vn is the test statistic defined in (5).
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Figure 1: The curves display the value of the thresholds Cα for the test statis-
tic log(Vn) with δ = 0.5 corresponding to the significance (α) levels of α =
0.01, 0.025, 0.05, 0.125, 0.15, 0.25, 0.3, 0.4, 0.45 that are plotted against the sample sizes n =
5, 10, 15, . . . , 100.

Since
sup
µ,σ

PH0{log (Vn) > C} = PX1,...,Xn∼N(0,1){log (Vn) > C}, (7)

the type I error of the test at (6) can be calculated exactly using a Monte Carlo approach.
Type I error for the test in (6) refers to the probability of rejecting the null hypothesis in (1)
when, in fact, the null hypothesis is true. Figure 1 displays the Monte-Carlo roots Cα of the
equation PX1,...,Xn∼N(0,1) {log (Vn) > Cα} = α for different values of α and n. (For each value
of α and n, the solutions were derived from 75,000 samples of size n.) The setting of δ = 0.5
is motivated by the work presented in Vexler and Gurevich (2010b). In general, the choice of
δ is not critical for these goodness-of-fit tests.

1.4. EL ratio test for uniformity

One can show that tests for uniformity correspond to general goodness-of-fit testing problems
when the null hypothesis is based on completely known distribution functions. The full
derivation of the EL ratio test for uniformity can be found in Vexler and Gurevich (2010b).
We consider the test for the uniform distribution on the interval [0, 1] (Uni(0, 1)), specifying
the null distribution

H0 : Y1, . . . , Yn ∼ Uni(0, 1) (8)
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versus the alternative that Y1, . . . , Yn are from a nonuniform distribution F (y).

Before considering the hypothesis in (8), consider the problem of testing

H0 : f = fH0 vs H1 : f = fH1 , (9)

where, under the alternative hypothesis, fH1 is completely unknown and under the null hy-
pothesis fH0(x) = fH0(x;θ) is known up to the vector of parameters ~θ = (θ1, . . . , θd), where
d ≥ 1 defines a dimension of the vector θ. In accordance with maximizing EL, for the test in
(9) we obtain the statistic,

Gn = min
1≤m<n1−δ

n∏
i=1

2m

n(X(i+m) −X(i−m))

n∏
i=1

fH0(Xi; θ̂)

. (10)

Applying the result in (10) to the specific hypothesis in (8) and using the outputs from Vexler
and Gurevich (2010b), we suggest the following EL ratio test statistic

Un = min
1≤m<n1−δ

n∏
i=1

2m

n
(
Y(i+m) − Y(i−m)

) , (11)

where 0 < δ < 1 and Y(1), . . . , Y(n) correspond to the order statistics from the sample
Y1, . . . , Yn. Note, Y(j) = Y(1) if j ≤ 1 and Y(j) = Y(n) if j ≥ n. The event

log(Un) > C (12)

implies that H0 is rejected, where C is a test threshold. The significance level of this test can
be calculated according to the following equation,

PH0 {log(Un) > Cα} = PX1,...,Xn∼Uni(0,1) {log(Un) > Cα} = α. (13)

Figure 2 shows the roots Cα of the equation in (13) for different values of α and n. (For each
value of α and n, the solution is derived from 75,000 samples of size n).

Note, the test for uniformity in (12) will cover a generalized version of the goodness-of-fit
problem when the distribution in H0 is completely known. In other words, if we consider the
random sample X1, . . . , Xn from a population with a density function f and a finite variance
we can test the hypotheses:

H0 : F = FH0 vs H1 : F = FH1 , (14)

where, under the alternative hypothesis, FH1 is completely unknown, whereas under the null
hypothesis, FH0(x) = FH0(x;θ) is known up to the vector of parameters θ = (θ1, . . . , θd).
Note, d ≥ 1 defines the dimension for θ. Although a strong assumption, by assuming that
densities exist under the alternative, we are able to demonstrate asymptotic consistency of the
proposed test statistic. By employing the probability integral transformation (Dodge 2006),
if X1, . . . , Xn ∼ fH0 , with fH0 completely known, then Yi = F−1

H0
(Xi) ∼ Uni(0, 1). Hence,

the uniformity test in (12) can be employed on data Y1, . . . , Yn to test whether X1, . . . , Xn

conforms with density fH0 .
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Figure 2: The curves display the value of the thresholds Cα for the test statis-
tic log(Un) with δ = 0.5 corresponding to the significance (α) levels of α =
0.01, 0.025, 0.05, 0.125, 0.15, 0.25, 0.3, 0.4, 0.45 that are plotted against the sample sizes n =
5, 10, 15, . . . , 100.

1.5. EL ratio test for distribution equality

In this section we present the EL ratio test for examining if two datasets are from the same
distribution. The complete derivation for this case can be found in Gurevich and Vexler
(2011). In short, let X1 = (X11, X12, . . . , X1n1) denote independent observations in the first
dataset and X2 = (X21, X22, . . . , X2n2) denote independent observations in another dataset.
Under H0 (equal distributions), we assume that both groups are identically distributed. That
is, our null hypothesis is

H0 : FX1 = FX2 (15)

where FX1 and FX2 denote the cumulative density function (CDF) for the observations in X1

and X2, respectively.

To derive the test for (15), we consider that the likelihood ratio can be expressed as,

R =

n∏
i=1

ni∏
j=1

fXi(xi(j))

n∏
i=1

ni∏
j=1

fX(xi(j))

. (16)
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Following the EL concept, we approximate the likelihoods and integrals and obtain the non
parametric approximation to (16) as,

R̃m,v,n1,n2 =

n1∏
i=1

2m

n1δm1j

n2∏
j=1

2v

n2δv2j
. (17)

The proper selection of m and v in the current literature of entropy-based decision making
recommends selecting values utilizing information regarding alternative distributions when
sample sizes are finite. Ultimately using the work in Yu et al. (2010), we look at selecting m
and v by minimizing R̃ over appropriate ranges. This suggests the following test statistic for
the hypothesis in (15),

R̃n1,n2 = min
ln1≤m≤un1

n1∏
j=1

2m

n1∆m1j
min

ln2≤v≤un2

n2∏
j=1

2v

n2∆v2j
, (18)

ln = n0.5+δ, un = min(n1−δ, n/2), δ ∈ (0, 0.25).

The ∆mij function is defined as:

∆mij =
1

n1 + n2

2∑
k−1

ni∑
i=1

(
I(xkl ≤ xi(j+m))− I(xkl ≤ xi(j−m))

)
, (19)

where I() denotes an indicator function that takes the value 1 if the condition in the paren-
thesis is satisfied and takes the value 0, otherwise. The xi(j) indicates the j-th order statistic
for the group i. Note, here, xi(j+m) = xi(ni), if j +m ≥ ni and xi(j−m) = xi(1) if j −m ≤ 1.

The test rejects the null hypothesis for large values of log R̃n1,n2 . Note that we define ∆lij =
1/(n1 + n2) if ∆lij = 0.

Significance of level α can be determined since I(X > Y ) = I(F (X) > F (Y )) for any
distribution function F . Hence, the null distribution of R̃n1,n2 is independent with respect to
the form of the underlying distributions given H0. Hence, we can tabulate universal critical
values regardless of the null distribution of the Xij ’s.

Table 1 shows the critical values for the logarithm of R̃n1,n2 for common sample sizes and
significance levels. These critical values were obtained from deriving Monte Carlo roots of

PH0(log(R̃n1,n2) > Cα) = α

based on 75,000 repetitions of sampling X1j ∼ N(0, 1) and X2j ∼ N(0, 1).

In the following we present the structure and functioning of the package, with applications to
real datasets.

2. What is package dbEmpLikeGOF

In summary, the dbEmpLikeGOF package provides a function dbEmpLikeGOF to be used for
empirical likelihood based goodness-of-fit tests based on sample entropy. The function can also
perform the two sample EL ratio test for the hypothesis in (15). The output of dbEmpLikeGOF
analysis is an object containing the test statistic and the p value. Standard bootstrap options
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PPPPPPPPPn1| α
n2 10 15 20 25 30 35 40 45 50

10 0.01 10.0309 11.7135 12.6062 12.3904 13.4997 14.2343 14.9241 15.2228 15.2992
0.03 9.2193 10.4764 11.4159 11.2406 12.2012 12.9932 13.455 13.6251 14.2996
0.05 8.6969 10.1189 10.7509 10.6318 11.4996 12.4137 12.9247 13.031 13.7022
0.1 7.9816 9.4214 9.9363 9.9797 10.7017 11.3997 12.0698 12.0546 12.6841
0.3 6.8933 8.1363 8.693 8.8636 9.4652 10.0897 10.709 10.6893 11.2914

15 0.01 11.8648 12.458 13.2226 14.3837 14.3508 15.042 15.8725 15.9455 15.8574
0.03 10.5947 11.4898 12.3084 12.8717 13.1676 13.9621 14.7072 14.8819 14.9636
0.05 10.1105 10.9926 11.5624 12.1058 12.6275 13.4878 14.0286 14.2757 14.5255
0.1 9.3739 10.3755 10.9992 11.282 11.8066 12.5398 13.1243 13.4726 13.6302
0.3 8.1207 9.2095 9.9684 10.0254 10.6899 11.3412 11.9266 11.9816 12.564

20 0.01 12.1399 13.6004 13.7649 14.4306 15.2331 16.9505 16.315 16.1152 16.8527
0.03 11.0597 12.1414 12.7128 13.2027 13.8217 14.705 15.0791 15.1986 15.8462
0.05 10.5834 11.6634 12.3211 12.7297 13.4822 14.0104 14.622 14.7702 15.3861
0.1 10.0089 11.0161 11.7324 12.0319 12.6967 13.163 13.6726 13.9232 14.5784
0.3 8.7928 9.9694 10.6362 10.7009 11.3359 11.9487 12.5048 12.5833 13.2383

25 0.01 12.538 14.1579 13.9442 15.4707 14.6032 15.3676 16.3641 15.8391 16.8416
0.03 11.4527 12.9447 13.1226 13.9027 13.7177 14.4252 15.2443 15.0588 15.8216
0.05 10.9144 12.1809 12.6454 13.0417 13.2088 13.9915 14.6391 14.4226 15.0997
0.1 10.0932 11.2212 11.8011 12.1558 12.5166 13.3305 13.8949 13.7394 14.5305
0.3 8.7971 10.0375 10.6998 10.8905 11.4639 12.0895 12.6786 12.6866 13.357

30 0.01 12.8515 13.8012 14.8586 14.924 15.7008 16.4831 16.7455 17.1096 17.8048
0.03 11.9421 13.2739 13.9407 13.8769 14.5315 15.4392 15.7004 15.9639 16.5448
0.05 11.3231 12.6431 13.3895 13.2301 14.0336 14.8836 15.251 15.3902 16.2116
0.1 10.6087 11.9093 12.6341 12.6507 13.3812 14.0299 14.5131 14.5987 15.3189
0.3 9.425 10.6465 11.448 11.4694 12.1808 12.767 13.4287 13.497 14.1123

35 0.01 13.5787 14.6313 15.3557 15.8021 16.0497 16.9233 17.7182 17.911 18.6844
0.03 12.7614 13.5108 14.4682 14.4577 14.9572 15.9731 16.4772 16.4211 17.2805
0.05 12.1853 13.0084 13.7944 14.0042 14.4604 15.5301 15.9347 16.0617 16.7224
0.1 11.4648 12.2917 13.0518 13.3029 13.7996 14.8474 15.213 15.3504 15.933
0.3 10.0843 11.1736 11.9825 12.1837 12.6628 13.4633 13.9854 14.1603 14.692

40 0.01 14.1314 15.8292 16.302 16.2929 16.6779 17.1978 17.7354 17.8527 18.9472
0.03 13.1939 14.498 15.2044 15.3041 15.6945 16.3618 17.1637 16.8675 17.6094
0.05 12.5387 13.9559 14.4026 14.7364 15.0809 15.803 16.4463 16.469 17.2435
0.1 11.7386 13.2732 13.7072 13.999 14.5619 15.0532 15.7521 15.7859 16.5792
0.3 10.5784 11.8494 12.5495 12.704 13.4996 13.9472 14.6349 14.711 15.3207

45 0.01 14.5517 15.7214 16.2023 16.2815 16.7561 17.6413 18.4154 18.9821 19.0964
0.03 13.4269 14.4359 15.3538 15.2994 15.9227 16.4005 16.8834 17.0773 17.9467
0.05 12.9192 13.8889 14.5227 14.7263 15.3544 15.8658 16.4367 16.6616 17.2855
0.1 12.009 13.2225 13.763 14.0352 14.7032 15.1809 15.7886 16.0087 16.6936
0.3 10.6794 11.985 12.658 12.9085 13.3957 14.0863 14.5973 14.8029 15.4519

50 0.01 15.3759 16.258 17.0594 17.3844 17.9123 18.4991 18.335 18.4317 19.2196
0.03 14.4233 15.1376 15.5834 15.7545 16.7638 17.1262 17.5674 17.7757 18.3132
0.05 13.8042 14.6433 14.8799 15.1833 16.1443 16.6924 17.1546 17.335 17.7472
0.1 13.0578 13.7686 14.2878 14.4291 15.3302 16.0272 16.4523 16.7006 17.0837
0.3 11.4711 12.5354 13.2968 13.3107 14.0838 14.7209 15.3474 15.3893 16.0547

Table 1: The critical values for log(Rn1,n2) with δ = 0.10 for the two sample comparison with
various sample sizes n1 and n2 at significance level α.
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can be used in conjunction with the object (statistic) in order to make confidence sets a
straightforward and automated task.

The proposed function provides the test statistic and p value, where the user can specify an
option for the p value to be obtained from a Monte Carlo simulation or via interpolation
from stored tables. A complementary function is also included in this package to compute
the cut-off value for the appropriate tests of normality and uniformity.

To perform the goodness of fit function, we call the dbEmpLikeGOF function:

dbEmpLikeGOF(x=data, y=na, testcall="uniform", pvl.Table=FALSE, num.MC=1000)

where data represents a vector of data and the testcall option allows the user to perform the
goodness-of-fit test for uniformity (uniform) or normality (normal). The pvl.Table option
when set to TRUE employs a stored table of p values to approximate the p value for the given
situation, when set to FALSE, a Monte-Carlo simulation scheme is employed to estimate the
p value. The number of simulations in the Monte-Carlo scheme can be controlled using the
num.MC option.

In the event that the user specifies both x and y in dbEmpLikeGOF the two sample distribution
equality hypothesis in (15) is performed using the logarithm of the statistic in (18).

Further input options for dbEmpLikeGOF include specifying δ (delta) in (11) and
δ (delta.equality) in (18). We recommend using the default settings and note that these
procedures are fairly robust to the specification of δ.

In certain situations the user may simply be interested in obtaining the cut-off value for a
given test and sample size. The function returnCutoff is designed to return the cut-off value
for the specified goodness-of-fit test at a given α significance level. For example, the following
code:

returnCutoff(samplesize, testcall="uniform", targetalpha=.05, pvl.Table=F,

num.MC=200)

will return the Monte Carlo based test statistic cutoff for determining significance at level
0.05 for the null hypothesis in (8) with decision rule in (12).

The required input for returnCutoff requires the user to specify the sample size (samplesize)
and targetalpha represents the significance level of the test. If the user specifies samplesize
as a two element vector, then it is assumed that the user is specifying the two sample sizes for
the distribution equality test. Note, num.MC represents the number of Monte-Carlo simulations
performed to estimate the cut-off value. Similar to the dbEmpLikeGOF, there is an option to use
stored tables to obtain the cutoff rather than Monte-Carlo simulations. The logical variable
pvl.Table when true will determine the cut-off from interpolation based on stored tables.
Importantly, note that the cutoff values for the test statistics in (5), (11), and (18) are returned
on the logarithm scale with base e.

Using the methodology developed by North, Curtis, and Sham (2003), for each test statistic,
Tobs, the Monte Carlo p value is computed according to the equation below:

p value =
1 +

∑M
j=1 I (T (x1, . . . , xn) > Tobs)

M + 1
(20)
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where M represents the number of simulations and T (x1, . . . , xn) is the statistic from the
simulated data (x1, . . . , xn) and Tobs is the observed statistic.

2.1. Availability

The dbEmpLikeGOF package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/ and also available for download from the author’s depart-
ment webpage (http://sphhp.buffalo.edu/biostat/research/software/dbEmpLikeGOF/
index.php).

3. Examples

This section provides examples of using dbEmpLikeGOF with the corresponding R code.
Using several publicly available datasets and a novel dataset we compare our results with
results from other goodness-of-fit tests including Shapiro-Wilks (SW), Kolmogorov-Smirnov
(KS), Wilcoxon rank sum (WRS), and Lilliefors (L) tests. The SW test for normality was
implemented using the R function shapiro.test. The one and two sample KS tests were im-
plemented using the R function ks.test. The Lilliefors test introduced in Lilliefors (1967) is
an adaptation of the Kolmogorov-Smirnov test for normality. We have included the Lilliefors
test for normality as implemented in the R package nortest in our simulations (Gross 2006).
The two sample WRS test was implemented using the R function wilcox.test (R Development
Core Team 2009).

Note that Monte Carlo studies presented in Vexler and Gurevich (2010a) and Gurevich and
Vexler (2011) showed various situations when the density based EL test clearly outperformed
the classical procedures.

3.1. Real data examples

Snowfall dataset

We consider the 63 observations of the annual snowfall amounts in Buffalo, New York as
observed from 1910/11 to 1972/73 (data in Table 2 and Figure 3); see, for example, Parzen
(1979). We perform the proposed test for (1) with the statistic in (5). We obtain the value of
the test statistic to be 8.49 with an MC based p value of 0.3234 using the following command,

dbEmpLikeGOF(x=snow, testcall=”normal”, pvl.Table=FALSE, num.mc=5000),

where snow represents the vector of annual snowfall amounts. Note, when using a KS test to
examine the same hypothesis for the snowfall dataset we obtain a p value of 0.9851 and a SW
p value of 0.5591. Thus, we conclude that there is not significant evidence to conclude that
the snowfall data is inconsistent with a normal distribution.

To examine the robustness of our tests, we employed a resampling technique where we ran-
domly removed 10, 20 and 50 percent of the data and examined the significance of the test
statistics derived from the remaining dataset. For each test, we repeated this technique 2000
times where the results are summarized in Table 3. When randomly removing 10, 20, and 50
percent of the data, we obtained a significant density based EL test statistic in 3, 5.8 and 6.6

http://CRAN.R-project.org/
http://sphhp.buffalo.edu/biostat/research/software/dbEmpLikeGOF/index.php
http://sphhp.buffalo.edu/biostat/research/software/dbEmpLikeGOF/index.php
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Figure 3: (A) Histogram of snowfall data in Buffalo, NY from 1910/11 to 1972/73. (B)
Snowfall data displayed as a time series. Using the EL test for normality, we conclude that
the distribution for the data is consistent with a normal distribution (p value=.3234).

percent of the simulations, respectively. From the work in Parzen (1979), it is suggested that
the Snowfall dataset follows a normal distribution. Table 4 displays the average p value for
each of the tests when randomly removing the data. Ultimately, the results from randomly
removing a percentage of observations demonstrates the robustness of the proposed test in
controlling the type I error.

To study the power of the EL statistic, we examine four snowfall datasets where each dataset
is obtained by randomly removing 50 percent of the snowfall data. These datasets represent
examples where the EL based test is significant (p value < 0.05), while the KS and SW tests
are not significant (p values > 0.05). These examples are summarized by displaying the kernel
density estimates and the hypothesized distributions as shown in Figure 4. From the examples
in Figure 4, there is the potential for the EL tests to be more powerful than KS and SW tests.

Birth dataset

As another example of dbEmpLikeGOF, we examine a baby boom dataset summarizing the
time of birth, sex, and birth weight for 44 babies born in one 24-hour period at a hospital
in Brisbane, Australia. These data appeared in an article entitled “Babies by the Dozen for
Christmas: 24-Hour Baby Boom” in the newspaper The Sunday Mail on December 21, 1997.
According to the article, a record 44 babies were born in one 24-hour period at the Mater
Mothers’ Hospital, Brisbane, Australia, on December 18, 1997. The article listed the time of
birth, the sex, and the weight in grams for each of the 44 babies where the full dataset can be
found at Dunn (1999). We examine whether an exponential distribution can be used to model
the times between births. From the work in Dunn (1999), it is suggested that this data is
exponentially distributed. The data summarizing the time between births is shown in Table 5.
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Buffalo snowfall dataset (n = 63)

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5
25.0 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6
80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1 103.9
51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9
84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8
71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

Table 2: The amount of snowfall in Buffalo, New York, for each of 63 winters from 1910/11
to 1972/73. See Parzen (1979) for more details.

Dataset Test 10% removed 20% removed 50% removed

Snowfall EL 0.030 0.058 0.066
KS 0.000 0.000 0.000
SW 0.000 0.000 0.003

L 0.000 0.000 0.006

Birth EL 0.000 0.002 0.021
KS 0.000 0.004 0.016

Table 3: Resampling results for Snowfall dataset and Birth dataset. With 2000 simulations, we
randomly remove 10, 20, and 50 percent of the observations in the original dataset (Snowfall
or Birth). In each remaining dataset, we compute the test statistic and the percentage of
significant test statistics (at level 0.05) are summarized in each cell. EL refers to the density-
based empirical likelihood test, KS denotes the Kolmogorov-Smirnov test, SW denotes the
Shapiro-Wilks test, and L denotes the Lilliefors test.

Dataset Test 10% removed 20% removed 50% removed

Snowfall EL 0.2992 0.2956 0.3302
KS 0.9584 0.9305 0.8779
SW 0.5597 0.5446 0.5343

L 0.7708 0.6950 0.6017

Birth EL 0.6114 0.5601 0.5110
KS 0.4652 0.5262 0.5582

Table 4: Resampling results for Snowfall dataset and Birth dataset. With 2000 simulations, we
randomly remove 10, 20, and 50 percent of the observations in the original dataset (Snowfall
or Birth). In each remaining dataset, we compute the test statistic and the mean p values
are summarized in each cell. EL refers to the density-based empirical likelihood test, KS
denotes the Kolmogorov-Smirnov test, SW denotes the Shapiro-Wilks test, and L denotes the
Lilliefors test.
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Figure 4: Snow fall dataset examples where the density-based EL statistic is significant
(p value < 0.05), but the Kolmogorov-Smirnov (KS) test and Shapiro Wilks (SW) test are
not significant (p values > 0.05). The normal density (red curve) is determined using the
sample mean and sample standard deviation to estimate the mean and standard deviation.
The black curve represents the kernel density for a randomly chosen subset from the snowfall
dataset described in Section 3.1.

Using the KS test for an exponential distribution, we obtain a p value of 0.3904. We transform
the data in Table 5 using the inverse exponential distribution and thus the transformed data
can be examined using the EL ratio test for uniformity. The following command returns the
test statistic (11) and p value,



14 dbEmpLikeGOF: Empirical Likelihood Goodness-of-fit Tests

Inter-time births (n = 43)

Time between births (minutes) Tally Empirical probability

00-19 18 0.419
20-39 12 0.279
40-59 6 0.140
60-79 5 0.116

80+ 2 0.047
Total 43 1.001

Table 5: The time between births for 44 babies born in one 24 hour period at the Mater
Mothers’ Hospital, Brisbane, Australia, on December 18, 1997. See Dunn (1999) for more
details.

dbEmpLikeGOF(x=baby, testcall=”uniform”, pvl.Table=FALSE, num.mc=5000),

where baby represents the vector of transformed data. When this test is employed, we observe
a MC based p value of 0.6708. Ultimately, for this data the time between births can be
adequately modeled using an exponential distribution.

Similar to the snowfall dataset, we examine the robustness of our results by employing a
bootstrap scheme where the bootstrap resamplings are taken when removing 10, 20, or 50
percent of the original dataset. The results are summarized in Tables 3 and 4. With 2000
simulations where we randomly remove 10, 20, and 50 percent of the observations from the
original dataset, we find significant statistics in 0, .2, and 2 percent of the simulated datasets,
respectively.

To examine the power of the EL statistic, we examine four birth datasets where the EL test
is significant (p value < 0.05), while the KS test is not significant (see Figure 5). Figure 5
displays the data driven kernel density estimate against the hypothesized distribution. From
these examples, there may be situations where the EL test for uniformity may be more
powerful than the traditional KS test.

A TBARS data example

For a novel analysis using the density-based EL software, we consider data from a study
evaluating biomarkers related to atherosclerotic (CHD) coronary heart disease (see Acknowl-
edgments). A population-based sample of randomly selected residents of Erie and Niagara
counties of the state of New York, U.S.A., was the focus of this investigation. The New York
State Department of Motor Vehicles drivers’ license rolls were utilized as the sampling frame
for adults between the ages of 35 and 65; where the elderly sample (age 65-79) was randomly
selected from the Health Care Financing Administration database. Participants provided a
12-hour fasting blood specimen for biochemical analysis at baseline, and a number of pa-
rameters were examined from fresh blood samples. A complete description of this dataset
is available at Schisterman, Faraggi, Browne, Freudenheim, Dorn, Muti, Armstrong, Reiser,
and Trevisan (2001).

A cohort of 5620 men and women were selected for the analyses yielding 1209 cases (individuals
that had a heart attack) and 4411 controls (no heart attack history). In a subset of this
dataset, we examine the significance of the thiobarbituric acid reactive substances (TBARS)
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Figure 5: Birth dataset examples where the density-based EL statistic is significant (p value
< 0.05), but the Kolmogorov-Smirnov (KS) test is not significant (p values > 0.05). The
exponential density (red curve) has a rate parameter of the inverse of the sample mean. The
black curve represents the kernel density for a randomly chosen subset from the birth dataset
described in Section 3.1.

variable which is known to play a role in atherosclerotic coronary heart disease process.
TBARS was measured in patient serum samples using reverse-phase high performance liquid
chromatography and spectrophotometric approaches.

For the analysis of the TBARS dataset, we would like to test the claim that the TBARS
distribution is different between the cohort of patients that have suffered a heart attack and



16 dbEmpLikeGOF: Empirical Likelihood Goodness-of-fit Tests

the cohort of patients that have not suffered a heart attack. If the null hypothesis is true, we
expect the empirical distribution of the TBARS variable to be very similar in the two cohorts,
if the null hypothesis is not true, we expect the empirical distributions to be very different
(e.g. TBARS is stochastically greater in the heart attack population). A quantile-quantile
(QQ) plot of this data is shown in Figure 6.

We employed a bootstrap strategy to study the TBARS variable using the statistic in (18).
The strategy was based on randomly choosing 200 patients, where 100 patients had previously
suffered a heart attack and 100 patients did not have a heart attack. The distribution of
TBARS was examined for equality between the heart attack patient cohort and the no heart
attack patient cohort. We repeated this procedure 2000 times calculating the frequency of the
event of a significant statistic. Rather than obtain a p value associated with each statistic,
we employed the returnCutoff command to obtain the cutoff for significance,

tbar.cut = returnCutoff(100, testcall=”distribution.equality”, targetalpha=0.05, n.mc=5000).

Figure 7 displays the histogram of the logarithm of the two sample test statistic calculated in
(18). 5.9 percent of the bootstrap resamplings yielded a significant test statistic. These results
were also compared against the two sample KS test and two sample WRS test to compare
distribution equality. Using the KS test, 3.4 percent of the resamplings were significant
(p value < 0.05). Using the two sample WRS test, 4.5 percent of the resamplings were
significant (p value < 0.05).

Thus all of the statistical tests suggest that TBARS is not significantly different in heart
attack patients. This is further confirmed when examining the mean p-values in the resampled
datasets. The mean p-values are 0.5262, 0.5002, and 0.4489 for the KS, WRS, and empirical
likelihood tests, respectively.

To examine the power of the two sample EL test, we focus on four examples comparing 100
patients that had previously suffered a heart attack and 100 patients that did not have a
heart attack, where the EL statistic is significant, however, the KS and WRS tests are not
significant. Figure 8 displays the density for each cohort when a kernel density smoother
is employed with the bandwidth chosen according to Equation (3.31) in Silverman (1986).
These examples highlight situations where there may be a power advantage obtained using
the density-based EL statistics over traditional goodness-of-fit tests such as the two sample
KS test and two sample WRS test.
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4. Conclusions

The package dbEmpLikeGOF provides R users with a new and powerful way to perform
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Figure 6: A quantile-quantile (QQ) plot comparing the distribution of TBARS for patients
with a previous heart attack against the distribution of TBARS for patients without a previous
heart attack.

goodness-of-fit tests using empirical likelihood ratios. We focus on two sample tests and
tests for normality and uniformity which are common distributions to test in applied stud-
ies. Monte-Carlo methods and interpolation are used to estimate the cutoff-values and exact
p values for the proposed tests. The proposed procedure can execute entropy based struc-
tured tests that have not been addressed in statistical software. We believe that the dbEmp-
LikeGOF package will help investigators to use density based empirical likelihood approaches
for goodness-of-fit tests in practice.
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Figure 8: TBARS examples where the density-based EL distribution equality statistic is
significant (p value < 0.05), but the two-sample Kolmogorov-Smirnov (KS) test and two-
sample Wilcoxon rank sum (WRS) test are not significant (p values > 0.05).
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