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1This document is included as a vignette (a LATEX document created using the R function Sweave()) of the package
dlnm. It is automatically downloaded together with the package and can be simply accessed through R by typing
vignette("dlnmOverview") .
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1 Preamble

The R package dlnm offers some facilities to run distributed lag non-linear models, a modelling frame-
work to describe simultaneously non-linear and delayed effects between predictors and an outcome, a de-
pendency defined as exposure-lag-response association. This document complements the description of
the package provided in Gasparrini [2011] (freely available at http://www.jstatsoft.org/v43/i08/),
which represents the main reference to the package. The DLNM’s methodology has been previously
described in Gasparrini [2014], Gasparrini and Armstrong [2013], Gasparrini et al. [2010], together
with a detailed algebraical development. This framework was originally conceived and proposed to
investigate the health effect of temperature by Armstrong [2006].

This document dlnmOverview is the main of three vignettes documenting the package. Its aim is to
describe the methodology and to provide an overview of the main functions. Two other vignettes offer
more specific examples. Specifically, the vignette dlnmTS illustrates the application of the package
dlnm for time series analysis, where distributed lag linear and non-linear models (DLMs and DLNMs)
where originally conceived, as described in Gasparrini et al. [2010]. The vignette dlnmExtended
demonstrates how the same functions in dlnm can be applied to extend the DLNM methodology
beyond time series, for example to study exposure-lag-response associations in cohort or case-control
designs. This extension is illustrated in Gasparrini [2014]. Each vignette, included in the package
installation, can be opened in R by typing vignette("namevignette") .

Type citation("dlnm") in R to cite the dlnm package after installation (see Section 2). General
information on the development and applications of the DLNM modelling framework, together with
an updated version of the R scripts for running the examples in published papers, can be found at
www.ag-myresearch.com.

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Installation and data

2.1 Installing and loading the package dlnm

The dlnm package is installed in the standard way for CRAN packages from R version 2.9.0 onwards,
for example typing install.packages("dlnm") or directly through the R menu in Windows. The
package can be alternatively installed using the source code (.tar.gz) or binaries for Windows or MacOS,
available at http://cran.r-project.org/web/packages/dlnm/index.html.

The package is loaded in the R session by:

> library(dlnm)

A list of changes included in the current and previous versions can be found typing:

> file.show(system.file("ChangeLog", package="dlnm"))

The functionalities of dlnm depend on other packages whose commands are called to specify the dlnm
functions. This hierarchy is ruled by the field Imports of the file description included in the package.
In this version, the only functions imported from contributed packages are ns() and bs() from splines
and fixef() from nlme, two of the recommended packages included in the main distribution of R.
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2.2 Data

This version the package includes the three data sets chicagoNMMAPS, nested and drug. The former
is used in the vignette dlnmTS as an example of use in time series analysis. The other two are used in
the vignette dlnmExtended as an example of the extension of the methodology and package in other
study designs.

The data set chicagoNMMAPS contains daily mortality (all causes, CVD, respiratory), weather (tem-
perature, dew point temperature, relative humidity) and pollution data (PM10 and ozone) for Chicago
in the period 1987-2000. The data were assembled from publicly available data sources as part of the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) sponsored by the Health Effects
Institute [Samet et al., 2000a,b]. They used to be downloadable from the package NMMAPSlite (now
archived) and from Internet-based Health and Air Pollution Surveillance System (iHAPSS) website
(www.ihapss.jhsph.edu).

The data set nested contains simulated data from an hypothetical nested case-control study on the
association between a time-varying occupational exposure and a cancer outcome. The study includes
250 risk sets, each with a case and a control matched by age year. The data on the exposure is collected
on 5-year age intervals between 15 and 65 years.

The data set drug contains simulated data from an hypothetical randomized controlled trial on the
effect of time-varying doses of a drug. The study includes 200 randomized subject, each receiving daily
doses of drug for 28 days, varying each week. The exposure level is reported on 7-day intervals.

3 The DLNM methodology

The conceptual and methodological development of distributed lag linear and non-linear models (DLMs
and DLNMs) is thoroughly described in a series of publications. Here I provide a brief summary to
introduce concepts and definitions. The user can refer to the articles provided below for a more detailed
description.

3.1 Exposure-lag-response associations

The modelling class of DLNMs is applied to describe associations in which the dependency between
an exposure and an outcome is delayed in time. This process can be described using two different
and complementary perspectives. Using a forward perspective, we can may say that an exposure event
at time t determines the risk in the future at times t + `. Using a backward perspective, the risk at
time t is determined by a series of exposures experienced in the past at times t− `. Here ` is the lag,
expressing the delay between exposure and measured outcome.

The lag dimension represents a new space over which the association is defined, by describing a lag-
response relationship in addition to the usual exposure-response relationship over the space of the
predictor. The dependency, characterized in the bi-dimensional space of predictor and lag, is defined
here as exposure-lag-response association, revising a terminology previously proposed by Thomas [1988].

Exposure-lag-response associations are modelled through an extended version of DLNM. Gasparrini
[2014] provides the methodological development and the definitions above.

3.2 A statistical model for DLNMs

The DLNM class provides a conceptual and analytical framework for the description and estimation
of exposure-lag-response associations. A statistical development of DLNMs is based on the choice
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of a basis for each dimension of predictor and lag [Wood, 2006], to describe an exposure-lag-response
associations through known transformations of predictor and lag vectors, combining the usual exposure-
response function with the additional lag-response function.

A simple case of exposure-lag-response associations is when the relationship in the space of the pre-
dictor, namely the exposure-response relationship, is linear. This type of relationship can be modelled
through a DLM. In this case, the association only depends on the lag-response function, which models
how the linear risk changes along lags. When such function is applied to the data, it provides a lag-
basis function and related matrix. Different choices for the lag-response function (splines, polynomials,
strata, threshold, among others) lead to the specification of different DLMs, and imply alternative as-
sumptions on the lag-response relationship.

The DLNM class for full exposure-lag-response associations is based on an intuitive extension of DLMs,
with the definition of a non-linear exposure-response function. Similarly, this step is provided by the
independent choice of another basis for the space of the predictor. The simultaneous application of the
two sets of basis functions and their combination through a special tensor product provides a cross-basis
function and related matrix. A lag-basis function is a special case of cross-basis function with a linear
exposure-response function. Again, the choice of the bases for exposure-response and lag-response
functions implies alternative assumptions on how the risk changes along the two dimensions.

The lag or cross-basis matrix can be included in the design matrix of a regression model in order
to estimate the related parameters. The algebraic definitions of the models above are provided in
Gasparrini et al. [2010] and Gasparrini [2014].

3.3 Interpretation of DLNMs

The result of a DLNM can be interpreted by building a grid of predictions for each lag and for suitable
values of the predictor, using 3-D plots to provide an overall picture of the association varying along
the two dimensions. Also, three summaries of the bi-dimensional association are of interest, each of
which can be interpreted using the forward and backward perspective defined in Section 3.1.

The first is the lag-response curve associated with a specific exposure value, defined as a predictor-
specific association. Using a forward perspective, this is interpreted as the series of contribution to
risk at times t + ` associated to a specific exposure at time t. Using a backward perspective, this is
interpreted as the contribution to the risk at time t associated to the exposures experiences at times
t− `.

The second is the exposure-response curve associated with a specific lag value, defined as a lag-specific
association. Using a forward perspective, this is interpreted as the exposure-response relationship at
time t+` associated to different exposure values occurring now at time t. Using a backward perspective,
this is interpreted as the exposure-response relationship now at time t associated to different exposure
values experienced at time t− `.

The third and most important is the exposure-response curve associated to the whole exposure history
experienced within the lag period considered, defined as a overall cumulative association. Using a
forward perspective, this is interpreted as the exposure-response relationship at time t + ` associated
to different exposure values which occurred during the period t to t+ `. Using a backward perspective,
this is interpreted as the exposure-response relationship now at time t associated to different exposure
values experienced during the period t− ` to t. This may refer to the same exposure value throughout
the lag period, or an exposure history with time-varying values.

Again, the algebraic definitions of the models above are provided in Gasparrini et al. [2010] and
Gasparrini [2014].

A fitted DLNM can be re-expressed in terms of such summaries (predictor-specific, lag-specific or
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overall cumulative association) by reducing its parameters to those of the uni-dimensional lag-response
or exposure-response function only. This step is described in Gasparrini and Armstrong [2013].

3.4 Generalization beyond time series design

Distributed lag models were firstly conceived in econometric time series analysis long ago [Almon,
1965], and then re-proposed in time series data within environmental epidemiology Schwartz [2000].
The extension to DLNMs were conceived by Armstrong [2006]. A re-evaluation of this modelling
framework for time series data is given in Gasparrini et al. [2010].

Interestingly, models for such exposure-lag-response associations have been proposed in different re-
search fields. The general idea is to weight past exposures through specific functions whose parameters
are estimated by the data. Models for linear-exposure-response relationships similar to DLMs were
illustrated in cancer epidemiology [Hauptmann et al., 2000, Langholz et al., 1999, Richardson, 2009,
Thomas, 1983, Vacek, 1997] and pharmaco-epidemiology [Abrahamowicz et al., 2012, Sylvestre and
Abrahamowicz, 2009]. Extensions to non-linear exposure-responses were also proposed [Abrahamowicz
and MacKenzie, 2007, Berhane et al., 2008, Vacek, 1997]

The extension of DLNM beyond time series data and the implementation in the package dlnm provide
a general conceptual and modelling framework which generalizes all the developments above. The
methodology and software can be applied in different study designs and data structures. This extension
of DLNMs is described in Gasparrini [2014].

4 The functions in the package dlnm

This section describes the main functions included in the package dlnm. Here I provide a brief descrip-
tion of all the stages involved in the definition, estimation and interpretation of DLNMs, summarizing
the conceptual and analytical steps. In addition, I illustrate the structure of the functions and discuss
specific issues about their usage. Examples of applications to real data, with a more detailed overview
of the use of the functions in time series analysis and beyond, are described in the vignettes dlnmTS
and dlnmExtended respectively. Examples involving the old usage of the functions are also provided
in Gasparrini [2011].

4.1 Basic functions

The package dlnm contains basic functions to specify standard exposure-response and lag-response
relationships, such polynomials, step or threshold functions. These functions are not exported to the
namespace in order to prevent conflicts with other existing functions in recommended packages, and
are only meant to be used internally through onebasis() (see Section 4.2) and crossbasis() (see
Section 4.3).

Other existing or user-defined functions can also be used within the framework of dlnm, as shown
in Section 4.2. For example, splines are specified by the functions ns() and bs() included in the
recommended package splines. The package is installed together with the main R distribution. The
user can refer to the related help pages of these functions for further info (type ?ns or ?bs in R).

Polynomials are obtained through the function poly(). As mentioned earlier, this function is not
exported in the namespace in order to avoid conflicts with the function with the same name included
in the package stats. The user can call this or other functions described below by using the triple colon
operator ’:::’. This is an example of transformation of a simple vector:
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> dlnm:::poly(1:5,degree=3)

1 2 3

[1,] 0.2 0.04 0.008

[2,] 0.4 0.16 0.064

[3,] 0.6 0.36 0.216

[4,] 0.8 0.64 0.512

[5,] 1.0 1.00 1.000

attr(,"degree")

[1] 3

attr(,"scale")

[1] 5

attr(,"int")

[1] FALSE

attr(,"class")

[1] "poly" "matrix"

The result is a basis matrix with additional class ”poly”, with attributes storing the info on the argu-
ments exactly defining the transformation. The first unnamed argument x specifies the vector to be
transformed, while the argument degree sets the degree of the polynomial. Other arguments let to
default values are scale (a scaling factor) and int (a logical value specifying if an intercept should be
included). See ?poly for further info.

Step functions defining strata are specified through strata() (again, be aware that this function is
different from the other one with the same name in the recommended package survival). An example
is shown below, with square brackets preventing the printing of attributes to save space:

> dlnm:::strata(1:5,breaks=c(2,4))[,]

1 2

[1,] 0 0

[2,] 1 0

[3,] 1 0

[4,] 0 1

[5,] 0 1

The result is a basis matrix with additional class ”strata”. The transformation is a dummy parameter-
ization. The argument breaks defines lower boundaries for right-open intervals of the strata. Other
arguments are df, which sets the number of intervals (with cut-offs at equally-spaced percentiles) when
breaks is undefined, ref to select the refence interval, and int to include the intercept. See ?strata

for further info.

Threshold functions are specified through thr(). An example:

> dlnm:::thr(1:5,thr.value=3,side="d")[,]

1 2

[1,] 2 0

[2,] 1 0

[3,] 0 0

[4,] 0 1

[5,] 0 2
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The result is a basis matrix with additional class ”thr”. The argument thr.value defines a vector
with one or two thresholds, while side is used to specify high ("h", the default), low ("l") or double
("d" threshold parameterizations. The default value for side is "h" or "d" depending on the length of
thr.value. As above, an intercept can be included with the argument int. See ?thr for further info.

Two special functions are lin() and integer(). The former returns the untransformed variable
(optionally with intercept), and is used to specify DLM with linear exposure-response relationships
via crossbasis(). The latter returns an identity matrix (minus the first column if an intercept is not
included) for specifying unconstrained DLMs and DLNMs, where the lag-response functions includes
one parameter per lag. Again, this is different from the function with the same name included in the
package base. See ?lin and ?integer for further info.

4.2 The function onebasis()

This function represents the workhorse for basis transformation in dlnm, applied for the specification
of exposure-response and lag-response relationships. It has replaced the old functions mkbasis() and
mklagbasis() since version 1.5.1 of dlnm. Its role is to apply chosen transformations and generate basis
matrices in a format suitable for other functions such as crossbasis() and crosspred(). However,
the function can be also used directly for generating uni-dimensional functions in regression models,
with predictions and graphs derived by crosspred() (see Section 4.4) and plotting methods (see
Section 4.6).

Since version 2.0.0 of dlnm, onebasis() simply acts as a wrapper to other functions, such as those
described in Section 4.1. The following example replicate the polynomial transformation shown in that
section:

> onebasis(1:5,fun="poly",degree=3)

b1 b2 b3

[1,] -0.4 -0.32 -0.208

[2,] -0.2 -0.20 -0.152

[3,] 0.0 0.00 0.000

[4,] 0.2 0.28 0.296

[5,] 0.4 0.64 0.784

attr(,"fun")

[1] "poly"

attr(,"cen")

[1] 3

attr(,"range")

[1] 1 5

attr(,"degree")

[1] 3

attr(,"scale")

[1] 5

attr(,"int")

[1] FALSE

attr(,"class")

[1] "onebasis" "matrix"

The result is a basis matrix with additional class ”onebasis”. Again, the first unnamed argument x

specifies the vector to be transformed, while the second argument fun defines the name of the function
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to be called for applying the transformation, as a character. The only difference with the direct call to
poly() is that the basis matrix is centered on a specific predictor value. This step can be controlled
through the argument cen, a numeric or logical scalar. If simply TRUE (the default but for strata()

and thr()), the centering point is chosen as the mean. The centering value is used as the reference
for predictions and graphs. The basis matrix includes the attributes fun, cen and range, plus the
arguments of the called function which exactly define the transformation.

As mentioned earlier, onebasis() can also call other existing or user-defined functions, with specific
requirements. A simple example:

> mylog <- function(x) log(x)

> onebasis(1:5,"mylog",cen=FALSE)

b1

[1,] 0.0000000

[2,] 0.6931472

[3,] 1.0986123

[4,] 1.3862944

[5,] 1.6094379

attr(,"fun")

[1] "mylog"

attr(,"cen")

[1] FALSE

attr(,"range")

[1] 1 5

attr(,"class")

[1] "onebasis" "matrix"

The called function must have x as its first argument and being a closure (i.e. primitive functions such
as log() itself are not accepted). In addition, it must return a vector or matrix of transformed basis
variables together with attributes storing the arguments defining the function. More detailed examples
of the usage with user-defined functions are illustrated in the vignette dlnmExtended.

A method function summary() for objects of class ”onebasis” summarizes the function and the content
and the basis matrix. See ?onebasis for further info.

4.3 The function crossbasis()

This is the main function in the package dlnm. It internally calls onebasis() to generate the basis
matrices for exposure-response and lag-response relationships, and combines them through a special
tensor product in order to create the cross-basis, which specifies the exposure-lag-response dependency
simultaneously in the two dimensions. See Gasparrini [2014, Sections 2.1–2.2] and Gasparrini et al.
[2010, Sections 4.1–4.2] for details.

The class of its first argument x defines how the data are interpreted. If a n-dimensional vector, x is
assumed to represent an equally-spaced, complete and ordered series of observations in a time series
framework. If a n× (L− `0 + 1) matrix, x is assumed to represent a series of exposure histories for n
observations over the lag period from `0 to L. The latter can be used to extend DLNMs beyond time
series data, as thoroughly illustrated in the vignette dlnmExtended. The lag period can be modified
with the second argument lag. The two arguments argvar and arglag contain lists of arguments, each
of them to be passed to onebasis() to build the matrices for the exposure-response and lag-response
relationships respectively (see Section 4.2). The additional argument group, used only for time series
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data defines groups of observations to be considered as individual unrelated series, and may be useful
for example in seasonal analyses (see the vignette dlnmTS).

As a simple example, I simulate a matrix of exposure histories for 3 subjects over the lag period 2–5:

> hist <- matrix(sample(1:12),3,dimnames=list(paste("sub",1:3,sep=""),

paste("lag",2:5,sep="")))

> hist

lag2 lag3 lag4 lag5

sub1 12 2 8 3

sub2 6 10 7 9

sub3 5 4 1 11

Then, I apply the cross-basis parameterization, with a quadratic polynomial as the exposure-response
function centered at 5 and a step function defining strata 2–3 and 4–5 as the lag-response function:

> crossbasis(hist,lag=c(2,5),argvar=list(fun="poly",degree=2,cen=5),

arglag=list(fun="strata",breaks=4))[,]

v1.l1 v2.l1 v1.l2 v2.l2

sub1 0.41666667 0.8402778 0.08333333 0.1597222

sub2 1.00000000 1.1527778 0.50000000 0.5555556

sub3 0.08333333 0.4375000 0.16666667 0.5000000

The function returns a matrix object of class ”crossbasis”. It first calls onebasis() with arguments in
the lists argvar and arglag to build the matrix bases for exposure-response and lag-response spaces.
In particular, the basis matrix for the lag space is never centered and by default includes an intercept
(see ?poly and ?strata for this specific example). The two matrices of dimension 2 are then combined
through a special tensor product in the final cross-basis matrix of dimension 2 × 2 = 4, with column
labels identifying the product. The cross-basis object also included the attributes df, range, lag,
argvar and arglag, not printed here by using the square brackets. The latter two can be different
from the specified arguments due to internal checks and setting of default values.

The function can also be used with time series data, simply including a vector with the series as
the first argument x. In another example, I apply crossbasis() to the variable temp in the data
set chicagoNMMAPS, representing the series of daily mean temperature in Chicago during the period
1987–2000:

> cb <- crossbasis(chicagoNMMAPS$temp,lag=30,argvar=list("thr",thr.value=c(10,20)),

arglag=list(knots=c(1,4,12)))

> summary(cb)

CROSSBASIS FUNCTIONS

observations: 5114

range: -26.66667 to 33.33333

lag period: 0 30

total df: 10

BASIS FOR VAR:

fun: thr
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thr.value: 10 20

side: d

int: FALSE

not centered

BASIS FOR LAG:

fun: ns

knots: 1 4 12

intercept: TRUE

Boundary.knots: 0 30

Here the exposure-response is modelled as a a double threshold function with thresholds at 10 and
20, as the argument side of thr() is set by default to "d" if two values are provided in thr.value.
The lag period is fixed to 0 to 30. The lag-response function is left to the default natural cubic spline
(fun="ns") with knots at 1, 4 and 12 lags. As the default for the space of lag, this function includes
the intercept. The method function summary() for crossbasis objects provides an overview of the
transformation, and can be used to check the results.

Missing values are properly handled by crossbasis(). Specifically, if x is provided as a matrix of
exposure history, a missing value causes the related row in the transformed matrix to be set to NA. In
time series data, a missing value in the vector series causes all the following rows corresponding to the
lag period to be set to NA.

The usage of the function has repeatedly changed in different versions of the package.

4.4 The function crosspred()

The cross-basis matrix produced by crossbasis() needs to be included in a regression model formula
in order to fit a model. The interpretation of the estimated related parameters, is usually complex for
non-trivial basis transformations, and virtually impossible in bi-dimensional DLNMs. The association
is summarized through the function crosspred(), which predicts the association for a grid of com-
binations of predictor and lag values, chosen by default or directly by the user. The function creates
the same basis or cross-basis functions for the chosen predictor and lag values, based on the attributes
of the original basis or cross-basis matrix, and generates predictions (with associated standard errors
and confidence intervals) by extracting the related parameters estimated in the model (see Gasparrini
[2014, Section 2.3] and Gasparrini et al. [2010, Section 4.3] for algebraic details).

As an example, I use the cross-basis matrix cb created in Section 4.3 to study the association between
temperature and cardiovascular mortality, using the time series data in the data set chicagoNMMAPS.
First, I fit a simple linear model with the cross-basis matrix included in the model formula (the model
proposed here is only chosen for illustrative purposes). Then, I obtain the predictions by calling
crosspred() with the cross-basis and regression model objects as the first two arguments:

> model <- lm(cvd~cb,chicagoNMMAPS)

> pred <- crosspred(cb,model,at=-20:30)

The result is a list object of class ”crosspred”, with components storing the predictions and other
information about the model, such as coefficients and part of associated (co)variance matrix related
to the parameters of the cross-basis. The grid of predictions can be chosen for specific predictor-lag
combinations. The values of the predictor are selected with the argument at as above, or alternatively
with from-to-by. If specified by at, the values are automatically ordered and made unique. If at and
by are not provided, approximately 50 equally-spaced rounded values are returned using pretty().
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The arguments lag and bylag (not used here) determine instead the range and increment of the
sequence of lag values used for prediction, by default the series of integers used for estimation. See
?crosspred for further info.

The predictions can be accessed directly through the components of the crosspred list. In particular,
components with names starting with mat- store the matrices of prediction over the grid, namely rows
with lag-response relationships for specific predictor values or columns with exposure-response rela-
tionships for specific lag-values. Instead, components all- include vectors with the overall cumulative
predictions. As an example, I extract the prediction and confidence interval for temperature -10◦C
and lag 5, and then the overall cumulative prediction for 25◦C:

> c(pred$matfit["-10","lag5"],pred$matlow["-10","lag5"],pred$mathigh["-10","lag5"])

[1] 0.9464757 0.6773841 1.2155673

> pred$allfit["25"]

25

1.108262

The results are interpreted following the forward and backward perspectives illustrated in Section 3.1.
The first result indicates that a temperature of -20◦C in a given day produces an estimated increase of
0.95 cardiovascular deaths five days later (forward), or that the number of cardiovascular deaths in a
given day are increased by 0.95 from a temperature of -20◦C experienced five days earlier (backward),
compared to the reference temperature 10–20◦C. The second figure indicates an overall increase of 1.11
cardiovascular deaths within the next 30 days for an exposure to 25◦C in a given day (forward), or an
overall increase of 1.11 cardiovascular deaths in a given day following a constant exposure to 25◦C in
the previous 30 days (backward).

Other type of predictions can be obtained through crosspred(). In particular, exponentiated predic-
tions are automatically returned if the model link is equal to log or logit, and stored in components
matRR- and allRR-. Matrices cum- of incremental cumulative predictions are optionally included if the
argument cum is set to TRUE, and stored in components cum-. The user can check help(crosspred)

for a complete list of components.

An alternative use of crosspred() is to predict the effect of specific sets of exposure histories. This
can be achieved by inputting a matrix of exposure histories as the argument at. For example, we
can predict from the fitted model which is the overall cumulative increase in cardiovascular deaths
following an exposure to 30◦C in the last 10 days and 22◦C in the rest of the lag period:

> histpred <- t(c(rep(30,10),rep(22,21)))

> crosspred(cb,model,at=histpred)$allfit

1

5.934992

The user should be careful in inputting a matrix as the argument at, which is interpreted by crosspred()

as a series of exposure histories and not as a vector of predictor values as above. A more detailed
overview of this prediction method is given in the vignette dlnmExtended.

One of the main advantages of the dlnm package is that the user can perform DLNMs with standard
regression functions, simply including the cross-basis matrix in the model formula. The function
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crosspred() automatically works with model objects from regression function lm() and glm(), gam()
(package mgcv), coxph() and clogit() (package survival), lme() and nlme() (package nlme), lmer()
and glmer() and nlmer() (package lme4), gee() (package gee), geeglm() (package geepack). The
function also works with any regression function for which coef() and vcov() methods are available.
Otherwise, the user needs to input the coefficients and associated (co)variance matrix related to the
parameters of the cross-basis as arguments coef and vcov, and the model link in model.link.

Multiple cross-basis matrices associated with different predictors may be included in model, and pre-
dictions for each of them can be computed with crosspred(). Also, the function crosspred() can
produce predictions for simple uni-dimensional functions produced by onebasis().

4.5 The function crossreduce()

As described in Section 3.4, the fit of a DLNM may be reduced to a single dimension of predictor or
lags, expressing overall cumulative, lag-specific or predictor-specific associations only in terms of the
original basis functions chosen for the related space, and modified associated parameters. The method
is thoroughly illustrated in Gasparrini and Armstrong [2013].

This computation is carried out through the function crossreduce(), which works very similarly
to crosspred() (see Section 4.4). The first two arguments basis and model specify the cross-basis
matrix and the model object for which the computation need to be performed. The type of reduction is
defined by type, with options "overall"-"lag"-"var" for summarizing overall cumulative exposure-
responses, lag-specific exposure-responses or predictor-specific lag-responses, respectively. The single
value of predictor or lags for which predictor-specific or lag-specific summaries must be defined is
chosen by the argument value. The other arguments (see ?crossreduce) have the same meaning and
specification as in crosspred() (see Section 4.4).

The function crossreduce() returns a list object of class ”crossreduce”, including the modified pa-
rameters and associated (co)variance matrix, the vector of values used for prediction and associated
uni-dimensional basis matrix, and the vectors of predictions and associated standard errors, optionally
exponentiated.

An illustrative example of the use of the function in given in the vignette dlnmTS.

4.6 Plotting functions

Interpretation of one-dimensional or bi-dimensional associations is aided by graphical representation.
High and low-level plotting functions are provided through the method functions plot(), lines()

and points() for classes ”crosspred” and ”crossreduce”. These methods have replaced the old function
crossplot() since version 1.3.0, providing the user with the possibility of specifying the whole range
or arguments of the plotting functions above, allowing complete flexibility in the choices of colours,
axes, labels and other graphical parameters. As an example, I use the predictions stored in the object
pred defined in Section 4.4.

The plot() method can generate different types of plots for ”crosspred” objects through the argument
ptype. Specifically, it generates graphs of the entire bi-dimensional exposure-lag-response association,
or of exposure-response or lag-response summaries defined in Section 3.3. Bi-dimensional associations
are plotter as 3-D or contour graphs, as for example:

> plot(pred,ptype="3d",main="3D plot",xlab="Temperature",zlab="CVD count",

theta=200, ltheta=180)

> plot(pred,ptype="contour",key.title=title("CVD"),

plot.title=title("Contour plot",xlab="Temperature",ylab="Lag"))

12



Figure 1
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The two plots are shown in Figures 1a and 1b. The plot() method function internally calls the
functions persp() and filled.contour() when ptype is equal to "3d" and "contour", respectively.
The user can include in the function call also other arguments specific to each function, such as main-
xlag-zlag-theta-ltheta and key.title-plot.title above. See ?persp and ?filled.contour for
a complete list of arguments.

The two plots in Figure 1 summarize the whole exposure-lag-response association. The risk surface
reflects the choice of a threshold function for the exposure-response relationship and a smooth spline
function for the lag-response relationship. Summaries of the associations defined in Section 3.3 can
be obtained by a different choice of ptype. In particular, ptype="overall" is used for plotting the
exposure-response relationship expressing the overall cumulative association:

> plot(pred,"overall",xlab="Temperature",ylab="CVD counts",ylim=c(-5,25))

The plot is shown in Figure 2a. In this case, the method function plot() internally calls the function
plot.default(), and as shown in the example above other specific arguments can be added to the
function call. Lag-specific and predictor-specific associations can be plotted as exposure-response
and lag-response relationships, respectively, by setting ptype="slices", as they are slices in the 3-D
surface cut along specific dimensions. For example:

> plot(pred,"slices",lag=5,xlab="Temperature",ylab="CVD count",

col="blue",ci="lines",ci.arg=list(lty=5))

> plot(pred,"slices",var=25,xlab="Lag",ylab="CVD count",type="p",pch=19,ci="bars")

The two plots are shown in Figures 2b and 2c, and represent the exposure-response specific to lag
5 and the lag-response specific to a temperature of 25◦C, respectively. The arguments lag and var

specifies the value for which lag and predictor-specific associations must be plotted, respectively. Again,
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Figure 2
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additional arguments of the function plot.default() can be called as well, such as col, type and pch.
The method function plot() also includes two additional arguments for plotting confidence intervals:
the type is chosen by the argument ci among "area" (default), "bars" and "lines", as shown in the
three plots in Figure 2. Low-level plotting functions polygon(), segments() and lines() are called,
respectively, whose arguments are passed by a list specified with the argument ci.arg. See the help
of these low-level functions for additional details and a complete list of the arguments. Incremental
cumulative associations along lags are reported if cumul=TRUE: in this case, the same option must have
been set to obtain the predictions (see Section 4.4).

Methods lines() and points() may be used as low-level plotting functions to add lines or points to
an existing plot. When crosspred() is used for predictions of one-dimensional associations defined by
onebasis(), only the plotting of the overall summary is meaningful and possible. The same plotting
method functions are defined also for objects of class ”crossreduce”. Examples are included in the
vignette dlnmTS.

All the predictions are reported versus a reference value. For continuous functions, this is specified by
the centering point defined in the onebasis or crossbasis object (see Section 4.2). Exponentiated
predictions are automatically plotted if generated in the predictions, or forced with the argument
exp=TRUE.

4.7 Other functions

The two functions equalknots() and logknots() are used to select knots or cut-off values for spline
or strata functions at equally-spaced values and log-values, respectively. In particular, the latter is
used to select knots for lag-response spline functions following the default used up to version 2.0.0 of
dlnm, based on equally-spaced log values of lags.

The package dlnm also contains a set of functions which are called internally by the other functions
illustrated above, in particular onebasis(), crossbasis() and crosspred(). Some of this functions
are documented, and help pages are opened with the usual call (results not shown):

> help(getcoef)

The users bold enough to go through the source code of dlnm can access internal documented and
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undocumented functions through the use of the triple colon operator ’:::’ or through the function
getAnywhere(). For example (results not shown):

> dlnm:::fci

> getAnywhere(fci)

5 Changes in the package dlnm

The package dlnm has experienced several changes since the first version 0.1.0, uploaded on CRAN
on the 1st of July 2009, up to the current version 2.1.3. In particular, the new functions have been
added or replaced and, more importantly, the usage of some of the existing functions has changed. An
important change first occurred in the version 1.5.1, where the long set of arguments of crossbasis()
were grouped in argvar and arglag. The second important development occurred instead in version
2.0.0, where the extension of the package described in the vignette dlnmExtended required a substantial
restructure of the internal code of onebasis() and crossbasis(). This included changes in the default
value of some arguments, the most important being the placement of knots values for spline bases in
the space of lag to equally-spaced quantiles in the original scale, instead than equally-spaced values in
the log scale. These changes are documented in the change-log and more extensively in two additional
documents, accessed through:

> file.show(system.file("ChangeLog", package="dlnm"))

> file.show(system.file("Changesince151", package="dlnm"))

> file.show(system.file("Changesince200", package="dlnm"))

In particular, the changes included in version 2.0.0 may cause some of the R code written for old
versions to produce different results with the updated versions. This marginally applies also to code
included as supplementary material of published papers. An updated version of published code is
available at www.ag-myresearch.com.

Such changes became unavoidable for the development of the dlnm package. Although further changes
cannot be excluded in future versions, these will become less likely as long as the the package will take
a definite structure.
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