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2 Abstract

Package dmm estimates a variety of genetic and environmental (co)variance
components from pedigree data. It can transform these to genetic parameters,
and to estimates of response to selection. The statistical method used is an
heirarchical model with the first level a normal fixed effects model and the sec-
ond level a dyadic model or derived model which equates dyadic covariances
to their expectations. The dyadic model is linear and therefore reduces vari-
ance component estimation to a linear regression problem. The package uses
standard regression techniques (qr or lm functions) to estimate components as
regression coefficients, and also offers robust regression (lmrob function) and
principal component regression (pls package) as experimental alternative op-
tions. Estimating variance components in this way is feasable only for datasets
of less than around 10000 individuals. The package may therefore be useful for
modest sized research datasets, but not for extensive field data. The variance
component estimates obtained by directly solving the dyadic model equations
in the above way are equivalent to MINQUE estimates if the fixed model is
fitted with OLS, and are equivalent to bias-corrected ML estimates if the fixed
model is fitted with GLS. The package includes a number of test data sets
which are useful to demonstrate correctness of its calculations, and to illustrate
its capabilities.
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3 Introduction

Quantitative genetic analysis uses what we can infer from a pedigree about the
genetic relationship between pairs of individuals, to analyse variation among
a sample of individuals in metric traits, and to make inferences regarding the
causes of variation in the population from which individuals have been sam-
pled. In dmm() pairs of individuals are called dyads, and a dyadic model is used
for variance component estimation. The dmm package sets up dyadic model
equations (DME’s) from relationship matrices and observations. DME’s equate
obserations on a dyad to their expectation (in terms of genetic and environ-
mental (co)variance components). Estimates of (co)variance components are
derived by solving the DME’s directly (eg using the QR method). dmm() does
not form Henderson’s mixed model equations, and does not require inverses of
relationship matrices. dmm() then computes genetic parameters ( ie proportions
of variance and correlations), from the estimated variance components. There
is also a facility to post-compute genetic response to selection.

The approach taken by dmm() is suited to small multi-trait datasets; typi-
cally research data rather than field data, of less than around 10000 individuals.
dmm() is less compute intensive than iterative likelihood-based techniques, such
as REML, and extends easily to multiple traits and multiple (co)variance com-
ponents, but has a high computer memory requirement.

Research datasets are likely to have a pedigree design which permits estima-
tion of individual and maternal components for additive, non-additive, or sex-
linked genetic (co)variances. dmm() allows estimation of any or all of the above
genetic components, including all possible cross-effect genetic covariances. The
number of components estimated has little effect on compute intensity. dmm()
includes an experimental approach to dealing with multicollinearities among the
variance components, using principal component regression.

Research datasets may also have one or more environmental factors. dmm()
allows the usual estimation of fixed effects in a mixed model, either by OLS
or GLS. dmm() also allows a specific environmental factor called cohort to be
defined, and allows cohort to be fitted as an environmental variance component,
and thus to be part of phenotypic variance. The cohort concept represents a
different approach to the issue of ’common environmental variance’.

The pro’s for dmm() are that it is simple (has a low compute requirement),
flexible (will fit any combination of variance components), multi-trait (will han-
dle more traits without increased complexity), and yields estimates which are
unbiased and the same as aov estimates for balanced designs. Because dmm()
uses standard regression techniques for variance component estimation, it has
access to well known and tested methods for obtaining standard errors.

The con’s for dmm() are that it is very demanding of computer memory
(not suited to large datasets), and yields estimates which are MINQUE or bias-
corrected-ML (depending on whether fixed effects are fitted by OLS or GLS
respectively). These will only be the same as REML estimates for balanced
designs, although they are likely to be similar if the degree of unbalance is not
severe.
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4 Getting started with dmm

Before using the dmm package in an R session its library must be loaded with
the statement

> library(dmm)

If you get the message

Error in library(dmm) : there is no package called dmm

this indicates that the dmm package has not been installed on your sys-
tem. You need to look at the instructions for downloading and installing an R
package. Try the manual R Installation and Administration which deals with
add-on packages in Chapter 6, and is located at any CRAN mirror site (start
at http://www.r-project.org and choose CRAN, then choose a mirror site, then
choose Packages).

To use dmm one first must put the dataset to be analysed into an R workspace
as a dataframe object. The minimum requirement is for a dataframe with
columns labelled :

Id Identifier for each individual

SId Identifier for the sire of each individual

DId Identifier for the dam of each individual

Sex Sex code for each individual

Fixed factors Codes for levels of each fixed factor

Observations Numeric values for each observation or trait

So we start by having a look at an example dataframe. We shall use the
dataset sheep.df which is part of the dmm package. So load the dataset

> data(sheep.df)

and get an overview of its contents using the str() function

> str(sheep.df)

’data.frame’: 42 obs. of 9 variables:

$ Id : Factor w/ 42 levels "0a4441","0a4712",..: 39 3 5 9 10 41 42 40 2 4 ...

$ SId : Factor w/ 5 levels "0a4721","1a4123",..: NA NA NA NA NA NA NA NA NA NA ...

$ DId : Factor w/ 15 levels "0a4712","0a4713",..: NA NA NA NA NA NA NA NA NA NA ...

$ Year: int 1981 1982 1983 1983 1984 1981 1981 1981 1982 1982 ...

$ Tb : Factor w/ 2 levels "S","T": 1 1 1 2 1 1 1 2 1 1 ...

$ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 1 1 1 1 1 ...

$ Cww : num NA NA NA 4.2 4.7 4.1 4.4 3.8 5.1 4.9 ...

$ Diam: num NA NA NA 21.7 21.1 20 21.6 20.1 22 21.1 ...

$ Bwt : num NA NA NA 50 45 51 53 43 45 48 ...

>
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So it has the columns Id,SId,DId,Sex noted above and it has Year and Tb
which are potential fixed effects, and it has three traits Cww,Diam,Bwt.

Another way of getting an overview is to print the first few rows

> sheep.df[1:5,]

Id SId DId Year Tb Sex Cww Diam Bwt

1 9a4003 <NA> <NA> 1981 S M NA NA NA

2 0a4721 <NA> <NA> 1982 S M NA NA NA

3 1a4123 <NA> <NA> 1983 S M NA NA NA

4 1a4371 <NA> <NA> 1983 T M 4.2 21.7 50

5 2a4127 <NA> <NA> 1984 S M 4.7 21.1 45

>

The first few individuals have unknown parents, coded as NA.
There are two immediately obvious problems with the way this dataset has

been setup

� The pedigree columns (Id,SId,DId) contain alphanumeric codes. For dmm
the codes must be numeric and the Id code must be sequential.

� The Year column is not a factor. If we want to use it as a fixed effect with
discrete levels, it should be a factor.

So we first need to use the mdf() function to convert this dataframe to a
suitable format. We may also wish to use the mdf() function to setup relation-
ship matrices required to estimate various genetic (co)variance components: it
depends on our genetic model - if we just require the additive genetic relation-
ship matrix, dmm() will calculate this ’on the fly’, but if we require non-additive
or sex-linked relationship matrices, these must be pre-calculated with function
mdf(). In the present example we will use just the additive relationship matrix
and let dmm() calculate it inline.

To learn to use mdf() we need to look at its help page

> help(mdf)

... help page should appear on screen here

>

We need to define the pedigree columns with the pedcols argument, define
Sex, Year and Tb as factors with the factorcols argument, and define the traits
with the ycols argument. We also need to say how Sex is coded, using the
sexcode argument. We do not want to make relationship matrices , so the
relmat argument is left NULL.

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),

ycols=c(7:9),sexcode=c("M","F"))

Pedigree Id check:

No of rows with Id in original dataframe = 42

No of sex codes not in sexcode[] so changed to NA = 0
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No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA’s removed = 42

No of DId’s with no matching Id = 2

Length of dataframe with base Id’s added = 44

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Return mdf as a normal dataframe:

> str(sheep.mdf)

’data.frame’: 44 obs. of 7 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Year: Factor w/ 8 levels "1981","1982",..: NA NA 1 2 3 3 4 1 1 1 ...

$ Tb : Factor w/ 2 levels "S","T": NA NA 1 1 1 2 1 1 1 2 ...

$ Sex : Factor w/ 2 levels "F","M": 1 1 2 2 2 2 2 1 1 1 ...

$ Ymat: num [1:44, 1:3] NA NA NA NA NA 4.2 4.7 4.1 4.4 3.8 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr "0a4713" "2a4247" "9a4003" "0a4721" ...

.. ..$ : chr "Cww" "Diam" "Bwt"

>

So now the pedigree columns (Id, SId, DId) are coded as integers, Year is
a factor, and the three traits (Cww, Diam, Bwt) are assembled into a matrix
called Ymat. Also note that there are now 44 observations (originally there
were 42); two ’base’ individuals have been added because there were two DId’s
which did not occur as an Id.

We are now ready to use function dmm(). We wish to adjust for the fixed
effects by first fitting a fixed model of the form

Yijkl = µ+ Sexi + Y earj + Tbk + rijkl

where Yijkl is an observation of one trait on the lth individual and rijkl is
the corresponding residual.

Assume that we just wish to partition rijkl into an individual environmental
variance and an individual genetic additive variance. To do this we fit a dyadic
model of the form

Cov(rijkl,i‘j‘k‘l‘) = ell‘σ
2
E(I) + all‘σ

2
G(Ia) + δijkl,i‘j‘k‘l‘

where Cov(rijkl,i‘j‘k‘l‘) is the dyadic observation for dyad (l, l‘) and δijkl,i‘j‘k‘l‘

is the corresponding dyadic residual.
These are single trait models, but extension to multi-trait case is trivial. In

dmm the partitioned variance components σ2
E(I) and σ2

G(Ia) are labelled VarE(I)

and VarG(Ia) respectively, even when they may refer to cross-trait covariances.
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So we now call function dmm() to do the above model fitting, and save its
output for later display. To learn to use dmm() look at its help page

>help(dmm)

... help page should appear on screen here

We need to give the name of the dataframe, the fixed model with the fixform
argument, and the variances to be partitioned with the components argument.
The components argument in this case is actually the default, but we shall
specify it for clarity.

>sheep.fit1 <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components = c("VarE(I)","VarG(Ia)"))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 9 No of Fixed Effects: 9

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

So what are all these lines displayed on the screen? Well most are just
reporting the stage of computation; a large problem can take some time and it
helps to know the stage reached. This is particularly important if the iterative
GLS-b step is used.

If the fixed effect model is singular the process will stop with a message

"Rank of X .ne. k:"

If the dyadic model equations are singular the process will stop with a mes-
sage

"Dyadic model equations not of full rank:

either omit some components or try dmeopt=’pcr’"

Even if there are no singularities, the dyadic model equations may have
serious collinearities. We can check this by looking at the dme.correl attribute
of the sheep.fit1 object.
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> sheep.fit1$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8119358

VarG(Ia) 0.8119358 1.0000000

>

In this case the correlation between ”VarE(I)” and ”VarG(Ia)” is 0.81 which
should sound warning bells. If this were a serious analysis it would be best to
obtain some more data with a structure which would better separate the two
components of interest. As this is only a tutorial, we shall proceed to look
at estimates of fixed effects and variance components. The object sheep.fit1
returned by dmm() is an object of class dmm and there is a print method for
this class which gives a brief view of the ’fit’ object as follows:

> print(sheep.fit1) # or just sheep.fit1 will imply print

Call:

dmm.default(mdf = sheep.mdf, fixform = Ymat ~ 1 + Sex + Year +

Tb, components = c("VarE(I)", "VarG(Ia)"))

Fixed formula:

Ymat ~ 1 + Sex + Year + Tb

Cohort formula:

NULL

Var/Covariance components:

[1] "VarE(I)" "VarG(Ia)" "VarP(I)"

Traits:

[1] "Cww" "Diam" "Bwt"

Fitted OLS fixed effects:

Cww Diam Bwt

(Intercept) 4.089935000 20.68652967 49.634862

SexM 0.338596647 0.48126497 4.549898

Year1982 0.766666667 0.73333333 -1.666667

Year1983 0.002769588 -0.31215415 -3.343896

Year1984 0.320636677 -0.47076948 -6.140087

Year1985 0.547697866 -0.08730665 -4.067912

Year1986 0.899182151 0.78138220 -5.183508

Year1987 0.420467784 0.12291168 -9.183299

TbT 0.030195000 -0.35958902 -1.904587

Var/covariance components partitioned by DME after OLS fit:

Cww:Cww Cww:Diam Cww:Bwt Diam:Cww Diam:Diam Diam:Bwt Bwt:Cww

VarE(I) 0.03073271 -0.0165836 0.494631 -0.0165836 0.3236798 1.625659 0.494631

VarG(Ia) 0.34373972 0.3960057 1.270395 0.3960057 0.6837249 1.413550 1.270395

Bwt:Diam Bwt:Bwt

VarE(I) 1.625659 19.341492

VarG(Ia) 1.413550 4.706127

Observed (residual) var/covariance after OLS fit:

Cww Diam Bwt
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Cww 0.2039021 0.3233388 1.636095

Diam 0.3233388 0.9206434 2.868331

Bwt 1.6360954 2.8683311 23.474841

>

In the above view, there are no standard errors, and we always get all fixed
effects across all traits, and all components across all traitpairs. The matrix
labelled ’Observed (residual) var/covariance after OLS fit:’ is covariance ma-
trix the residual terms rijkl from the fitted fixed model. It is not the pheno-
typic covariance matrix in most cases, because the individuals are related. The
print.dmm method is documented on its help page:

>help(print.dmm)

...

A more extensive view, with standard errors and comfidence limits s given
by the summary method:

> summary(sheep.fit1)

Call:

summary.dmm(dmmobj = sheep.fit1)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.08993 0.266 3.56807 4.612

SexM Cww 0.33860 0.172 0.00123 0.676

Year1982 Cww 0.76667 0.369 0.04403 1.489

Year1983 Cww 0.00277 0.353 -0.68901 0.695

Year1984 Cww 0.32064 0.333 -0.33242 0.974

Year1985 Cww 0.54770 0.321 -0.08211 1.178

Year1986 Cww 0.89918 0.321 0.27090 1.527

Year1987 Cww 0.42047 0.324 -0.21538 1.056

TbT Cww 0.03020 0.162 -0.28779 0.348

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.6865 0.566 19.578 21.795

SexM Diam 0.4813 0.366 -0.236 1.198

Year1982 Diam 0.7333 0.783 -0.802 2.269

Year1983 Diam -0.3122 0.750 -1.782 1.158

Year1984 Diam -0.4708 0.708 -1.858 0.917

Year1985 Diam -0.0873 0.683 -1.426 1.251

Year1986 Diam 0.7814 0.681 -0.554 2.116

Year1987 Diam 0.1229 0.689 -1.228 1.474

TbT Diam -0.3596 0.345 -1.035 0.316

Trait Estimate StdErr CI95lo CI95hi

11



(Intercept) Bwt 49.63 2.86 44.04 55.234

SexM Bwt 4.55 1.85 0.93 8.170

Year1982 Bwt -1.67 3.96 -9.42 6.087

Year1983 Bwt -3.34 3.79 -10.77 4.079

Year1984 Bwt -6.14 3.58 -13.15 0.867

Year1985 Bwt -4.07 3.45 -10.83 2.690

Year1986 Bwt -5.18 3.44 -11.92 1.558

Year1987 Bwt -9.18 3.48 -16.01 -2.361

TbT Bwt -1.90 1.74 -5.32 1.507

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0307 0.0490 -0.0652 0.127

VarG(Ia) Cww:Cww 0.3437 0.0452 0.2552 0.432

VarP(I) Cww:Cww 0.3745 0.0291 0.3174 0.431

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.0166 0.1054 -0.223 0.190

VarG(Ia) Cww:Diam 0.3960 0.0973 0.205 0.587

VarP(I) Cww:Diam 0.3794 0.0626 0.257 0.502

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Bwt 0.495 0.534 -0.553 1.54

VarG(Ia) Cww:Bwt 1.270 0.493 0.304 2.24

VarP(I) Cww:Bwt 1.765 0.318 1.143 2.39

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.0166 0.1054 -0.223 0.190

VarG(Ia) Diam:Cww 0.3960 0.0973 0.205 0.587

VarP(I) Diam:Cww 0.3794 0.0626 0.257 0.502

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.324 0.223 -0.113 0.76

VarG(Ia) Diam:Diam 0.684 0.206 0.281 1.09

VarP(I) Diam:Diam 1.007 0.132 0.748 1.27

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Bwt 1.63 1.141 -0.612 3.86

VarG(Ia) Diam:Bwt 1.41 1.054 -0.652 3.48

VarP(I) Diam:Bwt 3.04 0.678 1.710 4.37

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Cww 0.495 0.534 -0.553 1.54

VarG(Ia) Bwt:Cww 1.270 0.493 0.304 2.24
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VarP(I) Bwt:Cww 1.765 0.318 1.143 2.39

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Diam 1.63 1.141 -0.612 3.86

VarG(Ia) Bwt:Diam 1.41 1.054 -0.652 3.48

VarP(I) Bwt:Diam 3.04 0.678 1.710 4.37

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Bwt 19.34 5.70 8.17 30.5

VarG(Ia) Bwt:Bwt 4.71 5.26 -5.61 15.0

VarP(I) Bwt:Bwt 24.05 3.39 17.41 30.7

>

So now we get one parameter estimate per line with standard errors and
confidence limits.With lots of traits and parameters this can get to be rather
voluminous, so the summary method for dmm objects has arguments for choos-
ing subsets of traits or components. There is also an argument to change the
ordering from bytrait to byparameter. Consult the help page as follows

>help(summary.dmm)

... help page should appear here

We may wish to view genetic parameter estimates instead of variance compo-
nents. In this case there is a gprint.dmm method which produces an abbreviated
output (analagous to print.dmm) and a gsummary.dmm method which produces
a full output with standard errors (analagous to summary.dmm). These func-
tions have help pages

>help(gprint.dmm)

... help page should appear here

>help(gsummary.dmm)

... help page should appear here

In this case we shall view the gsummary output for just 2 traits

>gsummary(sheep.fit1,traitset=c("Diam","Bwt"))

Call:

gsummary.dmm(dmmobj = sheep.fit1, traitset = c("Diam", "Bwt"))

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.321 0.201 -0.0722 0.715

VarG(Ia) Diam 0.679 0.207 0.2732 1.084

VarP(I) Diam 1.000 0.000 1.0000 1.000
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Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bwt 0.804 0.214 0.385 1.22

VarG(Ia) Bwt 0.196 0.211 -0.218 0.61

VarP(I) Bwt 1.000 0.000 1.000 1.00

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 0 1 1

VarG(Ia) Diam:Diam 1 0 1 1

VarP(I) Diam:Diam 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Bwt 0.650 0.286 0.0901 1.209

VarG(Ia) Diam:Bwt 0.788 0.354 0.0936 1.482

VarP(I) Diam:Bwt 0.617 0.097 0.4273 0.808

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Diam 0.650 0.286 0.0901 1.209

VarG(Ia) Bwt:Diam 0.788 0.354 0.0936 1.482

VarP(I) Bwt:Diam 0.617 0.097 0.4273 0.808

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Bwt 1 0 1 1

VarG(Ia) Bwt:Bwt 1 0 1 1

VarP(I) Bwt:Bwt 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.01 0.132 0.748 1.27

2 Diam:Bwt 3.04 0.678 1.710 4.37

3 Bwt:Diam 3.04 0.678 1.710 4.37

4 Bwt:Bwt 24.05 3.386 17.410 30.68

>

The section labelled ’Proportion of phenotypic var/covariance ....’ gives for
each trait an estimate of each variance component as a proportion of ”VarP(I)”,
the phenotpic variance. So for component ”VarG(Ia)” the proportion 0.679 is
the additive genetic heritability estimate for trait ”Diam”.

The section labelled ’Correlation ...’ gives for each trait pair an estimate
of the cross-trait correlation corresponding to each variance component. So for
component ”VarG(Ia)” the estimate 0.788 is the additive genetic correlation for

14



traitpair ”Diam:Bwt”.
Note that the confidence limits are not constrained to the bounds of a pro-

portion or a correlation. This will not usually be a problem with reasonable
sized datasets.

Let us now change the dyadic model to include maternal as well as individual
genetic and environmental effects. This is done by simply adding components
”VarE(M)” and ”VarG(Ma)” to the components argument, representing ma-
ternal environmental and maternal additive genetic effects. However we also
need to add some covariances, because it is possible for individual and mater-
nal effects to be correlated at both the environmental and genetic levels. So
we add ”CovE(I,M)” and ”CovG(Ia,Ma)”, and we also add their reciprocals
”CovE(M,I)” and ”CovG(Ma,Ia)”. It is a useful convention in dmm() to always
include reciprocal covariances, for two reasons

� It makes the variances and covariances sum correctly to phenotypic vari-
ance

� It allows for cross-trait-cross-effect covariances to differ between recipro-
cals, which is commonly the case

So let us do another fit of the new model including maternal effects. We will
leave out the environmental covariances, but include the genetic ones. We still
only need the additive relationship matrix so we can use the same dataframe.

>sheep.fit2 <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)",

"CovG(Ia,Ma)","CovG(Ma,Ia)"))

...

Again we look at the column correlations of the dyadic model equations

> sheep.fit2$dme.corre

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovG(Ia,Ma) CovG(Ma,Ia)

VarE(I) 1.0000000 0.8119358 0.5276760 0.5048241 0.3480154 0.3480154

VarG(Ia) 0.8119358 1.0000000 0.6224600 0.6384842 0.6552158 0.6552158

VarE(M) 0.5276760 0.6224600 1.0000000 0.9640352 0.6593751 0.6593751

VarG(Ma) 0.5048241 0.6384842 0.9640352 1.0000000 0.7049875 0.7049875

CovG(Ia,Ma) 0.3480154 0.6552158 0.6593751 0.7049875 1.0000000 0.4980990

CovG(Ma,Ia) 0.3480154 0.6552158 0.6593751 0.7049875 0.4980990 1.0000000

>

For a small dataset, the column correlations are reasonable, except for the
0.96 between ”VarE(M)” and ”VarG(Ma)” and the 0.81 which was there in the
previous analysis. We will just view the genetic parameters for two traits

>gsummary(sheep.fit2, traitset = c("Diam", "Cww"))

Call:

gsummary.dmm(dmmobj = sheep.fit2, traitset = c("Diam", "Cww"))
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Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0134 0.0686 -0.121 0.148

VarG(Ia) Diam 0.5684 0.1648 0.245 0.891

VarE(M) Diam 0.1042 0.1364 -0.163 0.371

VarG(Ma) Diam 1.0674 0.2025 0.670 1.464

CovG(Ia,Ma) Diam -0.3767 0.1190 -0.610 -0.144

CovG(Ma,Ia) Diam -0.3767 0.1190 -0.610 -0.144

VarP(I) Diam 1.0000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.1241 0.0849 -0.0423 0.2905

VarG(Ia) Cww 0.6602 0.1588 0.3489 0.9715

VarE(M) Cww 0.0516 0.1257 -0.1947 0.2980

VarG(Ma) Cww 0.7076 0.1682 0.3779 1.0372

CovG(Ia,Ma) Cww -0.2717 0.1036 -0.4748 -0.0686

CovG(Ma,Ia) Cww -0.2717 0.1036 -0.4748 -0.0686

VarP(I) Cww 1.0000 0.0000 1.0000 1.0000

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 1.00e+00 -0.960 2.960

VarG(Ia) Diam:Diam 1.000 0.00e+00 1.000 1.000

VarE(M) Diam:Diam 1.000 1.49e-08 1.000 1.000

VarG(Ma) Diam:Diam 1.000 0.00e+00 1.000 1.000

CovG(Ia,Ma) Diam:Diam -0.484 8.14e-02 -0.643 -0.324

CovG(Ma,Ia) Diam:Diam -0.484 8.14e-02 -0.643 -0.324

VarP(I) Diam:Diam 1.000 0.00e+00 1.000 1.000

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.968 1.56e+04 -3.05e+04 30505.153

VarG(Ia) Diam:Cww 1.000 1.09e-01 7.86e-01 1.214

VarE(M) Diam:Cww -0.890 6.65e+01 -1.31e+02 129.386

VarG(Ma) Diam:Cww 0.993 9.13e-02 8.13e-01 1.172

CovG(Ia,Ma) Diam:Cww -0.474 1.17e-01 -7.04e-01 -0.245

CovG(Ma,Ia) Diam:Cww -0.498 8.86e-02 -6.71e-01 -0.324

VarP(I) Diam:Cww 0.652 5.19e-02 5.50e-01 0.753

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.968 1.56e+04 -3.05e+04 30505.153

VarG(Ia) Cww:Diam 1.000 1.09e-01 7.86e-01 1.214

VarE(M) Cww:Diam -0.890 6.65e+01 -1.31e+02 129.386
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VarG(Ma) Cww:Diam 0.993 9.13e-02 8.13e-01 1.172

CovG(Ia,Ma) Cww:Diam -0.498 8.86e-02 -6.71e-01 -0.324

CovG(Ma,Ia) Cww:Diam -0.474 1.17e-01 -7.04e-01 -0.245

VarP(I) Cww:Diam 0.652 5.19e-02 5.50e-01 0.753

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1.000 0.00e+00 1.00 1.000

VarG(Ia) Cww:Cww 1.000 0.00e+00 1.00 1.000

VarE(M) Cww:Cww 1.000 1.49e-08 1.00 1.000

VarG(Ma) Cww:Cww 1.000 0.00e+00 1.00 1.000

CovG(Ia,Ma) Cww:Cww -0.398 9.32e-02 -0.58 -0.215

CovG(Ma,Ia) Cww:Cww -0.398 9.32e-02 -0.58 -0.215

VarP(I) Cww:Cww 1.000 0.00e+00 1.00 1.000

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 3.035 0.2643 2.517 3.553

2 Diam:Cww 0.964 0.1253 0.718 1.209

3 Cww:Diam 0.964 0.1253 0.718 1.209

4 Cww:Cww 0.720 0.0583 0.606 0.835

>

Notice that the covariances between Ia and Ma are negative and contribute
negatively to phenotypic variance, so that the proportions still sum to 1.0 and
it is thus possible for the proportions due to some components to exceed 1.0.
This is actually the case for ”VarG(Ma)” for trait ”Diam” where the proportion
is 1.067.

Notice also that the correlations for a trait with itself are always 1.0, except
for those components which are cross-effect covariances. For example the same-
trait-cross-effect correlation between Ia and Ma for trait ”Diam” is −0.484.
This represents the genetic correlation between individual additive and maternal
additive effects.

Notice also that the cross-trait-cross-effect correlations are not equal, as
mentioned above. For example the correlation corresponding to ”CovG(Ia,Ma)”
for traits ”Diam:Cww” is −0.474, while the reciprocal correlation corresponding
to ”CovG(Ma,Ia)” for traits ”Diam:Cww” is −0.498.

Let us now assume that the above model is our final choice for these data. Up
until now all dmm() runs have defaulted to what we term OLS-b estimates, that
is the dyadic model equations are setup using ordinary least squares estimates
of the fixed effects. This leads to variance component estimates which are
equivalent to MINQUE estimates.

We may now wish, for the final model, to obtain the more desirable GLS-b
estimates, where the dyadic model equations are setup using generalised least
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squares estimates of the fixed effects. This leads to variance component esti-
mates which are equivalent to ’bias-corrected ML’ estimates. The disadvantage
here is that the procedure becomes iterative, so it makes sense to reserve it for
the final analysis. We simply add the gls=T argument as follows

sheep.fit2g <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)",

"CovG(Ia,Ma)","CovG(Ma,Ia)"),gls=T)

...

OLS-b step completed:

GLS-b step:

Warning: Multivariate GLS is not same as multiple univariate GLS’s

Round = 1 Stopcrit = 2.933296

Round = 2 Stopcrit = 29.75875

Round = 3 Stopcrit = 19.06238

Round = 4 Stopcrit = 16.9289

Round = 5 Stopcrit = 25.56546

...

Round = 199 Stopcrit = 88.43989

Round = 200 Stopcrit = 76.06792

Iteration completed - count = 200

Failed to converge

GLS-b step abandoned:

>

So the GLS-b step fails to converge. We cannot get GLS-b estimates in this
case. Not surprising given the small dataset and the collinearities among the
components. So let us go back to the simpler model and do GLS-b estimates
there:

> sheep.fitg <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components = c("VarE(I)","VarG(Ia)"),gls=T)

...

OLS-b step completed:

GLS-b step:

Warning: Multivariate GLS is not same as multiple univariate GLS’s

Round = 1 Stopcrit = 0.353744

Round = 2 Stopcrit = 0.1699597

Round = 3 Stopcrit = 0.09243534

Round = 4 Stopcrit = 0.04346599

Round = 5 Stopcrit = 0.04435906

Round = 6 Stopcrit = 0.01044068

Round = 7 Stopcrit = 0.01410482

Round = 8 Stopcrit = 0.002334684

Iteration completed - count = 8
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Convergence achieved

Components to genetic parameters and SE’s:

GLS-b step completed successfully:

>

So in this case the iteration works and converges quite rapidly, despite the
high correlation between the two components. Note that this run does both
OLS-b and GLS-b estimates, in fact the OLS-b step provides intital estimates
of the variance components for the GLS-b step. The saved object sheep.fitg
contains the results of both steps. We can see the structure of sheep.fitg as
follows

>attributes(sheep.fitg)

$names

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "dmeopt"

[13] "siga" "sesiga" "vard"

[16] "degfd" "component" "correlation"

[19] "correlation.variance" "correlation.se" "fraction"

[22] "fraction.variance" "fraction.se" "variance.components"

[25] "variance.components.se" "phenotypic.variance" "phenotypic.variance.se"

[28] "observed.variance" "gls" "call"

$class

[1] "dmm"

> attributes(sheep.fitg$gls)

$names

[1] "b" "seb" "siga"

[4] "sesiga" "vard" "msr"

[7] "msrdf" "msa" "component"

[10] "correlation" "correlation.variance" "correlation.se"

[13] "fraction" "fraction.variance" "fraction.se"

[16] "variance.components" "variance.components.se" "phenotypic.variance"

[19] "phenotypic.variance.se" "observed.variance" "dmeopt"

>

So sheep.fitg now contains results of the OLS-b step plus an attribute ”gls”
which itself contains results of the GLS-b step.

All the S3 methods (print(),summary(),gprint(),gsummary()) will report the
GLS-b results as well as the OLS-b results, if given the argument gls=T. For
example, let us view the variance components and fixed effect estimates as
follows
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> summary(sheep.fitg,gls=T,traitset=c("Cww","Diam"))

Call:

summary.dmm(dmmobj = sheep.fitg, traitset = c("Cww", "Diam"),

gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.08993 0.266 3.56807 4.612

SexM Cww 0.33860 0.172 0.00123 0.676

Year1982 Cww 0.76667 0.369 0.04403 1.489

Year1983 Cww 0.00277 0.353 -0.68901 0.695

Year1984 Cww 0.32064 0.333 -0.33242 0.974

Year1985 Cww 0.54770 0.321 -0.08211 1.178

Year1986 Cww 0.89918 0.321 0.27090 1.527

Year1987 Cww 0.42047 0.324 -0.21538 1.056

TbT Cww 0.03020 0.162 -0.28779 0.348

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.6865 0.566 19.578 21.795

SexM Diam 0.4813 0.366 -0.236 1.198

Year1982 Diam 0.7333 0.783 -0.802 2.269

Year1983 Diam -0.3122 0.750 -1.782 1.158

Year1984 Diam -0.4708 0.708 -1.858 0.917

Year1985 Diam -0.0873 0.683 -1.426 1.251

Year1986 Diam 0.7814 0.681 -0.554 2.116

Year1987 Diam 0.1229 0.689 -1.228 1.474

TbT Diam -0.3596 0.345 -1.035 0.316

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0307 0.0490 -0.0652 0.127

VarG(Ia) Cww:Cww 0.3437 0.0452 0.2552 0.432

VarP(I) Cww:Cww 0.3745 0.0291 0.3174 0.431

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.0166 0.1054 -0.223 0.190

VarG(Ia) Cww:Diam 0.3960 0.0973 0.205 0.587

VarP(I) Cww:Diam 0.3794 0.0626 0.257 0.502

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.0166 0.1054 -0.223 0.190

VarG(Ia) Diam:Cww 0.3960 0.0973 0.205 0.587

VarP(I) Diam:Cww 0.3794 0.0626 0.257 0.502

20



Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.324 0.223 -0.113 0.76

VarG(Ia) Diam:Diam 0.684 0.206 0.281 1.09

VarP(I) Diam:Diam 1.007 0.132 0.748 1.27

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.304 0.510 3.305 5.303

SexM Cww 0.257 0.290 -0.312 0.826

Year1982 Cww 0.469 0.710 -0.922 1.860

Year1983 Cww -0.369 0.656 -1.655 0.917

Year1984 Cww 0.617 0.579 -0.517 1.751

Year1985 Cww 0.572 0.577 -0.558 1.702

Year1986 Cww 0.477 0.602 -0.703 1.656

Year1987 Cww 0.184 0.607 -1.005 1.373

TbT Cww 0.109 0.284 -0.447 0.664

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 21.055732 0.837 19.416 22.696

SexM Diam 0.351813 0.477 -0.583 1.286

Year1982 Diam 0.231840 1.165 -2.052 2.515

Year1983 Diam -0.999754 1.077 -3.111 1.111

Year1984 Diam 0.028450 0.950 -1.834 1.891

Year1985 Diam -0.045951 0.947 -1.901 1.809

Year1986 Diam 0.000532 0.987 -1.935 1.936

Year1987 Diam -0.333609 0.995 -2.285 1.617

TbT Diam -0.168160 0.465 -1.079 0.743

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0502 0.0386 -0.0254 0.126

VarG(Ia) Cww:Cww 0.8438 0.0342 0.7768 0.911

VarP(I) Cww:Cww 0.8940 0.0200 0.8548 0.933

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.0538 0.0787 -0.208 0.10

VarG(Ia) Cww:Diam 1.3414 0.0696 1.205 1.48

VarP(I) Cww:Diam 1.2876 0.0408 1.208 1.37

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.0538 0.0787 -0.208 0.10
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VarG(Ia) Diam:Cww 1.3414 0.0696 1.205 1.48

VarP(I) Diam:Cww 1.2876 0.0408 1.208 1.37

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.137 0.1593 -0.175 0.449

VarG(Ia) Diam:Diam 2.233 0.1410 1.957 2.510

VarP(I) Diam:Diam 2.371 0.0826 2.209 2.532

>

Notice that the GLS-b estimates differ from the OLS-b estimates, both for
fixed effects and for variance components, and that the GLS-b estimates gener-
ally have smaller standard errors. That is as would be expected.

That is enough for a tutorial. Here is a list of further aspects which the user
may wish to investigate

� Non additive (co)variance components

� Sexlinked variance components

� Calculation of response to selection

� Using attributes of the dmm fit object directly instead of thru S3 methods,
for example plotting residuals

� Using alternative regression methods to solve the dyadic model equations.
Options are robust regression and principal components regression

� Defining a cohort effect
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5 Some datasets with ’known’ results

It is important that users be able to build confidence in the correctness of any
R function by testing its results with some datasets for which the answers are
’known’. In the case of pedigree data, this is by no means easy achieve. The
options are

� Use very simple small datasets

� Use simulated data, sampled from some population with known parame-
ters

� Use real data and compare results with other programs

All three approaches have issues. Tiny datasets are artificial. Simulated data
is a sample and will never give the exact same result as the parameters of the
population from which it was drawn. Real data is messy and other programs
(as well as one’s own) may be in error. We use all three approaches here.

5.1 A balanced dataset: comparison with anova method

The dataset dt8bal.df is a simple balanced design with 8 observations of indi-
viduals from 4 sire families, with 2 individuals per family. We wish to use it
to estimate additive genetic variance and to show that the results are the same
as those obtained by estimating the sire and within sire variance components
using the analysis of variance method.

First the dmm() analysis. We will just analyse the trait ”CWW”, so we can
work straight from the dataframe, without preprocessing with function mdf().

>data(dt8bal.df)

>dt8bal.fit <- dmm(dt8bal.df,CWW ~ 1, gls=T)

...

>summary(dt8bal.fit,gls=T)

Call:

summary.dmm(dmmobj = dt8bal.fit, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 CWW 4.97 0.128 4.72 5.23

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) CWW:CWW 0.0713 0.163 -0.2490 0.392

VarG(Ia) CWW:CWW 0.0617 0.164 -0.2601 0.383

VarP(I) CWW:CWW 0.1329 0.041 0.0525 0.213
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Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 CWW 4.97 0.136 4.71 5.24

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) CWW:CWW 0.0713 0.163 -0.2490 0.392

VarG(Ia) CWW:CWW 0.0617 0.164 -0.2601 0.383

VarP(I) CWW:CWW 0.1329 0.041 0.0525 0.213

>

So the OLS-b and GLS-b estimates of variance components are identical.
That is as expected for balanced data.

Now we wish to do an analysis of variance between and within sire families,
for the same data.

>dt8.fit <- aov(CWW ~ 1 + SId, dt8bal.df)

> summary(dt8.fit)

Df Sum Sq Mean Sq F value Pr(>F)

SId 3 0.445 0.1483 1.262 0.4

Residuals 4 0.470 0.1175

12 observations deleted due to missingness

We now have the between and within sire mean squares, and we need to
equate these to their expectations in terms of variance components as follows:

MS(B) = σ2
W + 2.0 ∗ σ2

B

MS(W ) = σ2
W

and solve these two equations to obtain σ2
B = 0.0154 and σ2

W = 0.1175.
We then need to equate these two components to their expectaions in terms of
causal components as follows:

σ2
B = 0.25 ∗ σ2

G(Ia)

σ2
W = 0.75 ∗ σ2

G(Ia) + σ2
E(I)

and solve these two equations to obtain σ2
G(Ia) = 0.0616 and σ2

E(I) = 0.0713.

These agree exactly with the analysis using function dmm() above. Most
methods of variance component estimation agree with the analysis of variance
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method for balanced designs, and this agreement extends to pedigree based
causal components. This shows that dmm belongs to this family, and that its
arithmetic is substantially correct.
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5.2 The quercus program’s demo2 dataset

The dataset quercus.df is a demonstrtation dataset from the program package
QUERCUS, developed by Ruth G. Shaw and Frank H. Shaw. It is known
to QUERCUS as the ’demo2’ dataset. The QUERCUS program package is
available from http://www.cbs.umn.edu/explore/departments/eeb/quercus.

We are going to use the program ’nf3.p’ from within the QUERCUS package
to compute both ML and REML estimates of components ”VarE(I)”, ”VarG(Ia)”,
and ”VarG(Id)”, for the dataset ’demo2’ which has a 2 generation pedigree with
full-sib and half-sib families. The program ’nf3.p’ requires a Pascal compiler -
here we used the GNU gpc compiler. To run ’nf3.p’ the data must be in a file
called sibships as follows

2 2 0 0 0

0

1 181 201 0.0214 0.4917

2 181 201 0.8036 2.4103

3 181 201 -0.1645 -1.1545

4 181 202 -1.2467 -3.2364

5 181 202 -1.1167 -2.4520

...

256 0 0 -99 -99

257 0 0 -99 -99

258 0 0 -99 -99

259 0 0 -99 -99

260 0 0 -99 -99

0

and output appears in a file called ’Analysis’ as follows

This is an REML analysis.

LogLike -272.6264

LogLike -238.4432

LogLike -238.4432

At iteration 3

*** The unconstrained analysis converged with the following results ***

The log likelihood is -238.4432

The mean of each trait is

0.081236

-0.085470

The effect of the fixed factors is

(in the order given, levels within factors)

The estimates of the components are:

Additive
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0.196601 0.134016

0.813206

Environmental

0.034755 0.134609

0.974764

Dominance

0.938617 -0.113085

0.046997

Large-sample var-cov matrix of the estimates

0.122560 0.021440 0.004091 0.093991 0.010331 0.00

1413 -0.207028 -0.028068 -0.004611

0.105442 0.037818 0.010331 0.065235 0.01

5525 -0.028068 -0.157275 -0.045913

0.356861 0.001413 0.015525 0.18

3679 -0.004611 -0.045913 -0.482813

0.228582 0.021530 0.00

2238 -0.336299 -0.031249 -0.003320

0.153474 0.03

0090 -0.031249 -0.221470 -0.043116

0.41

5866 -0.003320 -0.043116 -0.587751

0.565659 0.057480 0.007096

0.382374 0.083193

1.046082

The test statistic comparing two likelihoods is given by twice

their difference and is compared to Chi-square with df given by the

number of parameters specified by the hypothesis.

The above is the REML analysis. The same analysis using ML is a s follows

This is an ML analysis.

LogLike -267.4334

LogLike -234.2705

LogLike -234.2705

At iteration 3

*** The unconstrained analysis converged with the following results ***
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The log likelihood is -234.2705

The mean of each trait is

0.081236

-0.085470

The effect of the fixed factors is

(in the order given, levels within factors)

The estimates of the components are:

Additive

0.149251 0.124371

0.726729

Environmental

0.022917 0.132197

0.953145

Dominance

0.985967 -0.103439

0.133474

Large-sample var-cov matrix of the estimates

0.109096 0.018697 0.003532 0.090625 0.009646 0.00

1273 -0.193564 -0.025326 -0.004052

0.092867 0.032809 0.009646 0.062091 0.01

4273 -0.025326 -0.144700 -0.040904

0.311952 0.001273 0.014273 0.17

2452 -0.004052 -0.040904 -0.437904

0.227741 0.021358 0.00

2203 -0.332933 -0.030563 -0.003180

0.152688 0.02

9776 -0.030563 -0.218326 -0.041863

0.41

3060 -0.003180 -0.041863 -0.576523

0.552195 0.054738 0.006537

0.369800 0.078184

1.001173

The test statistic comparing two likelihoods is given by twice

their difference and is compared to Chi-square with df given by the

number of parameters specified by the hypothesis.
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To analyse these data with dmm() we need to load the data, and prepare
it with mdf(). In particular, we need to add base animals to the pedigree and
compute both the additive and dominance relationship matrices. We do this as
follows

> data(quercus.df)

> quercus.mdf <- mdf(quercus.df,pedcols=c(1:3), factorcols=4, ycols=c(5:6),

sexcode=c(1,2), relmat=c("E","A","D"))

Pedigree Id check:

No of rows with Id in original dataframe = 180

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA’s removed = 180

No of SId’s with no matching Id = 20

No of DId’s with no matching Id = 60

Length of dataframe with base Id’s added = 260

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

Return mdf as an object of class mdf containing the dataframe as mdf$df and

the relationship matrices as mdf$rel:

>

Note that mdf() has added 20 base sires and 60 base dams. We now do the
dmm() analysis, with only the mean as a fixed effect

> quercus.fit <- dmm(quercus.mdf, Ymat ~ 1,

components=c("VarE(I)","VarG(Ia)","VarG(Id)"),

relmat="withdf", gls=T)

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

no of individuals in pedigree (m) = 260

no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

DME substep:

QR option on dyadic model equations:

DME substep completed:
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OLS-b step completed:

GLS-b step:

Warning: Multivariate GLS is not same as multiple univariate GLS’s

Round = 1 Stopcrit = 2.914335e-16

Iteration completed - count = 1

Convergence achieved

GLS-b step completed successfully:

>

> summary(quercus.fit,gls=T)

Call:

summary.dmm(dmmobj = quercus.fit, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.2940 -0.5414 0.611

VarG(Ia) Trait1:Trait1 0.1966 0.1430 -0.0836 0.477

VarG(Id) Trait1:Trait1 0.9386 0.3727 0.2082 1.669

VarP(I) Trait1:Trait1 1.1700 0.0863 1.0008 1.339

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait1:Trait2 0.134 0.179 -0.2177 0.486

VarG(Id) Trait1:Trait2 -0.113 0.468 -1.0301 0.804

VarP(I) Trait1:Trait2 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait2:Trait1 0.134 0.179 -0.2177 0.486

VarG(Id) Trait2:Trait1 -0.113 0.468 -1.0301 0.804

VarP(I) Trait2:Trait1 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.460 0.0726 1.88

VarG(Ia) Trait2:Trait2 0.813 0.224 0.3745 1.25

VarG(Id) Trait2:Trait2 0.047 0.584 -1.0967 1.19
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VarP(I) Trait2:Trait2 1.835 0.135 1.5701 2.10

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.109 -0.132 0.294

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.147 -0.374 0.203

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.2082 -0.37332 0.443

VarG(Ia) Trait1:Trait1 0.1966 0.1012 -0.00184 0.395

VarG(Id) Trait1:Trait1 0.9386 0.2639 0.42128 1.456

VarP(I) Trait1:Trait1 1.1700 0.0611 1.05018 1.290

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.2609 -0.3768 0.646

VarG(Ia) Trait1:Trait2 0.134 0.1269 -0.1147 0.383

VarG(Id) Trait1:Trait2 -0.113 0.3308 -0.7615 0.535

VarP(I) Trait1:Trait2 0.156 0.0766 0.0054 0.306

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.2609 -0.3768 0.646

VarG(Ia) Trait2:Trait1 0.134 0.1269 -0.1147 0.383

VarG(Id) Trait2:Trait1 -0.113 0.3308 -0.7615 0.535

VarP(I) Trait2:Trait1 0.156 0.0766 0.0054 0.306

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.3260 0.336 1.614

VarG(Ia) Trait2:Trait2 0.813 0.1585 0.502 1.124

VarG(Id) Trait2:Trait2 0.047 0.4133 -0.763 0.857

VarP(I) Trait2:Trait2 1.835 0.0957 1.647 2.023

>

So the dmm OLS-b and dmm GLS-b estimates of variance components are
exactly the same, and are also exactly the same as the QUERCUS REML esti-
mates. The QUERCUS ML estimates are different.

The var-cov matrix of the estimates given by QUERCUS leads to larger stan-
dard errors than those given by dmm. This is not surprising, QUERCUS uses
large-sample covariances from the matrix of second derivatives, while dmm()
uses standard errors from the regression technique used to fit the dyadic model.
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The QUERCUS ’demo2’ dataset is essentially a balanced design, even with
a dominance variance fitted, because the pedigree has equal sized families and
there are no fixed effects except mean. So this reinforces the concept of a family
of methods that agree with ’anova’ and with each other for balanced designs.
REML and dmm OLS-b (ie MINQUE) and dmm GLS-b (ie bias-corrected ML)
belong to that family, but ML and the classical method of moments do not.

We have also learnt that we seem to be doing the dominance relationship
matrix and ”VarG(Id)” correctly, and that the process of appending relationship
matrices to the dataframe seems to be sound.
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5.3 The warcolak dataset

In the R package nadiv there is a synthetic dataset with a 3 generation pedigree
designed for testing estimation of nonadditive and sex-linked genetic variances.
The package author (Matthew Wolak) gives the following specification on the
warcolak help page.

The dataset was simulated to have a two un-correlated traits with
different genetic architectures. The additive genetic, dominance ge-
netic, and environmental (or residual) variances for both trait1 and
trait2 are specified to be 0.4, 0.3, and 0.3, respectively. However,
the additive genetic variance for trait2 can be further decomposed
to autosomal additive genetic variance (0.3) and X-linked additive
genetic variance (0.1). These variances were drawn from multivari-
ate random normal distributions [e.g., additive effects: N (0, A *
Va)] with means of zero and variances equal to the product of the de-
sired and the relatedness (or incidence) matrix. Because of this, the
actual variance in random effects will vary slightly from the amount
specified in the simulation.

We are going to use these data to check dmm(), but first we have to slightly
alter the column names of the warcolak dataframe to suit dmm() conventions.
To this end the dmm package provides a function warcolak.convert() just for
this task.

> library(nadiv)

Loading required package: Matrix

Loading required package: lattice

> data(warcolak)

> warcolak.df <- warcolak.convert(warcolak)

> str(warcolak.df)

’data.frame’: 5400 obs. of 6 variables:

$ Id : Factor w/ 5400 levels "u10_d1c","u10_d1d",..: 737 738 739 740 733 734 735 736 789 790 ...

$ SId : Factor w/ 600 levels "u10_gs1","u10_gs2",..: NA NA NA NA NA NA NA NA 81 81 ...

$ DId : Factor w/ 1200 levels "u10_d1c","u10_d1d",..: NA NA NA NA NA NA NA NA 173 173 ...

$ Sex : int 0 0 0 0 1 1 1 1 0 0 ...

$ Trait1: num 0.7223 2.1455 0.0676 -0.4708 0.8242 ...

$ Trait2: num 0.897 -0.344 -0.764 1.269 -0.98 ...

> rm(warcolak)

>

We now need to preprocess warcolak.df with mdf() to renumber the Id’s
and to append the additive, dominance, and sex-linked relationship matrices.
In doing the sex-linked relationships, we assume that warcolak’s are mammals
and that an appropriate dosage compensation model is ”hopi”, which means
inactivation of the paternal sex chromosome in the homogametic sex.
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> warcolak.mdf <- mdf(warcolak.df,pedcols=c(1:3),factorcols=4,ycols=c(5:6),

sexcode=c(0,1), relmat=c("E","A","D","S.hopi"))

Pedigree Id check:

No of rows with Id in original dataframe = 5400

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA’s removed = 5400

Length of dataframe with base Id’s added = 5400

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

S-inverse made: Starting to make S....done

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

>

We can now run dmm() and we shall fit a mean and a Sex effect. I am not
sure that these fixed effects are necessary because the population simulated has
a zero mean.

> warcolak.fit <- dmm(warcolak.mdf, Ymat ~ 1 + Sex,

components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),

gls=T, relmat="withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 4

OLS-b step:

no of fixed effect df (k) = 2

no of traits (l) = 2

Setup antemodel matrices:

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

GLS-b step:

Warning: Multivariate GLS is not same as multiple univariate GLS’s
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Round = 1 Stopcrit = 0.002284058

Iteration completed - count = 1

Convergence achieved

GLS-b step completed successfully:

>

> warcolak.fit$dme.corre

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.0000000 0.4856324 0.9190639 0.7494688

VarG(Ia) 0.4856324 1.0000000 0.6255619 0.7473142

VarG(Id) 0.9190639 0.6255619 1.0000000 0.8105875

VarGs(Ia) 0.7494688 0.7473142 0.8105875 1.0000000

>

There seem to be some serious collinearities in these data, particularly be-
tween ”VarE(I)” and ”VarG(Id”. We shall proceed to view the results.

> summary(warcolak.fit,gls=T)

Call:

summary.dmm(dmmobj = warcolak.fit, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait1 -0.01571 0.0202 -0.0553 0.0239

Sex1 Trait1 0.00439 0.0271 -0.0488 0.0575

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait2 -0.0789 0.0206 -0.1194 -0.0385

Sex1 Trait2 0.0287 0.0277 -0.0256 0.0829

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.3443 0.0362 0.2734 0.415

VarG(Ia) Trait1:Trait1 0.3448 0.0105 0.3243 0.365

VarG(Id) Trait1:Trait1 0.2663 0.0371 0.1935 0.339

VarGs(Ia) Trait1:Trait1 0.0258 0.0205 -0.0145 0.066

VarP(I) Trait1:Trait1 0.9812 0.0133 0.9550 1.007

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 -0.0300 0.0370 -0.10247 0.04243

VarG(Ia) Trait1:Trait2 0.0297 0.0107 0.00875 0.05061

VarG(Id) Trait1:Trait2 0.0443 0.0379 -0.02998 0.11861

VarGs(Ia) Trait1:Trait2 -0.0333 0.0210 -0.07438 0.00787

VarP(I) Trait1:Trait2 0.0107 0.0136 -0.01598 0.03743
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 -0.0300 0.0370 -0.10247 0.04243

VarG(Ia) Trait2:Trait1 0.0297 0.0107 0.00875 0.05061

VarG(Id) Trait2:Trait1 0.0443 0.0379 -0.02998 0.11861

VarGs(Ia) Trait2:Trait1 -0.0333 0.0210 -0.07438 0.00787

VarP(I) Trait2:Trait1 0.0107 0.0136 -0.01598 0.03743

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.214 0.0377 0.1404 0.288

VarG(Ia) Trait2:Trait2 0.384 0.0109 0.3631 0.406

VarG(Id) Trait2:Trait2 0.286 0.0387 0.2101 0.362

VarGs(Ia) Trait2:Trait2 0.139 0.0214 0.0968 0.181

VarP(I) Trait2:Trait2 1.024 0.0139 0.9963 1.051

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait1 -0.019505 0.0328 -0.0839 0.0449

Sex1 Trait1 0.000958 0.0244 -0.0469 0.0489

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait2 -0.0806 0.0347 -0.1485 -0.0127

Sex1 Trait2 0.0289 0.0244 -0.0189 0.0766

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.3443 0.02559 0.29416 0.3945

VarG(Ia) Trait1:Trait1 0.3446 0.00739 0.33015 0.3591

VarG(Id) Trait1:Trait1 0.2662 0.02624 0.21478 0.3176

VarGs(Ia) Trait1:Trait1 0.0259 0.01453 -0.00255 0.0544

VarP(I) Trait1:Trait1 0.9811 0.00943 0.96260 0.9996

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 -0.0301 0.02614 -0.08129 0.02116

VarG(Ia) Trait1:Trait2 0.0296 0.00755 0.01484 0.04444

VarG(Id) Trait1:Trait2 0.0444 0.02680 -0.00809 0.09697

VarGs(Ia) Trait1:Trait2 -0.0333 0.01484 -0.06235 -0.00419

VarP(I) Trait1:Trait2 0.0107 0.00963 -0.00813 0.02963

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 -0.0301 0.02614 -0.08129 0.02116

VarG(Ia) Trait2:Trait1 0.0296 0.00755 0.01484 0.04444
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VarG(Id) Trait2:Trait1 0.0444 0.02680 -0.00809 0.09697

VarGs(Ia) Trait2:Trait1 -0.0333 0.01484 -0.06235 -0.00419

VarP(I) Trait2:Trait1 0.0107 0.00963 -0.00813 0.02963

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.214 0.02669 0.162 0.267

VarG(Ia) Trait2:Trait2 0.384 0.00771 0.369 0.399

VarG(Id) Trait2:Trait2 0.286 0.02737 0.232 0.339

VarGs(Ia) Trait2:Trait2 0.139 0.01515 0.109 0.169

VarP(I) Trait2:Trait2 1.023 0.00984 1.004 1.043

>

So the OLS-b and GLS-b estimates are almost identical, and this is ex-
pected as the warcolak dataset is balanced. The estimated components VarE(I),
VarG(Ia), VarG(Id), and VarGs(Ia) agree reasonably well with the stated popu-
lation values ( in most cases the confidence limits include the stated population
value). In particular VarGs(Ia) is close to zero for Trait1 and close to 0.1 for
Trait2, so the sex-linked relationship matrix computation seems to be work-
ing. The cross-trait components are all close to zero, as expected. The fixed
effects are close to zero, and could probably have been omitted. The standard
errors of the GLS-b estimates are generally smaller than those of the OLS-b
estimates and this is expected, even when the estimates themselves are equal.
The collinearities noted above do not seem to have grossly affected the results.

We conclude that comparison of dmm() estimates from simulated data with
the data’s population values suggests that dmm() estimates are correct, within
the limits expected from sampling variation.
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5.4 The Harvey dataset

The harv101.df dataset comes originally from Harvey(1960) [9]. It is real data,
average daily gain on 65 Hereford steers. It has been extensively used as a
test example for many years. It is unbalanced in both the fixed effects and the
pedigree families.

We are going to compare estimates of additive genetic and environmen-
tal variance components obtained from these data with two programs, dmm()
and DFREML. The program DFREML was written by Karin Meyer, and does
REML estimates only. We shall also compare with estimates from Harvey’s orig-
inal analysis by the fitting constants method, which is an analysis of variance
method, commonly known as Henderson’s Method-3.

The program DFREML (Meyer(1998) [15]) is written in Fortran. It requires
separate files for pedigree information and data. It also requires some interactive
input which under Unix can be redirected from standard input. DFREML is
actually a package of several programs, and we are going to use the routine
DFUNI, which is for univariate analyses, along with the routine DFPREP, which
recodes the pedigree and data files. We are not going to give all the details, just
the output file from the final run as follows

*** DFREML 3.1.000 ***

Last modified : May 11, 2001

********************************************************************************

PROGRAM " D F U N I"

ESTIMATE VARIANCE COMPONENTS FOR AN INDIVIDUAL ANIMAL MODEL

****************************************************************************KM**

Today is 17/05/2010 -- Time is 15:30

Running on host : "not determined"

-----------------------------------

DESCRIPTION OF DATA SET

-----------------------------------

harv103df.dat with dfuni - no interaction

ANALYSIS FOR TRAIT : 1 adg

Data file used : "

Pedigree file used : "

Data directory : "
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----------------------------------

MODEL OF ANALYSIS & DATA STRUCTURE

----------------------------------

ANALYSIS FITTING MODEL NO. = 1

NO. OF RECORDS = 65

NO. OF ANIMALS = 74

NO. OF TRAITS = 1

1 adg MEAN = 2.41138 SDEV = 0.277809

NO. OF FIXED EFFECTS = 2

... WITH TOTAL NO. OF LEVELS = 6

1 line NO. OF LEVELS = 3

2 agedam NO. OF LEVELS = 3

NO. OF COVARIABLES = 2

... WITH TOTAL NO. OF REGRESSION COEFFICIENTS = 2

1 age ORDER FITTED = 1 MEAN = 176.646 SDEV = 1

4.7048

2 wt ORDER FITTED = 1 MEAN = 416.846 SDEV = 4

1.4149

NO. OF EQUATIONS IN TOTAL = 83

-----------------------------

SUMMARY OF PEDIGREE STRUCTURE

-----------------------------

NO. OF "BASE" ANIMALS = 74

NO. OF ANIMALS WITH RECORDS = 65

... WITH UNKNOWN/PRUNED SIRE = 0

... WITH UNKNOWN/PRUNED DAM = 65

NO. OF SIRES WITH PROGENY RECORDS = 9

NO. OF DAMS WITH PROGENY RECORDS = 0

NO. OF GRAND-SIRES W. PROGENY RECORDS = 0

NO. OF GRAND-DAMS W. PROGENY RECORDS = 0

-------------------------------------

OPTIONS SET IN OPTIMIZATION ROUTINE

-------------------------------------

USE QUADRATIC APPROXIMATION OF LOG L

MAXIMUM NO. OF ITERATES ALLOWED = 500
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-----------------------

CHARACTERISTICS OF RUN :

-----------------------

RUN WITH OPTION = 0

NO. OF NON-ZERO PIVOTS ENCOUNTERED = 81

NO. OF DEGREES OF FREEDOM 1 = 58

NO. OF DEGREES OF FREEDOM 2 = -16

NO. OF ITERATES CARRIED OUT = 0

NO. OF LIKELIHOODS EVALUATED = 11

PARAMETERS : STARTING VALUES AND ESTIMATES =

1 HERITABILITY 0.4000000000 0.7400498769

0 LOG L 34.62023750 34.82083038

-------------------------------------------

ESTIMATES OF VARIANCES & GENETIC PARAMETERS

-------------------------------------------

UNIVARIATE ANALYSIS FOR TRAIT NO. = 1

TOTAL SUMS OF SQUARES (Y’Y) = 4.939375385

SUMS OF SQUARES FOR RESIDUAL (Y’PY) = 1.033240267

LOG DETERMINANT OF COEFFICIENT MATRIX = 47.24592509

LOG DETERMINANT OF NRM = -18.69933471

LOG LIKELIHOOD (WITH NRM) = 34.82083038

ADDITIV-GENETIC (DIRECT) VARIANCE 1 = 0.5071591820E-01

ERROR VARIANCE = 0.1781448737E-01

PHENOTYPIC VARIANCE 1 = 0.6853040557E-01

PHENOTYPIC STANDARD DEVIATION = 0.2618

PHENOTYPIC COEFFICIENT OF VARIATION (%) = 10.8561

HERITABILITY 1 = 0.7400 0

-----------------------------------

APPROXIMATION OF SAMPLING VARIANCES

-----------------------------------

NO. OF LIKELIHOOD VALUES AVAILABLE = 11

QUADRATIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 2

NORM OF GRADIENT VECTOR = 0.2075215705E-02

"RANGE" PARAMETER (IN %) = 10.00000000
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NO. OF POINTS USED = 4

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 0.9746069797

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.740050 0.614281

CONSTANT = 34.82083038

LINEAR COEFFCIENT 1 = 0.20752157E-02

QUADRATIC COEFFICIENT 1 1 = -1.3250627

CUBIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 3

NORM OF GRADIENT VECTOR = 0.1835470165E-05

"RANGE" PARAMETER (IN %) = 10.00000000

NO. OF POINTS USED = 4

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 0.9875165352

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.740050 0.610328

CONSTANT = 34.82083038

LINEAR COEFFCIENT 1 = 0.18354702E-05

QUADRATIC COEFFICIENT 1 1 = -1.3422796

CUBIC COEFFICIENT 1 1 1 = 0.86430366

------------------------------------------

SOLUTION FOR FIXED EFFECTS AND COVARIABLES

------------------------------------------

COVARIABLE NO. 1 age

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

2 level/ORDER 1 1 -0.8556266281E-02 -0.816

4370130E-02

COVARIABLE NO. 2 wt

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

3 level/ORDER 1 1 0.2447670253E-02 0.251

8596921E-02
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FIXED EFFECT NO. 1 line

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

4 LEVEL 1 1 21 2.4019 0.08054226

0.05061950

5 LEVEL 2 2 15 2.5447 0.16935178

0.14488600

6 LEVEL 3 3 29 2.3493 0.11588633

0.08635849

FIXED EFFECT NO. 2 agedam

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

7 LEVEL 1 3 12 2.4575 0.00000000

0.00000000

8 LEVEL 2 4 16 2.4537 -0.06872572

-0.03049424

9 LEVEL 3 5 37 2.3781 -0.17235061

-0.14196724

********************************************************************************

The above output is for an analysis of the trait ’adg’ with fixed effects
fitted for ’line’ and ’agedam’ and covariates ’age’ and ’weight’. There is no
interaction ’line x agedam’ fitted. This differs from the the analysis publised by
Harvey(1960) [9] in which the above interaction is included.

The Harvey(1960) [9] analysis results in variance components for ’sire/line’
and ’residual’ as follows

σ2
S/L = 0.0166

σ2
W = 0.0522

We need to equate these two components to their expectaions in terms of
causal components as follows:

σ2
S/L = 0.25 ∗ σ2

G(Ia)

σ2
W = 0.75 ∗ σ2

G(Ia) + σ2
E(I)

and solve these two equations to obtain

σ2
G(Ia) = 0.0656

σ2
E(I) = 0.0030.
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These sum to σ2
P = 0.0686 . So the Harvey analysis by fitting constants re-

sults in a larger additive genetic variance and a smaller environmental variance,
while their sum, the phenotypic variance is almost identical.

We now wish to analyse these data with dmm(). We start with data prepa-
ration

> library(dmm)

> data(harv101.df)

> str(harv101.df)

’data.frame’: 139 obs. of 9 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Line : int NA NA NA NA NA NA NA NA NA NA ...

$ Agedam: int NA NA NA NA NA NA NA NA NA NA ...

$ Age : num NA NA NA NA NA NA NA NA NA NA ...

$ Weight: num NA NA NA NA NA NA NA NA NA NA ...

$ Adg : num NA NA NA NA NA NA NA NA NA NA ...

$ Sex : num 1 1 1 1 1 1 1 1 1 1 ...

>

> harv101.mdf <- mdf(harv101.df, pedcols=c(1:3), factorcols=c(4:5,9),

ycols=8, sexcode=c("1","2"),keep=T)

Loading required package: Matrix

Loading required package: lattice

Pedigree Id check:

No of rows with Id in original dataframe = 139

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA’s removed = 139

Length of dataframe with base Id’s added = 139

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Return mdf as a normal dataframe:

>

> str(harv101.mdf)

’data.frame’: 139 obs. of 10 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Line : Factor w/ 3 levels "1","2","3": NA NA NA NA NA NA NA NA NA NA ...

$ Agedam: Factor w/ 3 levels "3","4","5": NA NA NA NA NA NA NA NA NA NA ...

$ Age : num NA NA NA NA NA NA NA NA NA NA ...

$ Weight: num NA NA NA NA NA NA NA NA NA NA ...

$ Adg : num NA NA NA NA NA NA NA NA NA NA ...

43



$ Sex : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...

$ Ymat : num [1:139, 1] NA NA NA NA NA NA NA NA NA NA ...

>

Notice that we are using argument keep=T with mdf() to force it to keep the
numeric columns ’Age’ and Weight’, which we wish to use as covariates. We did
not bother with relationship matrices, as we only need the additive relationship
matrix, and dmm() can calculate it ”inline”.

First we will fit the model without interaction used with DFREML above
and we can use the default components (environmental and additive genetic)

> harv101.fit1 <- dmm(harv101.mdf,

Adg ~ 1 + Line + Agedam + Age + Weight, gls=T)

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:

no of fixed effect df (k) = 7

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 7 No of Fixed Effects: 7

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

GLS-b step:

Round = 1 Stopcrit = 0.02352827

Round = 2 Stopcrit = 0.004211696

Iteration completed - count = 2

Convergence achieved

GLS-b step completed successfully:

>

>harv101.fit1$dme.corre

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8755222

VarG(Ia) 0.8755222 1.0000000

>

>summary(harv101.fit1,gls=T)

Call:

summary.dmm(dmmobj = harv101.fit1, gls = T)
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Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.85434 0.50581 1.862946 3.84574

Line2 Adg 0.09427 0.09566 -0.093231 0.28176

Line3 Adg 0.03574 0.07817 -0.117471 0.18895

Agedam4 Adg -0.03049 0.09770 -0.221988 0.16100

Agedam5 Adg -0.14197 0.08708 -0.312642 0.02871

Age Adg -0.00816 0.00289 -0.013820 -0.00251

Weight Adg 0.00252 0.00090 0.000755 0.00428

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0167 0.01550 -0.0136 0.0471

VarG(Ia) Adg:Adg 0.0520 0.01475 0.0230 0.0809

VarP(I) Adg:Adg 0.0687 0.00758 0.0538 0.0836

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.97709 0.499218 1.998620 3.95555

Line2 Adg 0.08906 0.135158 -0.175846 0.35397

Line3 Adg 0.03535 0.112905 -0.185944 0.25664

Agedam4 Adg -0.06694 0.093367 -0.249939 0.11606

Agedam5 Adg -0.17092 0.083863 -0.335292 -0.00655

Age Adg -0.00854 0.002918 -0.014257 -0.00282

Weight Adg 0.00245 0.000869 0.000748 0.00415

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0183 0.01539 -0.0119 0.0484

VarG(Ia) Adg:Adg 0.0498 0.01446 0.0215 0.0781

VarP(I) Adg:Adg 0.0681 0.00756 0.0533 0.0829

>

So both the OLS-b and GLS-b estimates of VarE(I) and VarG(Ia) are close
to the DFREML estimates 0.01781 and 0.05071, but they are not exactly equal.
The OLS-b and GLS-b estimates are also close but not equal, as expected for
an unbalanced dataset. The fixed effects for covariates ’Age’ and ’Weight’ also
agree with DFREML, but the constants fitted for ’Line’ and ’Agedam’ differ
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because DFREML uses a different set of contrasts to the default used in R.
We now do another fit with the ’Line x Agedam’ interaction included

> harv101.fit2 <- dmm(harv101.mdf,

Adg ~ 1 + Line + Agedam + Line:Agedam + Age + Weight, gls=T)

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:

no of fixed effect df (k) = 11

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 11 No of Fixed Effects: 11

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

GLS-b step:

Round = 1 Stopcrit = 0.07444493

Round = 2 Stopcrit = 0.01458684

Round = 3 Stopcrit = 0.00358769

Iteration completed - count = 3

Convergence achieved

GLS-b step completed successfully:

>

> summary(harv101.fit2, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.72290 0.503339 1.73636 3.70945

Line2 Adg 0.14911 0.205286 -0.25325 0.55147

Line3 Adg 0.11449 0.186059 -0.25018 0.47917

Agedam4 Adg -0.04942 0.189274 -0.42040 0.32156

Agedam5 Adg -0.03449 0.166360 -0.36056 0.29157

Age Adg -0.00709 0.002986 -0.01295 -0.00124

Weight Adg 0.00224 0.000903 0.00047 0.00401

Line2:Agedam4 Adg -0.09554 0.270166 -0.62507 0.43399

Line3:Agedam4 Adg 0.11616 0.239031 -0.35234 0.58466

Line2:Agedam5 Adg -0.02430 0.240672 -0.49602 0.44741

Line3:Agedam5 Adg -0.20179 0.206156 -0.60586 0.20227
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Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.00293 0.0147 -0.0259 0.0317

VarG(Ia) Adg:Adg 0.06472 0.0139 0.0374 0.0920

VarP(I) Adg:Adg 0.06764 0.0071 0.0537 0.0816

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.87126 0.489738 1.911370 3.83114

Line2 Adg 0.21954 0.222333 -0.216228 0.65532

Line3 Adg 0.24867 0.199647 -0.142637 0.63998

Agedam4 Adg 0.01700 0.175097 -0.326191 0.36019

Agedam5 Adg 0.04031 0.157460 -0.268317 0.34893

Age Adg -0.00779 0.002976 -0.013621 -0.00195

Weight Adg 0.00204 0.000857 0.000363 0.00372

Line2:Agedam4 Adg -0.18609 0.248449 -0.673049 0.30087

Line3:Agedam4 Adg -0.05271 0.222334 -0.488489 0.38306

Line2:Agedam5 Adg -0.12788 0.223753 -0.566433 0.31068

Line3:Agedam5 Adg -0.36253 0.194124 -0.743015 0.01795

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.00191 0.01461 -0.0267 0.0305

VarG(Ia) Adg:Adg 0.06593 0.01352 0.0394 0.0924

VarP(I) Adg:Adg 0.06784 0.00713 0.0539 0.0818

>

So both the OLS-b and GLS-b estimates of VarE(I) and VarG(Ia) are now
very close to those from Harvey’s fitting constants analysis 0.0030 and 0.0656.
The fixed effects differ from Harvey, and this is not surprising as Harvey’s model
includes a ’Sire’ effect. It is also not surprising that the variance components
are now a little different from the DFREML estimates, as the fixed effects model
differs.

What we can conclude is that dmm() has produced reasonable estimates of
variance components from an unbalanced dataset, and that they are close to
REML estimates in this case. It is also clear that OLS-b and GLS-b estimates
will differ for an unbalanced dataset; we do not expect MINQUE and bias-
corrected-ML to be the same.
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5.5 The DFREML dataset

The dataset tstmo1.df is an example dataset from program DFREML (Meyer(1998) [15]).
Inside DFREML it is known as ’Example 1’. It is a univariate dataset with 282
individuals in a 3 generation pedigree with full-sib families.

Karin Meyer gives the following description of these data:

.... The test data given is that used by Meyer(1989) to illustrate
univariate REML estimation via a derivtive-free algorithm. They
are simulated records for a trait with a phenotypic variance of 100,
direct heritability of 0.40, maternal heritability of 0.20, maternal-
direct covariance (divided by 100) of -0.05, and a ”c-squared” effect
of 0.15. Data were generated for 2 generations of animals with a
heirarchical full-sib family structure, yielding a total of 282 records
and 306 animals in the analysis with generations as the only fixed
effect.

We are going to use the program DFUNI from the DFREML package to
estimate environmental and additive genetic variance components, after fitting
a fixed effect called ’Gen’ which is the generation number of each individual.
We will not give the runing details. The final output including estimates is as
follows

*** DFREML 3.1.000 ***

Last modified : May 11, 2001

********************************************************************************

PROGRAM " D F U N I"

ESTIMATE VARIANCE COMPONENTS FOR AN INDIVIDUAL ANIMAL MODEL

****************************************************************************KM**

Today is 25/05/2010 -- Time is 18:59

Running on host : "not determined"

-----------------------------------

DESCRIPTION OF DATA SET

-----------------------------------

Example 1 - tstmo1.d with dfuni

ANALYSIS FOR TRAIT : 1 weight

Data file used : "
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Pedigree file used : "

Data directory : "

----------------------------------

MODEL OF ANALYSIS & DATA STRUCTURE

----------------------------------

ANALYSIS FITTING MODEL NO. = 1

NO. OF RECORDS = 282

NO. OF ANIMALS = 306

NO. OF TRAITS = 1

1 weight MEAN = 229.787 SDEV = 13.4939

NO. OF FIXED EFFECTS = 1

... WITH TOTAL NO. OF LEVELS = 2

1 generation NO. OF LEVELS = 2

NO. OF COVARIABLES = 0

NO. OF EQUATIONS IN TOTAL = 309

-----------------------------

SUMMARY OF PEDIGREE STRUCTURE

-----------------------------

NO. OF "BASE" ANIMALS = 24

NO. OF ANIMALS WITH RECORDS = 282

... WITH UNKNOWN/PRUNED SIRE = 0

... WITH UNKNOWN/PRUNED DAM = 0

NO. OF SIRES WITH PROGENY RECORDS = 12

NO. OF DAMS WITH PROGENY RECORDS = 36

NO. OF GRAND-SIRES W. PROGENY RECORDS = 10

NO. OF GRAND-DAMS W. PROGENY RECORDS = 18

-------------------------------------

OPTIONS SET IN OPTIMIZATION ROUTINE

-------------------------------------

USE QUADRATIC APPROXIMATION OF LOG L

MAXIMUM NO. OF ITERATES ALLOWED = 500

-----------------------

CHARACTERISTICS OF RUN :

-----------------------
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RUN WITH OPTION = 0

NO. OF NON-ZERO PIVOTS ENCOUNTERED = 308

NO. OF DEGREES OF FREEDOM 1 = 280

NO. OF DEGREES OF FREEDOM 2 = -26

NO. OF ITERATES CARRIED OUT = 0

NO. OF LIKELIHOODS EVALUATED = 8

PARAMETERS : STARTING VALUES AND ESTIMATES =

1 HERITABILITY 0.3000000000 0.4633476480

0 LOG L -760.7423178 -759.5034413

-------------------------------------------

ESTIMATES OF VARIANCES & GENETIC PARAMETERS

-------------------------------------------

UNIVARIATE ANALYSIS FOR TRAIT NO. = 1

TOTAL SUMS OF SQUARES (Y’Y) = 51165.23404

SUMS OF SQUARES FOR RESIDUAL (Y’PY) = 14262.75854

LOG DETERMINANT OF COEFFICIENT MATRIX = 378.8445786

LOG DETERMINANT OF NRM = -195.4675049

LOG LIKELIHOOD (WITH NRM) = -759.5034413

ADDITIV-GENETIC (DIRECT) VARIANCE 1 = 43.98042526

ERROR VARIANCE = 50.93842336

PHENOTYPIC VARIANCE 1 = 94.91884862

PHENOTYPIC STANDARD DEVIATION = 9.7426

PHENOTYPIC COEFFICIENT OF VARIATION (%) = 4.2398

HERITABILITY 1 = 0.4633 0

-----------------------------------

APPROXIMATION OF SAMPLING VARIANCES

-----------------------------------

NO. OF LIKELIHOOD VALUES AVAILABLE = 8

QUADRATIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 2

NORM OF GRADIENT VECTOR = 0.1407278372E-03

"RANGE" PARAMETER (IN %) = 10.00000000

NO. OF POINTS USED = 3

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 4.421234753
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PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.463348 0.109633

CONSTANT = -759.5034413

LINEAR COEFFCIENT 1 = 0.14072784E-03

QUADRATIC COEFFICIENT 1 1 = -41.599476

CUBIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 3

NORM OF GRADIENT VECTOR = 0.7416302902E-02

"RANGE" PARAMETER (IN %) = 30.00000000

NO. OF POINTS USED = 5

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 4.429672096

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.463348 0.109171

CONSTANT = -759.5034413

LINEAR COEFFCIENT 1 = -0.74163029E-02

QUADRATIC COEFFICIENT 1 1 = -41.951950

CUBIC COEFFICIENT 1 1 1 = 16.196033

------------------------------------------

SOLUTION FOR FIXED EFFECTS AND COVARIABLES

------------------------------------------

FIXED EFFECT NO. 1 generation

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

2 LEVEL 1 1 138 220.4638 -9.46612491

-9.32345865

3 LEVEL 2 2 144 238.7222 6.90686757

8.93499546

********************************************************************************

So the phenotypic variance of 94.9 is not exactly the population value of 100
and the additive genetic variance of 43.9 is not exactly the population value
of 40. This is a small sample for simulated data and the deviations are to be
expected.

We now want to conduct the same analysis with dmm(). First prepare the
data. This time we will do the relationship matrices during preparation and
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append them to the dataframe.

> library(dmm)

> data(tstmo1.df)

> str(tstmo1.df)

’data.frame’: 282 obs. of 6 variables:

$ Id : int 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 ...

$ SId : int 1 1 1 1 1 1 1 1 1 1 ...

$ DId : int 2 2 2 2 2 2 2 2 3 3 ...

$ Sex : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...

$ Gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ Weight: num 220 212 221 207 218 201 214 229 214 198 ...

>

> tstmo1.mdf <- mdf(tstmo1.df, pedcols=c(1:3), factorcols=c(4:5), ycols=6,

sexcode=c("1","2"), relmat=c("E","A"))

Pedigree Id check:

No of rows with Id in original dataframe = 282

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA’s removed = 282

No of SId’s with no matching Id = 6

No of DId’s with no matching Id = 18

Length of dataframe with base Id’s added = 306

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

>

>str(tstmo1.mdf)

List of 2

$ df :’data.frame’: 306 obs. of 6 variables:

..$ Id : int [1:306] 1 2 3 4 5 6 7 8 9 10 ...

..$ SId : int [1:306] NA NA NA NA NA NA NA NA NA NA ...

..$ DId : int [1:306] NA NA NA NA NA NA NA NA NA NA ...

..$ Sex : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 2 2 2 2 ...

..$ Gen : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

..$ Ymat: num [1:306, 1] NA NA NA NA NA NA NA NA NA NA ...

$ rel:List of 8

...

>

Now we can do the dmm fit of the same simple model as used for DFREML
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> tstmo1.fit1 <- dmm(tstmo1.mdf, Ymat ~ 1 + Gen,

components=c("VarE(I)","VarG(Ia)"), gls=T)

Dyadic mixed model fit for datafile: tstmo1.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 306

no of individuals with data and X codes (n) = 282

Rank of X: 2 No of Fixed Effects: 2

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

GLS-b step:

Round = 1 Stopcrit = 1.01928

Round = 2 Stopcrit = 0.2283226

Round = 3 Stopcrit = 0.04124407

Round = 4 Stopcrit = 0.007648931

Iteration completed - count = 4

Convergence achieved

GLS-b step completed successfully:

>

>tstmo1.fit1$dme.corre

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.4158424

VarG(Ia) 0.4158424 1.0000000

>

> summary(tstmo1.fit1,gls=T)

Call:

summary.dmm(dmmobj = tstmo1.fit1, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.5 0.846 218.8 222.1

Gen2 Ymat 18.3 1.184 15.9 20.6

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

53



VarE(I) Ymat:Ymat 32.7 6.41 20.1 45.3

VarG(Ia) Ymat:Ymat 70.0 2.82 64.5 75.6

VarP(I) Ymat:Ymat 102.7 5.83 91.3 114.2

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.3 2.21 216.0 224.6

Gen2 Ymat 15.8 1.30 13.3 18.4

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 33.6 6.54 20.8 46.4

VarG(Ia) Ymat:Ymat 78.4 2.86 72.8 84.0

VarP(I) Ymat:Ymat 112.0 5.91 100.4 123.6

>

So the OLS-b and GLS-b estimates are not identical (as expected for an
unbalanced dataset) but of more concern is that they differ substantially from
the DFREML estimates. This requires some consideration. Firstly, they are not
expected to agree exactly because dmm() estimates are not REML equivalent.
Secondly, the ’Gen’ fixed effect in these data is not independent of the pedigree;
generation 1 are parents and generation 2 are their offspring. So there is a
parent/offspring correlation between generations 1 and 2, and this means that
the levels of the ’Gen’ fixed effect are not independent. So the analyses violate
one of the basic assumptions of the model, both for DFREML and dmm().
Correlated levels of an effect is as serious a problem as correlated residuals.
It would be expected that DFREML and dmm() would be biassed in different
ways in such a case. We should conclude that neither program is ’correct’ in
this case.

There remains the question of whether we can match the stated population
parameters for this dataset, notwithstanding the problem with the ’Gen’ effect.
This requires another run with more variance components fitted, as follows

> tstmo1.fit2 <- dmm(tstmo1.mdf, Ymat ~ 1 + Gen,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)","CovG(Ia,Ma)",

"CovG(Ma,Ia)"), gls=T)

...

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:
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GLS-b step:

Fixed effects iterated -> GLS b

Partitioned variance components from DME after GLS b

Round = 1 Stopcrit = 7.486482

Round = 2 Stopcrit = 5.989145

Round = 3 Stopcrit = 6.283543

...

Round = 200 Stopcrit = 6.234484

Iteration completed - count = 200

Failed to converge

GLS-b step abandoned:

>

>tstmo1.fit2$dme.corre

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovG(Ia,Ma) CovG(Ma,Ia)

VarE(I) 1.0000000 0.4158424 0.3457454 0.2933538 0.2209086 0.2209086

VarG(Ia) 0.4158424 1.0000000 0.6412865 0.7312091 0.7658688 0.7658688

VarE(M) 0.3457454 0.6412865 1.0000000 0.8488271 0.6383430 0.6383430

VarG(Ma) 0.2933538 0.7312091 0.8488271 1.0000000 0.8376605 0.8376605

CovG(Ia,Ma) 0.2209086 0.7658688 0.6383430 0.8376605 1.0000000 0.7037866

CovG(Ma,Ia) 0.2209086 0.7658688 0.6383430 0.8376605 0.7037866 1.0000000

>

So the GLS-b iteration fails to converge, another sign of problems with the
model or dataset. The correlations of these components are rather high, but we
can still have a look at the OLS-b estimates

> summary(tstmo1.fit2)

Call:

summary.dmm(dmmobj = tstmo1.fit2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.5 0.846 218.8 222.1

Gen2 Ymat 18.3 1.184 15.9 20.6

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 2.37e+01 6.77 10.47 37.00

VarG(Ia) Ymat:Ymat 7.95e+01 5.36 68.94 89.96

VarE(M) Ymat:Ymat 1.00e-09 4.58 -8.97 8.97

VarG(Ma) Ymat:Ymat 3.41e+01 6.83 20.76 47.53

CovG(Ia,Ma) Ymat:Ymat -2.50e+01 6.23 -37.26 -12.82

CovG(Ma,Ia) Ymat:Ymat -2.50e+01 6.23 -37.26 -12.82
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VarP(I) Ymat:Ymat 8.72e+01 7.63 72.28 102.20

>

The population values for these data are VarE(I) = 35, VarG(Ia) = 40,
VarE(M) = 15, VarG(Ma) = 20, and CovG(Ia,Ma) = -5. I am assuming that
what Karin Meyer calls a ’c-squared’ effect’ is actually VarE(M). Only for two
components do the confidence limits include the population value. It is a small
sample and there are problems with the model noted above.

What we can conclude from this somewhat unsatisfactory exposition, is that
dmm() will not always agree with REML, and that we should avoid trying to
use a pathological dataset to compare results from different programs. A larger
sample would be desirable for simulated data.
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6 Mathematical methods

6.1 Genetic models and definition of causal components

An observation or a measurement of an individual is known as the individual’s
phenotypic value (P (I)). P (I) can be multivariate. It is usually expressed as
a deviation from a population mean and may also be adjusted for fixed effects
other than the mean.

6.1.1 Individual effects

There is a conceptual division of individual phenotypic value into individual
genetic value (G(I)) and individual environmental deviations (E(I)), and these
values are additive so that for any individual

P (I) = G(I) +E(I) (1)

although this partitioning is generally not achievable in practice.
What can be done is to estimate some specific components of G(I) and E(I)

and assume that those not estimated are zero, so that these sum to G(I) and
E(I) respectively, which in turn sum to P (I) as in equation 1.

Estimable components of the G(I) and E(I) values are defined in Table 1.
A full explanation of gene effects on individual phenotype can be found in in-
troductory texts, for example Falconer(1961) [7] , Kempthorne(1957) [11], or
Lynch and Walsh(1998) [13].

All the components of value in Table 1 are independent and additive, so we
can write, for example

G(I) = G(Ia) +G(Id)

and
P (I) = G(Ia) +G(Id) +E(I)

if we postulate no epistatic effects and no cohort environment.

6.1.2 Maternal effects

Equation 1 is not the only conceptual division of individual phenotypic value.
In mammals, the genotype and the environment of the mother can influence
an individual’s phenotype, in addition to its own genotype and environment.
Willham(1963) [26] developed the following partitioning

P (I) = G(I) +E(I) +G(M) +E(M) (2)

Here we can estimate components of G(I) and E(I), as in Table 1, but we
can also estimate components of G(M) and E(M), as defined in Table 2.

All the components of value in Table 2 are independent and additive, so we
can write, for example

57



Table 1: Definition of estimable causal components of individual genetic value
and individual environmental value for autosomal loci

Component Name Meaning
G(Ia) additive genetic

effect or breeding
value

sum of average effects on phenotype of
an individual’s genes

G(Id) dominance effect sum of deviations from average effect
due to non-additive combination of gene
effects within a locus

G(Ia : a) additive x additive
epistatic effect

non-additive combination of additive
gene effects across pairs of loci

G(Ia : d) additive x dom-
inance epistatic
effect

non-additive combination of additive
and dominance gene effects across pairs
of loci

G(Id : d) dominance x dom-
inance epistatic ef-
fect

non-additive combination of dominance
gene effects across pairs of loci

E(I) environmental devi-
ation

unexplained deviation of individual phe-
notype (assumed environmental, devel-
opmental, or measurement error)

E(C) cohort environmen-
tal effect

environmental deviation due to individ-
ual belonging to a specific cohort
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Table 2: Definition of estimable causal components of maternal genetic value
and maternal environmental value for autosomal loci

Component Name Meaning
G(Ma) maternal additive

genetic effect or
breeding value

sum of average effects on phenotype of
an individual’s dam’s genes

G(Md) maternal domi-
nance effect

sum of deviations from average effect
due to non-additive combination of gene
effects within a dam’s locus

G(Ma : a) maternal additive
x additive epistatic
effect

non-additive combination of additive
gene effects across pairs of dam’s loci

G(Ma : d) maternal additive x
dominance epistatic
effect

non-additive combination of additive
and dominance gene effects across pairs
of dam’s loci

G(Md : d) matermnal domi-
nance x dominance
epistatic effect

non-additive combination of dominance
gene effects across pairs of dam’s loci

E(M) maternal environ-
mental deviation

unexplained deviation of individual phe-
notype (assumed maternal environmen-
tal, or maternal developmental)

E(M&C) within cohort ma-
ternal environmen-
tal deviation

unexplained deviation for individuals
with same dam and same cohort

E(M&!C) cross cohort ma-
ternal environmen-
tal deviation

unexplained deviation for individuals
with same dam and different cohort
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Table 3: Definition of estimable causal components of individual and maternal
genetic value for sex-linked loci

Component Name Meaning
Gs(Ia) sex-linked additive

genetic effect or
breeding value

sum of average effects on phenotype of
an individual’s sex-linked genes

Gs(Ma) sex-linked maternal
additive genetic
effect or breeding
value

sum of average effects on phenotype of
an individual’s dam’s sex-linked genes

G(M) = G(Ma) +G(Ma : a)

if we postulate no maternal dominance effect and only maternal additive
x additive epistasis. We do not define a P (M). Maternal effects are part of
the individual’s phenotype. The dam’s own phenotype is something entirely
different.

The two effects E(M&C) and E(M&!C) are a partitioning of E(M) along
the lines suggested by Bijma(2006) [3].

6.1.3 Individual and maternal effects due to sex-linked genes

All of the individual and maternal genetic effects defined in Table 1 and Table 2
are from genes at autosomal loci. For genes located on the sex chromosome,
effects are defined in the same way, but require different procedures for their
estimation. Table 3 defines the individual and maternal additive sex-linked
effects used by the current version of dmm(). It is possible to define dominance
and epistatic sex-linked effects, but these are not currently used by dmm(). It is
also possible for sex-linked genes to interact epistatically with autosomal genes.

The components defined in Table 3 are additive, but are not independent.
In general, individual effects are not independent from maternal effects. We can
write, for example

G(M) = G(Ma) +Gs(Ma)

if we postulate only additive genetic maternal effects that are both sex-linked
and autosomal, or again

G(I) = G(Ia) +Gs(Ia)

for only individual additive genetic effects.
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6.1.4 Estimation of effects

There are techniques (commonly known as BLUP) for estimating any of the
above genetic effects for each individual in a population, given adequate data,
pedigree information, and estimates of genetic parameters. These techniques
are not the province of dmm(). dmm() is a procedure for estimation of ge-
netic parameters. Genetic parameters depend on the variances (and sometimes
covariances) of effects. So we proceed to these.

6.1.5 Variances of effects

For each of the effects defined in Tables 1, 2 and 3, there is a sample variance,
and a population variance about which we might wish to make inferences. The
statistical methods used by dmm() to estimate population variance components
are covered in section 6.2. Here we will just focus on the genetic aspects.

The dyadic model (equation 13) is a linear model with the variance com-
ponents Γ as unknowns and the model matrix W defining the relationship of
the dyadic observations Ψ to the unknown variance components. Each variance
component corresponds to a column of model coefficients in W . It is the set-
ting up of the column of coefficients for each variance component that requires
a knowledge of genetics.

For any dyad (yi, yj) the expected value of its covariance (yi−Xiα)(yj−Xjα)′

is given by ∑
c

(rc)i,jγc (3)

which is actually the sum of one row of W times one column of Γ. So one
element of one column of W is (rc)i,j ; but not quite, there are statistical con-
siderations requiring introduction of an M matrix, and we also need a Z matrix
to map individuals observed to individuals in the pedigree (see equations 9).

The quantity (rc)i,j is a relationship coefficient between individuals i and
j. The type of relationship coefficient required depends on the variance com-
ponent γc. For example if γc is individual additive genetic variance VarG(Ia)
the relationship coefficient required is the additive genetic relationship between
individuals i and j.

For the original definition of relationship coefficients see Wright(1922) [28].
For a modern account see one of the texts, Falconer(1961) [7] , Kempthorne(1957) [11],
or Lynch and Walsh(1998) [13]. A matrix of relationship coefficients for all pairs
of individuals in a pedigree is termed a relationship matrix. Relationship co-
efficients have a dual definition and interpretation, as a probability of identity
by descent of certain paires of genes, and as a correlation between the genes
present in gametes from two individuals. It is the correlation interpretation
which enables us to write (rc)i,jγc in equation 3. Expressions for what is com-
monly termed the Covariance between Relatives treat the relationship coefficient
as a correlation. Equation 3 is actually an example of an expression for the co-
variance between relatives for a given set of components γc. For calculation of
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Table 4: Calculation of W matrix column elements for variance components
defined as the variance of the effects documented in Tables 1, 2 and 3

Component Column of W matrix
VarG(Ia) MZIRAZ

′
IM

VarG(Id) MZIRDZ
′
IM

VarG(Ia:a) MZIRAAZ
′
IM

Varg(Ia:d) MZIRADZ
′
IM

Varg(Id:d) MZIRDDZ
′
IM

VarE(I) MZIREZ
′
IM

VarE(C) MZCZ
′
CM

VarG(Ma) MZMRAZ
′
MM

VarG(Md) MZMRDZ
′
MM

VarG(Ma:a) MZMRAAZ
′
MM

VarG(Ma:d) MZMRADZ
′
MM

VarG(Md:d) MZMRDDZ
′
MM

VarE(M) MZMZ
′
MM

VarE(M&C) M((ZMZ
′
M )&(ZCZ

′
C))M

VarE(M&!C) M((ZMZ
′
M )&!(ZCZ

′
C))M

VarGs(Ia) MZIRSZ
′
IM

VarGs(Ma) MZMRSZ
′
MM

relationship matrices from pedigrees see Wolak(2012) [27]. The dmm() package
uses Matthew Wolak’s excellent package nadiv to compute relationship matrices.

Given the required relationship matrices, it is a simple matter to setup the
W matrix for the dyadic model equations 13. The calculation of the column
elements of W for each type of variance component is documented in Table 4.

The component names in column 1 of Table 4 are in the form used by dmm()
to label output; their equivalent in the more familiar subscripted notation (eg
σ2
aI

for the first item) should be obvious. The formulae in column 2 of Table 4
produce matrices each of which must be vectorized into a column of W . The
symbols in column 2 of Table 4 are defined as follows

ZI Matrix mapping individuals with observations to individuals in the pedigree

ZM Matrix mapping individuals with observations to their dams in the pedigree

ZC Matrix mapping individuals with observations to cohorts

RA Matrix of additive relationship coefficients

RD Matrix of dominance relationship coefficients

RAA Matrix of additive x additive epistatic relationship coefficients

RAD Matrix of additive x dominance epistatic relationship coefficients

RDD Matrix of dominance x dominance epistatic relationship coefficients
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RS Matrix of sex-linked additive relationship coefficients

RE Matrix of environmental correlations for individuals

M Matrix which transforms observations to residuals, see section 6.2.2

When dmm() labels components as variances, as in Table 4, it means either
single-trait-variances or same-effect-cross-trait covariances. This convention ex-
tends thruout the dmm() output, for example genetic parameters are labelled
by the component from which they derive.

6.1.6 Covariances of effects

What we mean by covariances of effects is a covariance between two different
effects, commonly called a cross-effect-covariance. There can be single-trait-
cross-effect-covariances and cross-trait-cross-effect-covariances.

Given the effects defined in Tables 1, 2 and 3, the only covariances which
have non-zero expectation are those between an individual effect and a maternal
effect of the same type (eg CovG(Ia,Ma)). This is because additive, dominance,
and epistatic effects are defined in such a way as to be independent.

The columns of W for cross-effect-covariances depend on relationship matri-
ces in the same way as the variances of effects, and are defined (for all non-zero
covariances) in Table 5.

Notice that in Table 5 the cross-effect-covariances occur in symmetric pairs
(eg CovG(Ia,Ma) and CovG(Ma.Ia)). These pairs are identical for a single-trait-
cross-effect-covariance, but usually differ for a cross-trait-cross-effect-covariance.
Users of dmm() are therefore encouraged to put covariances into the dyadic
model in symmetric pairs. This practice also ensures that components sum to
phenotypic (co)variance.

When dmm() labels components as covariances, as in Table 5, it means
either single-trait-cross-effect-covariances or cross-trait-cross-effect-covariances.
This convention extends thruout the labelling of dmm() output, for example
genetic correlations are labelled by the covariance component from which they
derive.
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Table 5: Calculation of W matrix column elements for covariance components
defined as the covariance of the effects documented in Tables 1, 2 and 3

Component Column of W matrix
CovG(Ia,Ma) MZIRAZ

′
MM

CovG(Ma,Ia) MZMRAZ
′
IM

CovG(Id,Md) MZIRDZ
′
MM

CovG(Md,Id) MZMRDZ
′
IM

CovG(Ia:a,Ma:a) MZIRAAZ
′
MM

CovG(Ma:a,Ia:a) MZMRAAZ
′
IM

CovG(Ia:d,Ma:d MZIRADZ
′
MM

CovG(Ma:d,Ia:d MZMRADZ
′
IM

Covg(Id:d,Md:d) MZIRDDZ
′
MM

Covg(Md:d,Id:d) MZMRDDZ
′
IM

CovGs(Ia,Ma) MZIRSZ
′
MM

CovGs(Ma,Ia) MZMRSZ
′
IM

CovE(I,M) MZIREZ
′
MM

CovE(M,I) MZMREZ
′
IM

CovE(I,M&!C) M((ZIZ
′
M )&!(ZCZ

′
C))M

CovE(M&!C,I) M((ZMZ
′
I)&!(ZCZ

′
C))M

CovE(I,M&C) M((ZIZ
′
M )&(ZCZ

′
C))M

CovE(M&C,I) M((ZMZ
′
I)&(ZCZ

′
C))M
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6.2 Statistical models and variance component estimation

The models used by dmm() are heirarchical. At the first level we model ob-
servations on the ith individual or monad (yi). At the second level we model
observations on pairs of individuals or dyads (yi, yj). The first level models fixed
effects and puts everything else into residual. The second level models residual
(co)variances from the first level and breaks them into causal components cor-
responding to nominated genetic and environmental effects. We call the first
level model a monadic model and the second level model a dyadic model. Some
workers call the second level model a derived model.

6.2.1 First level - Monadic model

If Y is an n × l matrix of observations on n individuals with l traits observed
on each, we write the mixed model

Y = Xα+ Zγ + ε (4)

where

X is a design matrix (n× k)

α is a matrix of fixed effects (k × l) for k fixed effects and l traits

Z is an incidence matrix mapping n individuals with observations to m indi-
viduals in a pedigree

γ is a matrix of random effects associated with individuals in the pedigree
(m× l)

ε is a matrix of residuals (n× l)

We proceed by contracting equation 4 to

Y = Xα+R (5)

where
R = Zγ + ε

and we have E(R) = 0 and Cov(R) =E(RR′) =E(Zγγ′Z + εε′)
We can estimate α from equation 5 either by OLS ignoring the fact that the

elements of R are correlated using α̂OLS = (X′X)−1X′y , or by GLS using
estimates of γγ′ and εε′ to approximate Cov(R)

Before we can use GLS we need to get some estimates of γγ′ and εε′. We
do this at the second level .
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6.2.2 Second level - Dyadic model

We rewrite equation 4 as

Y −Xα = Zγ + ε = R (6)

but we now wish to model dyads (i, j). The defining observation for a dyad
is the covariance between the two individuals (i, j), which turns out to be just
the product of the observations on the two individuals, appropriately adjusted
for mean and fixed effects. So we model the dyadic observations as

(Y −Xα)⊗ (Y −Xα) = (Zγ + ε)⊗ (Zγ + ε) + δ (7)

where δ is a matrix of dyadic residuals. If we take expectations from equa-
tion 7 we get a set of equations

E((Y −Xα)⊗ (Y −Xα)) = ZE(γγ′)Z′+E(εε′) (8)

which is a set of linear equations in E(γγ′) and E(εε′)). Typically, in the
univariate case, E(εε′)) will be Iσ2

E where σ2
E is the (unknown) variance of

residuals and E(γγ′) might be RAσ
2
Ia where RA is an additive genetic rela-

tionship matrix and σ2
Ia is the (unknown) individual additive genetic variance.

In the multivariate case, E(εε′)) will be I ⊗ ΣE where ΣE is the (unknown) co-
variance matrix of residuals for multiple traits, and E(γγ′) might beRA ⊗ ΣIa

where RA is an additive genetic relationship matrix and ΣIa is the (unknown)
additive genetic covariance matrix for multiple traits.

If we substitute α̂ (from the monadic model) for α in equations 8, we need
to allow for the estimate α̂ not being exactly the true α, and we do this by
defining a matrix M such that

Y −Xα̂ = MY

We can computeM as (I −H) whereH is the ’hat’ matrix from estimating
α̂ from model 5. In the OLS case H is defined as H = X(X′X)−X′ and can
be obtained from the QR decomosition of X. In the GLS case M and H are
more complex and are discussed later.

We can then write equations 8 as

(MY )⊗ (MY ) =V ec(MZE(γγ′)Z′M ′)+V ec(ME(εε′)M ′) (9)

Equations 9 are like 8, that is linear in E(γγ′) and E(εε′)), but unlike 8
they can be solved for E(γγ′) and E(εε′)) because we know M and Z.

We can break E(γγ′) and E(εε′) into a correlation matrix and a (co)variance
as in equation 3. This leads to a rewrite of equation 9 as

(MY )⊗ (MY ) =V ec(MZIRIaZ
′
IM
′)⊗ ΣIa+V ec(MIM ′)⊗ ΣE

(10)
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so we now have the two unknown components ΣIa and ΣE separated. We
can generalize to any number of components (v) by writing

(MY )⊗ (MY ) =

v∑
c=1

V ec(MZcRcZ
′
cM
′)⊗ Σc (11)

The term (MY )⊗ (MY ) sets up a matrix Ψ of order n2 × l2 with each
column consisting of all the squares and products of adjusted Y values, for one
traitpair. There is a column for each pair of traits so we model same-trait-dyadic
covariances and cross-trait-dyadic covariances.

The terms V ec(MZcRcZ
′
cM
′)⊗Σc can be setup as an n2× v matrix of

coefficients W (v being the number of components), and a v × l2 matrix Γ of
unknowns, collapsing Σc into Γ, so we can write

Ψ = WΓ (12)

as equations 10 or 11 in matrix form, which we call the dyadic model
equations (DME’s) , or

Ψ = WΓ + ∆ (13)

as the corresponding dyadic model, ∆ being the dyadic residuals.
Equations 12 or model 13 are quite general as W and Γ can encompass

any set of (co)variance components Σc (not just E(γγ′) and E(εε′) ), each
component having a column of coefficients in W and a row of unknowns in Γ.

The actual method of setting up W for these equations for each of the
components available in dmm() is documented in section 6.1.

Equations 12 or model 13 show that (co)variance component estimation
reduces to a linear regression problem with the causal components as the es-
timated regression coefficients. We can therefore solve equations 12 by OLS,
which amounts to a least squares fitting of the dyadic model 13 to the data
embodied in all the dyadic covariances in Ψ.

This procedure is similar to that proposed by Pukelsheim(1976) [20], which
he termed a dispersion-mean model, and it it a happy coincidence that our pack-
age name dmm is also an acronym for Pukelsheim’s terminology. Searle(1979) [21]
shows that if α̂ (or M) are obtained by OLS, and equations 12 solved by OLS,
then the resulting(co)variance component estimates are equivalent to MINQUE
estimates.

6.2.3 First level - second level iteration

We can now go back to the monadic model at level 1 of the heirarchy, substi-
tuting for E(RR′) in model 5 using the estimates of Γ obtained from fitting
model 13 as follows

Ω̂ =E(RR′) =
∑

i ZiRiZ
′
iσ

2
i
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where Riis the relevant relationship matrix for the ith component ( or I in
the case of σ2

E).
Having an estimate of Ω (the covariance matrix of residuals R ) we can

estimate α using GLS by

ˆαGLS = (X′Ω−1X)−1X′Ω−1Y

using Ω̂ in place of the unknown Ω.
Given ˆαGLS , we return to level 2 and refine the estimate of Γ by re-fitting

model 13, but we need to obtain a new M matrix (say MGLS ) which differs
from the M in equation 9 because using GLS has effectively changed X′X into
X′Ω−1X. The equation for MGLS is

MGLS = I −HGLS = I −X(X′V −1X)−X′V −1

where
HGLS = HOLSV HOLSV

−1

and given this we can reconstruct equations 12 and re-estimate Γ.
This iteration can be repeated until convergence of estimates is achieved.

Convergence is defined as achieving a state where the current round of esti-
mates of ˆαGLS and Γ̂ differ by only a small amount from the previous round.
Convergence may fail to occur; this indicates that the model is a poor represen-
tation of the data. Convergence is normally rapid (ie in less than 10 rounds).
It is necessary to constrain the matrix Ω̂ to be positive definite, and this is
achieved by constraining all component matrices (Γ̂ ) to be positive definite.

Anderson(1984) [1] has shown that if α̂ ( or M ) are obtained by GLS, and
then equations 12 solved by OLS, then the resulting (co)variance components
are equivalent to ML estimates. However Anderson’s derivation did not include
the M matrix, ie he used equation 7 rather than equation 9. In dmm() we use
equation 9 and this effectively corrects the ML estimates of Γ for bias. That
is it allows for the degrees of freedom used in fitting α̂GLS at the first level,
before fitting Γ̂ at the second level. We therefore call the GLS-b estimates from
dmm() ’bias-corrected-ML estimates’.

It is, in theory, possible to obtain REML estimates from dmm(). Searle, et al
(1992) [22] show that if we use α̂GLS and then solve the resulting equations 12
by GLS instead of OLS, the resulting estimates of Γ are equivalent to REML
or I-MINQUE. However, using GLS on equations 12 requires the covariance
matrix of the dyadic residuals ∆, and this is an enormous array of the order
of the fourth power of the number of individuals, so it is not computationally
feasible to attempt REML estimates using the dmm approach.

One can show that the GLS-b estimates are bias corrected very simply. Make
a simple dataset of 3 observations

> y <- c(1,2,3)

> Id <- y

> y.df <- data.frame(cbind(Id,y))
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and use dmm() to obtain just a mean and a residual variance

> fit <- dmm(y.df,y ~ 1, components=c("VarE(I)"),gls=T)

> summary(fit,gls=T)

Call:

summary.dmm(dmmobj = fit, gls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 y 2 0.577 0.868 3.13

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) y:y 1 0.354 0.307 1.69

VarP(I) y:y 1 0.354 0.307 1.69

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 y 2 0.577 0.868 3.13

Components partitioned by DME from residual var/covariance after GLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) y:y 1 0.354 0.307 1.69

VarP(I) y:y 1 0.354 0.307 1.69

>

and we do indeed get a mean of 2 and a variance of 1, not 0.66, which is
the uncorrected ML estimate of variance.

The M matrix for this simple case is
N−1
N

−1
N

−1
N

−1
N

N−1
N

−1
N

−1
N

−1
N

N−1
N


and it can be shown that the quadratic form y′My expands to

∑
i y

2
i −

(1/N)
∑

i,j yiyj which is the dyadic version of the familiar formula for variance.
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It is clear from this that the M matrix can be used to compute a correction for
mean.

In more complex cases the M matrix simply adjusts the degrees of free-
dom appropriately, given the replication for all fixed effects embodied in the X
matrix. This adjustment is not the same as the adjustment made by REML.
The bias-corrected ML estimates obtained from dmm() will agree with REML
estimates in some cases, but not always. This is because REML accounts for
the covariances of dyadic residuals (∆ in equation 13), while dmm() assumes
these residuals are uncorrelated (ie it uses OLS on equation 13).

The approach taken by dmm() also has similarities with the ’symmetric
sums method’ of Koch(1967) [12]. Koch was probably the first worker to equate
dyadic covariances to their expectations, as in equation 7. The difference is that
Koch summed his expectations (he could hardly have done anything else, given
computing facilities at the time), while dmm() writes all expectations as a set
of equations 12 to be solved directly.

6.2.4 Standard errors of variance component estimates

Using a dyadic model reduces variance component estimation to a multiple linear
regression problem, the components being estimated as regression coefficients.
Therefore standard errors for variance component estimates can be computed
using expressions for the standard error of a regresssion coefficient. In terms of
model 13 the unknowns Γ are defined (if estimated by OLS) as

Γ = (W ′W )−1W ′Ψ

but are not actually computed that way, and their standard errors are ob-
tained from

Cov(Γ) = (W ′W )−1 ⊗ Σ

where Σ = ∆∆′/(n2 − v) is the (l×l) covariance matrix of residuals from
model 13. Again (W ′W )−1 is not computed that way, but is obtained from
the QR decomposition of W .

Because these expressions are exact, given the usual assumptions in regres-
sion models, the standard errors of component estimates from dmm() are likely
to be smaller than those obtained other procedures which employ numerical
approximations. This is born out in the examples.
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6.3 Genetic parameters and their standard errors

Strictly speaking, any set of parameters which quantify genetic and environ-
mental variation in a set of traits can be called genetic parameters. So causal
variance and covariance components are genetic parameters. However, there is
a convention that ’genetic parameters’ refers to heritabilities and genetic cor-
relations ( and for completeness phenotypic (co)variance). Geneticists seem to
prefer standardized unitless quantities to describe their populations.

When people say ’heritability’ , without qualification, they imply individual
additive genetic variationas a proportion of total phenotypic variation. Simi-
larly an unqualified ’genetic correlation’ implies the correlation based on the
individual additive genetic covariance. There are, of coarse, equivalent parame-
ters for the non-additive, sel-linked, and maternal components. We avoid using
qualifiers in dmm() by using the terms proportion for each variance component
as a proportion of the total or phenotypic variance, and correlation for each
covariance component scaled by the appropriate variances to a correlation. We
use the component names defined in Tables 4 and 5 as qualifying labels.

So proportion is defined as

V arX(Y z)

V arP (I)

for component X(Yz), and correlation for traits T1 and T2 is defined as

CovX(Y z[T1], Y z[T2])√
V arX(Y z[T1]V arX(Y z[T2])

for cross-trait-same-effect-covariances, and

CovX(Y z[T1],Wv[T1])√
V arX(Y z[T1]V arX(Wv[T1])

for same-trait-cross-effect-covariances for effects X(Yz) and X(Wv), and

CovX(Y z[T1],Wv[T2])√
V arX(Y z[T1]V arX(Wv[T2])

for cross-trait-cross-effect-covariances.
So genetic parameter estimates are a simple (but nonlinear) transform of

variance and covariance component estimates. Their sampling variances ( and
hence standard errors) can therefore be obtained from the sampling variances
of the components. The usual method of obtained these is known as the delta
method [2]. This approach computes the sampling variance of a polynomial
approximation to the transform. Typically a Taylor series expansion truncated
to two terms is used as as the approximation. In dmm(() we develop a different
approach, using logarithms to linearize the function as outlined below.

We need the following identities
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V ar(lnX) = ln(1 + CV 2
X)

which is exact if the distribution of X is lognormal, and approximate other-
wise, and is also approximated by CV 2

X if CV 2 is small.
We also need the bivariate equivalent

Cov(lnX, lnY ) = ln(1 + CC2
X,Y )

where CC2
X,Y = Cov(X,Y )

XY
= rX,Y CVXCVY

In the present application X and Y are variances, which have a χ2 dis-
tribution. This does not necessarily mean that the above identities are being
misapplied, because the lognormal distribution can be used as an approximation
to the χ2 distribution, for example see Jouini etal (2011) [10].

6.3.1 Sampling variance of a proportion

Let Z = X/Y be the proportion. Apply the log transform to linearize

lnZ = lnX − lnY

and write as
z = x− y

Do the variance of the linear transform

V ar(z) = V ar(x− y)

= V ar(x) + V ar(y)− 2Cov(x, y)

= ln(1 + CV 2
X) + ln(1 + CV 2

Y ) + 2 ln(1 + CC2
X,Y )

then reverse the transform with the exp function

V ar(Z) = Z̄2(exp[V ar(lnZ)− 1)

= Z̄2(exp[V ar(z)− 1)

=
¯

(
X

Y
)2(exp[ln(1 + CV 2

X) + ln(1 + CV 2
Y ) + 2 ln(1 + CC2

X,Y )])

This looks complex but is readily programmed in R as a set of nested function
calls.
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6.3.2 Sampling variance of a correlation

Let Z = W/(XY )0.5 be the correlation. Apply the log transform to linearize

lnZ = lnW − 0.5 lnX − 0.5 lnY

nd write as
z = w − 0.5x− 0.5y

Do the variance of the linear transform

V ar(z) = V ar(w)− 0.25V ar(x)− 0.25V ar(y)

−2Cov(w, z)− 2Cov(w, y) + 0.5Cov(x, y)

= ln(1 + CV 2
W ) + 0.25 ln(1 + CV 2

X) + 0.25 ln(1 + CV 2
Y )

− ln(1 + CC2
W,X)− ln(1 + CC2

W,Y ) + 0.5 ln(1 + CC2
X,Y )

then reverse the transform with the exp function

V ar(Z) = Z̄2(exp[V ar(lnZ)− 1)

= Z̄2(exp[V ar(z)− 1)

=
¯

(
W

(XY )0.5
)2(exp[ln(1 + CV 2

W ) + 0.25 ln(1 + CV 2
X) + 0.25 ln(1 + CV 2

Y )

− ln(1 + CC2
W,X)])− ln(1 + CC2

W,Y )]) + 0.5 ln(1 + CC2
X,Y )])
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6.4 Genetic response to selection

The function gresponse() converts phenotypic selection differentials to genetic
selection differentials. It requires a set of genetic parameter estimates, in the
form of a dmm object as computed by dmm().

6.4.1 Understanding selection differentials

Consider the mechanics of selection. The selection process chooses a subset of
individuals which are to be parents of the next generation. The selected sub-
group will presumably have some differences from the whole group of individuals
from which they were chosen. The difference may be univariate (ie one measured
trait differs) or multivariate (any number of traits differ). Such a difference is
referred to as a phenotypic selection differential, and thus may be a single value
or a vector of differences. It is called ’phenotypic’ because it is the average
observed difference of selected from unselected individuals.

The function gresponse() assumes that phenotypic selection differentials are
known and are specified in the same units of measurement as the traits used to
compute genetic parameters with dmm(). It is outside of the scope of gresponse()
to calculate expected selection differentials for various types and intensities of
selection.

When selected parents are mated and produce progeny there will be an ob-
servable performance (for one or more traits) of the progeny of selected parents.
If we also mated (experimantally) some unselected parents (ie chosen at random
from the whole population) their progeny would also have an observable perfor-
mance.. The average observed difference between the progeny of selected parents
and the progeny of unselected parents, would be a genetic selection differential.
or more precisely a realised genetic selection differential. Itis called ’genetic’
because it represents the part of the parent’s phenotypic selection differential
which is inherited by their progeny.

One of the main uses of genetic parameters is to predict what the genetic se-
lection differential would be, for a given phenotypic selection differential, with-
out having to carry out the above experimental matings. This is what gre-
sponse() does. The term ’response to selection’ refers to achieving a certain
genetic selection differential, given a specific phenotypic selection differential.

Most of the predictable response to selection is due to additive genetic vari-
ation. Therefor gresponse() deals with two important cases, response due to
individual additive genetic variation, and response due to both individual and
maternal additive genetic variation.

6.4.2 Response due to individual additive genetic variation

If there are two traits, X and Y, the equation for response due to individual
additive genetic variation is
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[
dGX

dGY

]
=

[
σ2
GX

σGXY

σGXY σ
2
GY

] [
σ2
PX
σPXY

σPXY σ
2
PY

]−1 [
dPX

dPY

]
where

dPX is the phenotypic selection differential for trait x

dGX is the genetic selection differential for trait x

σ2
GX

is the additive genetic variance for trait X

σGXY is the additive genetic covariance for traits X and Y

σ2
GY

is the additive genetic variance for trait y

σ2
PX

is the phenotypic variance for trait X

σPXY is the phenotypic covariance for traits X and Y

σ2
PY

is the phenotypic variance for trait Y

For multiple traits this is readily generalized to

dG = GP−1dP (14)

where

dG is a vector of genetic selection differentials

dP is a vector of phenotypic selection differentials

G is an additive genetic covariance matrix

P is a phenotypic covariance matrix

and for a single trait it reduces to the familiar breeder’s equation

dG = dPh
2

where h2 is additive genetic heritability

6.4.3 Response due to individual and maternal additive genetic vari-
ation

We start by rewriting equation 2 using a slightly different notation and a ’prime’
superscript to indicate parent generation.

p = gIa + eI + g′Ma
+ e′M (15)

because we have to be clear now that the genetic components of phenotype
p are gIa + g′Ma

, but the individual’s own genotypic value is gIa + gMa
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If the above equation is for a progeny generation, we have for the parent
generation

p′ = g′Ia + e.I + g′′Ma
+ e′′M (16)

and we are looking at predicting

[
dgIa

dg′
Ma

]
from dp′ .

For a single trait, this prediction can be written

[
dgIa

dg′
Ma

]
=

[
GIaIa GIaM ′

a

GIaM ′
a
GM ′

aM
′
a

] [
1
1

] [
P
]−1 [

dp′
]

but because covariance component estimates from dmm() are of GIaMa and
GMaMa rather than GIaM ′

a
and GM ′

aM
′
a

we rewrite it as

[
dgIa

dg′
Ma

]
=

[
GIaIa GIaMa

GIaM ′
a
GMaMa

] [
RII

RIM

] [
P
]−1 [

dp′
]

where RII is 1, and RIM is the relationship between individual and parent,
that is 0.5.

This single trait case reduces to Dickerson’s(1947) [5] formula

dG = (h2
I +

3

2
rGIMhIhM +

1

2
h2
M)dP

where dG in Dickerson’s notation is the sum of our dgIa
and dg′

Ma
.

For two traits, X and Y, we can write


dgIX

dgIY

dg′
MX

dg′
MY

 =


σ2
GIX

σGIXY
σGIXMX

σGIXMY

σGIXY
σ2
GIY

σGIY MX
σGIY MY

σGIXMX
σGIXMY

σ2
GMX

σGMXY

σGIY MX
σGIY MY

σGMXY
σ2
GMY


[
RII

RIM

] [
σ2
PX
σPXY

σPXY σ
2
PY

]−1 [
dp′

X

dp′
Y

]

where here RII is I2 (an identity matrix of order 2), and RIM is 0.5I2.
For multiple traits this generalizes to

dG = GRP−1dP (17)

where G is the combined genetic covariance matrix of individual and mater-

nal effects, and R is a 2l× l matrix

[
Il

0.5Il

]
where l is number of traits.
There remains the issue of phenotypic response in the progeny generation not

being the same as the genetic response, when there are maternal effects (Mueller
and James(1985) [19]). This is not currently considered by gresponse(). It
involves the ”CovE(I,M)” environmental covariance of individual and maternal
effects.
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6.4.4 Limitations

Function gresponse() is experimental. It currently only does elementary predic-
tions of response to phenotypic selection. It does a one generation prediction
assuming generations are not overlapping.

Sex specific genetic parameters and questions of population structure where
the male-to-male, male-to-female, female-to-male, and female-to-female path-
waysa are considered separately, are not considered.

There is a need to consider how sex-linked additive genetic variance con-
tributes to response to selection.
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7 Some issues unique to dmm().

Apart from using a dyadic model, dmm() has a number of facilities which might
be termed experimental or novel. We want these to be both mathematically
sound and useful. Because these have had limited scrutiny, they are grouped in
this section under a general warning of let the user beware.

7.1 Cohorts

A cohort is a group of individuals reared together in a common environment,
most likely up to the point of observation, or at least for a substantial period.
It must be an environmental grouping. The following discussion will be wrong
if it represents a genetic grouping. An example would be a group of animals
born at the same time and reared together such as a drop of lambs, or a group
of plants grown in the same plot.

So why give special attention to cohort? Is it not just another fixed effect?
The answer depends on our intended use of the genetic parameter estimates.
If we want parameter estimates that are relevant to selection within a cohort,
then leaving cohort as a fixed effect in the model is the appropriate course of
action. Genetic parameters will then be a summary of within cohort variation
and will be appropriate for selection among individuals within a cohort.

If we want parameter estimates that are relevant to selection across cohorts,
or ignoring cohorts, then cohort must be a random effect in the model, and
its variance must be included in summing components to obtain phenotypic
variance. Genetic parametrs will then include between cohort variation as an
environmental variance ”VarE(C)”, and will be appropriate for selection of in-
dividuals across cohorts.

To setup the latter case in dmm() we need to use the argument cohortform to
define a cohort formula, and we also need to include ”VarE(C)” in the component
argument. Any dataframe columns which appear in cohortform should not also
appear in the fixform argument.

An example will make this clear

> library(dmm)

> data(sheep.df)

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),ycols=c(7:9), sexcode=c("M","F"),relmat=c("E","A"))

In the sheep.df dataset there is a factor called Year which records the year
of birth of each individual. We are going to let Year be the cohort grouping.
We first run an analysis without a cohort effect

> sheep.fit <- dmm(sheep.mdf, Ymat ~ 1 + Year + Tb + Sex)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:

78



no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 9 No of Fixed Effects: 9

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

Then we rerun with Year as a cohort instead of as a fixed effect

> sheep.fitc <- dmm(sheep.mdf, Ymat ~ 1 + Tb + Sex, cohortform = ~ Year,

components=c("VarE(I)","VarE(C)","VarG(Ia)"))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 3

no of traits (l) = 3

Setup antemodel matrices:

ncohortcodes = 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

Then let us compare the genetic parameter estimates from the two runs. We
will look just at trait ”Diam”

> gsummary(sheep.fit,traitset="Diam")

Call:

gsummary.dmm(dmmobj = sheep.fit, traitset = "Diam")

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.321 0.201 -0.0722 0.715

VarG(Ia) Diam 0.679 0.207 0.2732 1.084

VarP(I) Diam 1.000 0.000 1.0000 1.000
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.....

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.01 0.132 0.748 1.27

>

>gsummary(sheep.fitc,traitset="Diam")

Call:

gsummary.dmm(dmmobj = sheep.fitc, traitset = "Diam")

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0587 0.1240 -0.18428 0.302

VarG(Ia) Diam 0.8542 0.1333 0.59289 1.116

VarE(C) Diam 0.0871 0.0462 -0.00348 0.178

VarP(I) Diam 1.0000 0.0000 1.00000 1.000

.....

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.63 0.148 1.34 1.92

>

The phenotypic variance increases, as expected when another variance is
included in phenotypic variation. Also the estimates of ’Proportion’ change
when ”VarE(C)” is added to the causal components, for two reasons, firstly
the denominator of the ’Proportion’ is different, and secondly ”VarE(C)” is
correlated with the other components so its presence in the model alters the fit.

In theory, changing from a fixed effect ”Year” to a random effect ”VarE(C)”
should not alter the fit, but that only applies when all effects are fitted simul-
taneously. With a mixed model there is an heirarchy - fixed effects fitted first,
data adjusted, then random effects estimated. That applies to dmm and to
bias-corrected-ML and REML. The only procedure which fits all effects simul-
taneously in a mixed model is Henderson’s Method 3.

7.2 Partitioning ”VarE(M)”

If there is more than one offspring per dam, the component ”VarE(M)”, as fitted
by dmm() may be a complex mixture of
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σ2
EM

maternal environmental effect

σ2
EC

nonmaternal environmental effect due to littermates (the so-called ”com-
mon environment” variance)

These can be separated only if dams have multiple litters and multiple off-
spring per litter. In that case, we can use the cohort facility in dmm(), where
cohort is any grouping which separates multiple litters of a dam (eg Year of
birth), to define the following components

VarE(C) variance between cohorts

VarE(M&C) variance of individuals with the same dam and same cohort - ie
littermates

VarE(M&!C) variance of individuals with the same dam and not the same
cohort - ie maternal half sibs across cohorts

With this partitioning we can clearly obtain σ2
EM

annd σ2
EC

if desired, by
simle subtraction

σ2
EC

= V arE(M&C)− V arE(M&!C)

σ2
EM

= V arE(M&!C)

The above discussion is well presented by Bijma(2006)[3].
We do not of course fit VarE(M) at the same time as its two components

VarE(M&C) and VarE(M&!C). The relationship between VarE(M) and its com-
ponents is actually a weighted average

V arE(M) =
n1V arE(M&C) + n2V arE(M&!C)

n1 + n2

where n1 and n2 are sms of the relavant columns of the W matrix.
We continue the example of the cohort section, fitting maternal environmen-

tal variance and then splitting it as follows

> ....

>sheep.fitm <- dmm(sheep.mdf,Ymat ~ 1 + Tb + Sex,

components=c("VarE(I)","VarE(C)", "VarG(Ia)", "VarE(M)", "VarG(Ma)"),

cohortform = ~ Year)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 5

OLS-b step:

no of fixed effect df (k) = 3

no of traits (l) = 3
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Setup antemodel matrices:

ncohortcodes = 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

> summary(sheep.fitm,traitset=c("Cww"))

Call:

summary.dmm(dmmobj = sheep.fitm, traitset = c("Cww"))

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.593 0.127 4.3452 4.841

TbT Cww -0.104 0.173 -0.4420 0.234

SexM Cww 0.426 0.183 0.0675 0.784

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0645 0.0637 -0.06032 0.1894

VarG(Ia) Cww:Cww 0.1215 0.0612 0.00165 0.2414

VarE(M) Cww:Cww 0.2228 0.1239 -0.02004 0.4656

VarE(C) Cww:Cww 0.0447 0.0204 0.00461 0.0848

VarG(Ma) Cww:Cww 0.0744 0.1217 -0.16407 0.3129

VarP(I) Cww:Cww 0.5279 0.0429 0.44381 0.6121

>

>sheep.fitm2 <- dmm(sheep.mdf,Ymat ~ 1 + Tb + Sex,

components=c("VarE(I)","VarE(C)", "VarG(Ia)","VarE(M&C)","VarE(M&!C)","VarG(Ma)"),

cohortform = ~ Year)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 6

OLS-b step:

no of fixed effect df (k) = 3

no of traits (l) = 3

Setup antemodel matrices:

ncohortcodes = 8

no of individuals in pedigree (m) = 44
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no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

> summary(sheep.fitm2,traitset=c("Cww"))

Call:

summary.dmm(dmmobj = sheep.fitm2, traitset = c("Cww"))

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.593 0.127 4.3452 4.841

TbT Cww -0.104 0.173 -0.4420 0.234

SexM Cww 0.426 0.183 0.0675 0.784

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0939 0.0737 -0.05061 0.2384

VarG(Ia) Cww:Cww 0.1056 0.0624 -0.01666 0.2280

VarE(C) Cww:Cww 0.0484 0.0209 0.00738 0.0894

VarE(M&!C) Cww:Cww 0.2613 0.1258 0.01475 0.5078

VarE(M&C) Cww:Cww 0.1461 0.1328 -0.11410 0.4063

VarG(Ma) Cww:Cww 0.0692 0.1218 -0.16958 0.3080

VarP(I) Cww:Cww 0.7246 0.1349 0.46027 0.9889

>

so in this small demonstration case VarE(M&!C) turns out larger than
VarE(M) so the estimate of σ2

EC
by subtraction will be negative. This often

happens if we overfit a small dataset with many components.

7.3 Using robust regression to solve DME’s

One of the advantages of turning variance component estimation into a regres-
sion is that one can use regression techniques other than least squares. One op-
tion is robust regression. There are several packages for robust regression avail-
able in R. All of them are only capable of multiple regression with a univariate
response. In dmm() the function lmrob() from package robustbase is used instead
of QR to solve the dyadic model equations, if the argument dmeopt=”lmrob” is
specified.

There is no information on the properties of the variance component esti-
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mates obtained by dmm() using lmrob(). Their standard errors are obtained as
the standard errors of coefficients returned by lmrob().

Experience has shown that ”lmrob” estimates do not even agree with QR
estimates for a balanced dataset. Apparently robust algorithms will always re-
move some perceived outlier data points, and this will naturally lead to different
estimates of regression coefficients. They also usually lead to smaller standard
errors.

7.4 Using principal component regression to solve DME’s

If there are collinearities in the dyadic model equations ( check the column
correlations) then one of the basic assumptions of multiple regression is not met
- the independent variables ( in this case the columns of the W matrix) are not
independent. In practice any correlation exceeding about 0.5 is thought to be
a serious violation.

This is by no means an unusual situation in quantitative genetic data, par-
ticularly if non-additive genetic components are being estimated. For example,
the following correlations are obtained for our test data sets

> quercus.fit$dme.correl

VarE(I) VarG(Ia) VarG(Id)

VarE(I) 1.0000000 0.7314919 0.9428127

VarG(Ia) 0.7314919 1.0000000 0.8610611

VarG(Id) 0.9428127 0.8610611 1.0000000

> warcolak.fitg$dme.correl

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.0000000 0.4856324 0.9190639 0.7494688

VarG(Ia) 0.4856324 1.0000000 0.6255619 0.7473142

VarG(Id) 0.9190639 0.6255619 1.0000000 0.8105875

VarGs(Ia) 0.7494688 0.7473142 0.8105875 1.0000000

> tstmo1.fit1$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.4158424

VarG(Ia) 0.4158424 1.0000000

> harv.fit$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8780947

VarG(Ia) 0.8780947 1.0000000

>

Note the correlations exceeding 0.9 involving dominance variance.
There is a way of circumventing this issue, which may be helpful in the

current context. The dmm() argument dmeopt=”pcr” invokes a principal com-
ponent regression in place of QR, using the method=”svdpc” in the function
mvr() of package pls. What this does is to transform the variance components
to a set of independent variables (which are linear combinations of the variance
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components) before doing the multiple regression, then transform the fitted co-
efficients back to the original variables. This avoids the assumption violation,
but it requires a certain amount of user intervention. One needs to choose how
many transformed independent variates to use, and the criteria for this are not
readily automated.

With this in mind, the dmeopt=”pcr” option is setup with some extra screen
output to aid in user choices. Usually several runs will be required to arrive at
a satisfactory number of components.

We will use the quercus.df dataset for an example. Three variance com-
ponents are fitted, with correlations noted above. Component ”VarG(Id)” is
strongly correlated with the other two components. First a run allowing vari-
able ncomp, which is the number of principal components to be included in the
regression, to be its default value which is the rank of the W matrix - in this
case 3.

> data(quercus.df)

> quercus.mdf <- mdf(quercus.df,pedcols=c(1:3), factorcols=4, ycols=c(5:6),

sexcode=c(1,2), relmat=c("E","A","D"))

.....

> quercus.fitpcr <- dmm(quercus.mdf,Ymat ~ 1,

components = c("VarE(I)","VarG(Ia)", "VarG(Id)"),

dmeopt="pcr",relmat = "withdf")

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

no of individuals in pedigree (m) = 260

no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

DME substep:

PCR option on dyadic model equations:

Data: X dimension: 32400 3

Y dimension: 32400 4

Fit method: svdpc

Number of components considered: 3

VALIDATION: RMSEP

Cross-validated using 10 random segments.

Response: Trait1:Trait1

(Intercept) 1 comps 2 comps 3 comps

CV 1.158 1.154 1.154 1.155
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adjCV 1.158 1.154 1.154 1.154

Response: Trait1:Trait2

(Intercept) 1 comps 2 comps 3 comps

CV 1.449 1.449 1.449 1.449

adjCV 1.449 1.449 1.449 1.449

Response: Trait2:Trait1

(Intercept) 1 comps 2 comps 3 comps

CV 1.449 1.449 1.449 1.449

adjCV 1.449 1.449 1.449 1.449

Response: Trait2:Trait2

(Intercept) 1 comps 2 comps 3 comps

CV 1.813 1.808 1.808 1.808

adjCV 1.813 1.808 1.808 1.808

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 89.286032 99.157279 1.000e+02

Trait1:Trait1 0.643912 0.648228 6.544e-01

Trait1:Trait2 0.008194 0.008364 8.699e-03

Trait2:Trait1 0.008194 0.008364 8.699e-03

Trait2:Trait2 0.652555 0.652902 6.557e-01

DME substep completed:

OLS-b step completed:

>

> quercus.fitpcr$dme.corre

VarE(I) VarG(Ia) VarG(Id)

VarE(I) 1.0000000 0.7314919 0.9428127

VarG(Ia) 0.7314919 1.0000000 0.8610611

VarG(Id) 0.9428127 0.8610611 1.0000000

>

> summary(quercus.fitpcr)

Call:

summary.dmm(dmmobj = quercus.fitpcr)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112
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Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.2940 -0.5414 0.611

VarG(Ia) Trait1:Trait1 0.1966 0.1430 -0.0836 0.477

VarG(Id) Trait1:Trait1 0.9386 0.3727 0.2082 1.669

VarP(I) Trait1:Trait1 1.1700 0.0863 1.0008 1.339

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait1:Trait2 0.134 0.179 -0.2177 0.486

VarG(Id) Trait1:Trait2 -0.113 0.468 -1.0301 0.804

VarP(I) Trait1:Trait2 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait2:Trait1 0.134 0.179 -0.2177 0.486

VarG(Id) Trait2:Trait1 -0.113 0.468 -1.0301 0.804

VarP(I) Trait2:Trait1 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.460 0.0726 1.88

VarG(Ia) Trait2:Trait2 0.813 0.224 0.3745 1.25

VarG(Id) Trait2:Trait2 0.047 0.584 -1.0967 1.19

VarP(I) Trait2:Trait2 1.835 0.135 1.5701 2.10

>

end{verbatim}

First let us note that "pcr" is using all 3 components

\begin{verbatim}

Fit method: svdpc

Number of components considered: 3

and that it actually does analyses with 1,2, and 3 components, and the
successive amounts of variance explained are

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 89.286032 99.157279 1.000e+02

Now let us compare the results with those from the same model using
dmeopt=”qr”

> summary(quercus.fit)

Call:
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summary.dmm(dmmobj = quercus.fit)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.2940 -0.5414 0.611

VarG(Ia) Trait1:Trait1 0.1966 0.1430 -0.0836 0.477

VarG(Id) Trait1:Trait1 0.9386 0.3727 0.2082 1.669

VarP(I) Trait1:Trait1 1.1700 0.0863 1.0008 1.339

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait1:Trait2 0.134 0.179 -0.2177 0.486

VarG(Id) Trait1:Trait2 -0.113 0.468 -1.0301 0.804

VarP(I) Trait1:Trait2 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.369 -0.5887 0.858

VarG(Ia) Trait2:Trait1 0.134 0.179 -0.2177 0.486

VarG(Id) Trait2:Trait1 -0.113 0.468 -1.0301 0.804

VarP(I) Trait2:Trait1 0.156 0.108 -0.0568 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.460 0.0726 1.88

VarG(Ia) Trait2:Trait2 0.813 0.224 0.3745 1.25

VarG(Id) Trait2:Trait2 0.047 0.584 -1.0967 1.19

VarP(I) Trait2:Trait2 1.835 0.135 1.5701 2.10

>

So the variance component estimates are identical (”pcr” with ncomp=3 ver-
sus ”qr), and the standard errors are also identical. This is surprising because
”pcr” uses a jackknife technique to estimate the var/covariance matrix of esti-
mates, while ”qr” uses the exact procedure for regression coefficients estimated
by least squares.

Now a rerun with ncomp=2, that is we will only use the first two principal
components to fit the regressions, but will transform the result back to the 3
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variance components

> quercus.fitpcr2 <- dmm(quercus.mdf,Ymat ~ 1,

components = c("VarE(I)","VarG(Ia)", "VarG(Id)"),

dmeopt="pcr",relmat = "withdf",ncomp.pcr=2)

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

no of individuals in pedigree (m) = 260

no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

DME substep:

PCR option on dyadic model equations:

Data: X dimension: 32400 3

Y dimension: 32400 4

Fit method: svdpc

Number of components considered: 2

VALIDATION: RMSEP

Cross-validated using 10 random segments.

Response: Trait1:Trait1

(Intercept) 1 comps 2 comps

CV 1.158 1.154 1.155

adjCV 1.158 1.154 1.155

Response: Trait1:Trait2

(Intercept) 1 comps 2 comps

CV 1.449 1.449 1.449

adjCV 1.449 1.449 1.449

Response: Trait2:Trait1

(Intercept) 1 comps 2 comps

CV 1.449 1.449 1.449

adjCV 1.449 1.449 1.449

Response: Trait2:Trait2

(Intercept) 1 comps 2 comps

CV 1.813 1.808 1.808

adjCV 1.813 1.808 1.808
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TRAINING: % variance explained

1 comps 2 comps

X 89.286032 99.157279

Trait1:Trait1 0.643912 0.648228

Trait1:Trait2 0.008194 0.008364

Trait2:Trait1 0.008194 0.008364

Trait2:Trait2 0.652555 0.652902

DME substep completed:

OLS-b step completed:

>

> summary(quercus.fitpcr2)

Call:

summary.dmm(dmmobj = quercus.fitpcr2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.430 0.1332 0.1685 0.691

VarG(Ia) Trait1:Trait1 0.338 0.1356 0.0724 0.604

VarG(Id) Trait1:Trait1 0.416 0.0674 0.2838 0.548

VarP(I) Trait1:Trait1 1.184 0.0916 1.0041 1.363

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0193 0.102 -0.1800 0.218

VarG(Ia) Trait1:Trait2 0.0927 0.148 -0.1980 0.383

VarG(Id) Trait1:Trait2 0.0396 0.049 -0.0564 0.136

VarP(I) Trait1:Trait2 0.1516 0.107 -0.0589 0.362

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0193 0.1368 -0.2489 0.287

VarG(Ia) Trait2:Trait1 0.0927 0.1282 -0.1585 0.344

VarG(Id) Trait2:Trait1 0.0396 0.0725 -0.1025 0.182

VarP(I) Trait2:Trait1 0.1516 0.1063 -0.0568 0.360

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.557 0.123 0.317 0.797

VarG(Ia) Trait2:Trait2 0.663 0.167 0.336 0.991
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VarG(Id) Trait2:Trait2 0.600 0.067 0.469 0.731

VarP(I) Trait2:Trait2 1.821 0.158 1.510 2.131

>

The resulting estimates are remarkably different and have much smaller stan-
dard errors. This is exactly what the textbooks say - regression coefficients from
principal component regression may be biased, but will have a smaller mean
square error, compared to least squares. One has to hope that the bias is small
and the gain from reduced standard errors more than compensates.

What we have done, by excluding the third principal component, is to re-
strict the 3D space in which the three component estimates can vary. This
is equivalent to applying a constraint equation to the three estimates. The
constraint equation is a linear function of the form

a1V arE(I) + a2V arG(Ia) + a3V arG(Id) = 0

and we can get the ai coefficients of this function from the third column
of the right singular vector of the W matrix. The pls package calls the right
singular vector ”loadings” and provides a function to extract these from the
fit object. The function dmm() returns the ”loadings” in an object called
pcr.loadings which is part of the returned object of class dmm whenever ar-
gument dmeopt=”pcr” is used. So we can inspect the loadings as follows

> quercus.fitpcr$pcr.loadings)

Loadings:

Comp 1 Comp 2 Comp 3

‘VarE(I)‘ 0.485 0.646 -0.589

‘VarG(Ia)‘ 0.680 -0.702 -0.211

‘VarG(Id)‘ 0.550 0.298 0.780

Comp 1 Comp 2 Comp 3

SS loadings 1.000 1.000 1.000

Proportion Var 0.333 0.333 0.333

Cumulative Var 0.333 0.667 1.000

>

The constraint coefficients we want in this case are given by the ”Comp 3”
column of the loadings matrix. Note that it is necessary to do the fit with all
3 principal components to get at the loadings. If you use ncomp = 2 the
required column ”Comp 3” of loadings will be missing. So we have

−0.589× V arE(I)− 0.211× V arG(Ia) + 0.780× V arG(Id) = 0

so substituting the ncomp = 2 estimates for trait ”Trait1” we get

0.589× 0.430− 0.211× 0.338 + 0.780× 0.416 = −0.000108
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The estimates from a 2 principal component fit do indeed conform to the
constraint.

The above constraint equation is actually the equation of a plane in the 3D
space of the three variance component estimates. When we omit the third prin-
cipal component, estimates of the three variance components are constrained to
lie on this plane. When we include the third principal component, estimates of
the three variance components can be anywhere in the 3d space.

If we were to omit more than one principal component (not feasible in the
current example), there would be more than one constraint, given by the ap-
propriate columns of the loadings matrix. Estimates would then be constrained
to lie onlines of intersection of two or more hyperplanes.

The constraint(s) on the variance component estimates are the reason that
principal component regression leads to biased estimates.

We might conclude by noting that there are three ways of dealing with
colliniarities in the dyadic model equations

� use ”qr” and ignore the issue, accept the higher standard errors and enjoy
the unbiased guarantee. The results are only unbiased if the model is
correct - ie if you have not omitted variance components which are nonzero.

� use ”qr” and change the model omitting one or more variance components.
This amounts to setting a constraint that the omitted component(s) are
zero. So the results are biased unless the omitted component is actually
zero.

� use ”pcr” and omit one or more principal components. Enjoy the lower
standard errors. This amounts to setting a constraint that some linear
combination of the components is zero, or it can be rewritten as a con-
straint that one particular component is a linear combination of the others.
If you are happy with the implied constraint, then you are happy with the
bias. If the implied constraint is actually true - ie the true values of the
components do actually lie on the constraint plane, then there is no bias.

For completeness, we should look at the results obtained with the second
option above, that is omitting ”VarG(Id)” which implies constraining it to zero

> summary(quercus.fit2)

Call:

summary.dmm(dmmobj = quercus.fit2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112
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Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.703 0.1266 0.455 0.951

VarG(Ia) Trait1:Trait1 0.468 0.0939 0.284 0.652

VarP(I) Trait1:Trait1 1.171 0.0863 1.002 1.340

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0541 0.159 -0.2573 0.365

VarG(Ia) Trait1:Trait2 0.1013 0.118 -0.1297 0.332

VarP(I) Trait1:Trait2 0.1554 0.108 -0.0569 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0541 0.159 -0.2573 0.365

VarG(Ia) Trait2:Trait1 0.1013 0.118 -0.1297 0.332

VarP(I) Trait2:Trait1 0.1554 0.108 -0.0569 0.368

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 1.008 0.198 0.620 1.40

VarG(Ia) Trait2:Trait2 0.827 0.147 0.539 1.11

VarP(I) Trait2:Trait2 1.835 0.135 1.570 2.10

>

We get different estimates for the remaining two components and standard
errors which are smaller for Trait1 but larger for Trait2, compared with the
”pcr” with ncomp=2 estimates. It is hard to choose between these two results.

As we said at the outset, this facility is experimental.
There is an excellent presentation of principal component regression and the

pls package in Mevik and Wehrens(2007) [14].

7.5 Constraining covariance matrices to be positive defi-
nite

If the option posdef=T is used each matrix of cross-trait (co)variances for each
”Varxxx” component will be individually positive definite, and each cross-effect
covariance (if ”Covxxx” components are defined) will be constrained such that
the corresponding correlation is in the bounds -1 to 1. If option gls=T is used
posdef=T is enforced.

The algorithm used takes the matrix of cross-trait covariances for each vari-
ance component at a time, first does an approximate procedure which ensures
that its eigenvalues are positive, then calls the nearPD() function from package
Matrix.This 2-step procedure ensures that nearPD does not fail when matrices
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from small test examples are wildly negative definite. When all variance compo-
nents have been made positive definite, the algorithm looks at each covariance
component in turn, and ensures that for each element of each covariance com-
ponent matrix the corresponding correlation is not outside the bounds -1 to 1.
If it is outside bounds, the covariance component is altered. The two variances
involved in the correlation are left unchanged.

Whenever a constraint is applied, in any estimation procedure, the estimated
parameters are biased and their standard errors are only approximate. If one
wants the positive definite constraint one simply has to hope that the bias is
not large.

In a multi-trait analysis with the positive definite constraint applied, if one
trait has variance component estimates which are negative before the constraint
is applied, the constraint algorithm will adjust the estimates for all traits. Then
if the ”rogue” trait is omitted and the analysis rerun, the estimates for all re-
maining traits will not be adjusted, and will therefore differ from the previous
analysis. We simply need to be aware that in a multivariate analysis, the pres-
ence or absence of one trait may affect the results for all other traits.
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8 Computing strategy

The dmm package is written entirely in R. It does not directly use any of the
available sparse matrix or parallel processing facilities. The R code is blatantly
straightforward. All of the coding effort to date has been focused on ensuring
correctness of the calculations. There may be room for some optimization later
on.

It has been known for many years that solving the dyadic model equations
leads to estimates of variance components (Pukelsheim(1976) [20]). No-one
seems to have attempted to actually use it as an estimation method. Twenty
years ago, it would not have been computationally feasible. Part of my goal in
producing the dmm package is to show that it is a feasible approach with today’s
computers. In that it must be said the I have been only partly successful as
currently implimented in R - it is feasible with datasets up to about 10000
individuals.

Most of the available variance component estimation software is compute
intensive, but will run in modest amounts of memory. dmm() is different in that
it is computationally quite efficient, but requires massive amounts of memory.
An example will make this clear. The warcolak dataset has 5000 individuals
and two traits. On my PC which has an Intel ® Core TM i7 processor, dmm()
runs on the warcolak data in about 15 mins and requires 22Gb of memory for
the OLS-b step. The GLS-b step requires an additional 144 minutes and 40Gb
of memory.

The efficiency of the QR algorithm is quite astounding. A dataset of 5000
individuals generates dyadic model equations consisting of 25 million simultane-
ous equations. QR can solve these in less than 15 minutes in a PC, without the
slightest hint of loss of significant digits. There would seem to be no argument
for turning the DME’s into normal equations - this may reduce the number of
equations, but it is usually recommended against on numerical grounds. The
other DME solving options ( ”robust” or ”pcr”) are less efficient.

The critical memory limitation is in R, not in available physical RAM. R has
an inbuilt limit of 231−1 = 2147483648−1 or approximately 2×109, for the
size of any array. This limit applies even in a 64-bit installation of R. In other
words 64-bit R has not yet been configured to fully exploit 64-bit addressing.
I understand that this limitation is being worked on, but is unlikely to change
in the near future. The only option to circumvent it is to rewrite in another
language.

The memory requirements of any example are readily calculated. The arrays
which most likely to encounter the above limit are Ψ and W in equation 13.
Their sizes are

W n2 × c

Ψ n2 × l2

where n is the number of individuals, c is the number of components fitted, and
l is the numnber of traits analysed.
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For example, in the case of the warcolak dataset, n = 5000, c = 4 and
l = 2, so the size of both W and Ψ is 108, which is within the limit by one
order of magnitude.

There may be a way to reduce the memory requirements of arrayW , because
it is sparse, but array Ψ is fully populated.

There are, of coarse, other arrays in the R code, and the total amount of
physical RAM used is likely to be 10 to 20 times the sizes of the above arrays,
but that is less likely to be a real limitation than is the internal R limit.

When using the dmeopt=”pcr” method for solving the DME’s, the memory
requirements are more demanding. The pls package uses three dimensional
arrays of size n2 × l2 × ncomp because it solves the DME’s for all values
of the number of components retained from 1 up to ncomp. This is a severe
limitation and some effort will be made to circumvent it in future versions of
dmm.

If the gls=T option is used there is an additional memory requirement which
is more restrictive. The product n2 × l2 × c must not exceed 231 − 1. This
is very restrictive indeed. For example with the dataset merino.df we have
n = 2599, l = 11, and c = 2upto8. Here we have 25992 × 112 = 8× 108

so there is only room for c = 2 unless the number of traits is reduced. There
are several issues, including the above, suggesting a rethink of the gls=T part
of the algorithm.
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9 Analysis of a large multivariate dataset

The dataset merino.df is a set of real data from an Australian Merino sheep
research flock with a multi-generation pedigree, eight fixed effects, and 11 traits
related to wool production. It is used here as a display of the utility of dmm() for
analysis of a multivariate dataset with many of the real world complications. It
contains pedigree records for 4449 individuals, 1593 of which have missing data,
leaving 2856 individuals with complete data.

9.1 Data preparation

We start with a preprocessing of the datafile using the mdf() function

>library(dmm)

>data(merino.df)

> str(merino.df)

’data.frame’: 4449 obs. of 22 variables:

$ Id : Factor w/ 3831 levels "50-0001","50-0009",..: NA NA NA NA NA NA NA NA NA 1 ...

$ SId : Factor w/ 136 levels "47-1438","47-2093",..: NA NA NA NA NA NA NA NA NA NA ...

$ DId : Factor w/ 999 levels "42-3693","42-3725",..: 4 12 85 92 126 129 160 166 71 65 ...

$ Sex : Factor w/ 2 levels "M","F": NA NA NA NA NA NA NA NA 2 1 ...

$ Yearbi : Factor w/ 18 levels "50","51","52",..: 1 1 1 1 1 1 1 1 1 1 ...

$ YearSbi: Factor w/ 18 levels "47","48","50",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearDbi: Factor w/ 22 levels "42","43","44",..: 1 1 5 5 5 5 5 5 4 4 ...

$ Mob : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Agem : Factor w/ 2 levels "3","9": NA NA NA NA NA NA NA NA NA 1 ...

$ Birwt : num NA NA NA NA NA NA NA NA NA 3.6 ...

$ Weanwt : num NA NA NA NA NA NA NA NA NA 22.7 ...

$ Birls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA 1 1 ...

$ Weanls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA 1 ...

$ Crimp : num NA NA NA NA NA NA NA NA NA 12.3 ...

$ Densty : num NA NA NA NA NA NA NA NA NA 37.8 ...

$ Diamtr : num NA NA NA NA NA NA NA NA NA 21 ...

$ Yield : num NA NA NA NA NA NA NA NA NA 55.2 ...

$ Bodywt : num NA NA NA NA NA NA NA NA NA 39.3 ...

$ Wrinkl : int NA NA NA NA NA NA NA NA NA 4 ...

$ Length : num NA NA NA NA NA NA NA NA NA 8.7 ...

$ Flcwt : num NA NA NA NA NA NA NA NA NA 4.49 ...

$ Woolwt : num NA NA NA NA NA NA NA NA NA 2.48 ...

>

> merino.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","AA","AD","DD","D","S.hopi"))

Loading required package: Matrix

Loading required package: lattice

Pedigree Id check:
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No of rows with Id in original dataframe = 4449

No of sex codes not in sexcode[] so changed to NA = 642

No of rows with Sex == NA removed from dataframe = 642

No of rows with Id == NA removed from dataframe = 1

No of rows with duplicated Id removed from dataframe = 8

No of rows remaining after duplicates and NA’s removed = 3798

No of SId’s with no matching Id = 5

No of DId’s with no matching Id = 211

Length of dataframe with base Id’s added = 4014

Renumber pedigree Id’s:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

starting to make D....done

starting to make D....done

S-inverse made: Starting to make S....done

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

>

> str(merino.mdf$df)

’data.frame’: 4014 obs. of 12 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 1 1 1 1 1 ...

$ Yearbi : Factor w/ 18 levels "50","51","52",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearSbi: Factor w/ 18 levels "47","48","50",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearDbi: Factor w/ 22 levels "42","43","44",..: NA NA NA NA NA NA NA NA NA NA ...

$ Mob : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Agem : Factor w/ 2 levels "3","9": NA NA NA NA NA NA NA NA NA NA ...

$ Birls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Weanls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Ymat : num [1:4014, 1:11] NA NA NA NA NA NA NA NA NA NA ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr "47-1438" "48-1430" "48-1846" "48-1149" ...

.. ..$ : chr "Birwt" "Weanwt" "Crimp" "Densty" ...

>

We can see that mdf() has renumbered the Id’s, deleted some individua;s with
missing codes, added som base sires and dams, and made up the traits into a
matrix called ’Ymat’ to facilitate multi-trait analyses. It has also made all types
of relationship matrix and appended these to the mdf object.
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9.2 Fixed effects

In the Australian pastoral environment year of birth has a major effect on the
growth and productivity of sheep, so Yearbi and YearDbi are important fixed
effects. Males and females differ in wool production and are usually grazed
separately after puberty, so Sex is a fixed effect. In the present dataset, males
and females were measured at different ages ( males at 12 monthe, females at
15 months) in some years, and both at 15 months in other years. So Agem is
a fixed effect, but it only has 2 levels in some years, and in those years it is
confounded with Sex. The female flock was divided into two grazing mobs, so
Mob may have an effect but it could vary from year to year. Twin lambs suffer
a penalty in wool production. There is an argument that adjusting for litter
size (single or twin at either birth or weaning) as a fixed effect could remove
some genetic variation as well as any environmental effects on twinning. So the
effects Birls and Weanls are problematic and will require some consideration.

It is possible to use ’age of dam’ as a factor instead of ’YearDbi’ and this
leads to an equivalent model. One can not fit both ’age of dam’ and ’YearDbi’
in the presence of ’Yearbi’ as the three are completely confounded. We are going
to stay with ’YearDbi’.

The easiest way to arrive at a satisfactory fixed effects model is to just use
aov()( before trying to use dmm()

> junk <- aov(Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) + C(YearDbi, sum) +

C(Mob, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),merino.mdf$df)

> summary(junk)

Response Birwt :

Df Sum Sq Mean Sq F value Pr(>F)

C(Sex, sum) 1 26.19 26.185 105.5230 < 2.2e-16 ***

C(Yearbi, sum) 14 120.54 8.610 34.6962 < 2.2e-16 ***

C(YearDbi, sum) 20 18.82 0.941 3.7925 2.778e-08 ***

C(Mob, sum) 1 0.22 0.222 0.8947 0.3443

C(Agem, sum) 1 0.19 0.194 0.7811 0.3769

C(Birls, sum) 1 174.90 174.898 704.8159 < 2.2e-16 ***

C(Weanls, sum) 1 0.42 0.415 1.6724 0.1961

Residuals 2381 590.84 0.248

---

.....

Response Woolwt :

Df Sum Sq Mean Sq F value Pr(>F)

C(Sex, sum) 1 546.61 546.61 3340.7998 < 2.2e-16 ***

C(Yearbi, sum) 14 447.67 31.98 195.4356 < 2.2e-16 ***

C(YearDbi, sum) 20 3.44 0.17 1.0523 0.395260

C(Mob, sum) 1 0.19 0.19 1.1596 0.281652

C(Agem, sum) 1 130.99 130.99 800.5997 < 2.2e-16 ***

C(Birls, sum) 1 6.47 6.47 39.5323 3.826e-10 ***

C(Weanls, sum) 1 1.21 1.21 7.3768 0.006655 **
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Residuals 2381 389.57 0.16

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

1593 observations deleted due to missingness

>

> anova(junk)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.99951 435614 11 2371 < 2.2e-16 ***

C(Sex, sum) 1 0.81591 955 11 2371 < 2.2e-16 ***

C(Yearbi, sum) 14 2.91382 61 154 26191 < 2.2e-16 ***

C(YearDbi, sum) 20 0.16811 2 220 26191 4.198e-13 ***

C(Mob, sum) 1 0.00592 1 11 2371 0.2278

C(Agem, sum) 1 0.61968 351 11 2371 < 2.2e-16 ***

C(Birls, sum) 1 0.26530 78 11 2371 < 2.2e-16 ***

C(Weanls, sum) 1 0.04392 10 11 2371 < 2.2e-16 ***

Residuals 2381

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>

So there is am immediate problem with multiple traits - some fixed effects are
significant for some traits and not for others. For example Agem does not affect
Birwt because it is not relevant to that trait. Weanls is significant only for
Woolwt, Flcwt and Bodywt. Mob is significant only for Length and then only
at P = 0.05.

We have to make an overall decision, because dmm() fits the same model to
all traits. The manova table (see anova(junk) above) is probably the best guide.
It all fixed effects are significant except mob. So we will fit all except mob, but
there may be some debate later about Birls and Weanls being partly genetic.

9.3 Elementary partitioning of individual additive genetic
and environmental variation

We should first do the usual analysis assuming additivity at the individual level.

> merino.fitia <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 2

OLS-b step:
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no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

> merino.fitia$dme.corre

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.4169643

VarG(Ia) 0.4169643 1.0000000

Just as a matter if interest, this run took 5 mins real time and used 28Gb of
memory in the author’s PC. The correlation of 0.4169 between VarE(I) and
VarG(Ia) is not a serious collinearity. We therefore inspect the results with
some confidence.

> gsummary(merino.fitia)

Call:

gsummary.dmm(dmmobj = merino.fitia)

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.681 0.0109 0.660 0.702

VarG(Ia) Birwt 0.319 0.0109 0.298 0.340

VarP(I) Birwt 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Weanwt 0.805 0.00989 0.786 0.825

VarG(Ia) Weanwt 0.195 0.00989 0.175 0.214

VarP(I) Weanwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Crimp 0.544 0.0124 0.520 0.568

VarG(Ia) Crimp 0.456 0.0124 0.432 0.480

VarP(I) Crimp 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Densty 0.434 0.0137 0.407 0.461

VarG(Ia) Densty 0.566 0.0138 0.539 0.593

VarP(I) Densty 1.000 0.0000 1.000 1.000
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Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.467 0.0133 0.441 0.493

VarG(Ia) Diamtr 0.533 0.0133 0.507 0.559

VarP(I) Diamtr 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Yield 0.634 0.0113 0.612 0.656

VarG(Ia) Yield 0.366 0.0113 0.344 0.388

VarP(I) Yield 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bodywt 0.824 0.00978 0.804 0.843

VarG(Ia) Bodywt 0.176 0.00978 0.157 0.196

VarP(I) Bodywt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Wrinkl 0.563 0.0121 0.539 0.587

VarG(Ia) Wrinkl 0.437 0.0121 0.413 0.461

VarP(I) Wrinkl 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Length 0.685 0.0108 0.663 0.706

VarG(Ia) Length 0.315 0.0108 0.294 0.337

VarP(I) Length 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Flcwt 0.875 0.00954 0.856 0.893

VarG(Ia) Flcwt 0.125 0.00955 0.107 0.144

VarP(I) Flcwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.819 0.00981 0.800 0.839

VarG(Ia) Woolwt 0.181 0.00981 0.161 0.200

VarP(I) Woolwt 1.000 0.00000 1.000 1.000

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

.....

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.174 0.0272 0.121 0.228

VarG(Ia) Woolwt:Birwt 0.295 0.0371 0.223 0.368

VarP(I) Woolwt:Birwt 0.201 0.0185 0.165 0.237

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Weanwt 0.222 0.0248 0.173 0.270

VarG(Ia) Woolwt:Weanwt 0.334 0.0468 0.242 0.425

VarP(I) Woolwt:Weanwt 0.243 0.0183 0.207 0.278
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Crimp -0.181 0.0301 -0.240 -0.122

VarG(Ia) Woolwt:Crimp -0.433 0.0306 -0.493 -0.373

VarP(I) Woolwt:Crimp -0.245 0.0181 -0.281 -0.210

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Densty 0.125 0.0344 0.0581 0.193

VarG(Ia) Woolwt:Densty 0.193 0.0283 0.1377 0.248

VarP(I) Woolwt:Densty 0.137 0.0186 0.1000 0.173

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.239 0.0325 0.175 0.302

VarG(Ia) Woolwt:Diamtr 0.158 0.0288 0.102 0.215

VarP(I) Woolwt:Diamtr 0.197 0.0184 0.161 0.233

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Yield 0.356 0.0253 0.306 0.406

VarG(Ia) Woolwt:Yield 0.716 0.0302 0.657 0.776

VarP(I) Woolwt:Yield 0.441 0.0162 0.409 0.473

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Bodywt 0.4556 0.0225 0.412 0.500

VarG(Ia) Woolwt:Bodywt 0.0226 0.0493 -0.074 0.119

VarP(I) Woolwt:Bodywt 0.3783 0.0170 0.345 0.412

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Wrinkl 0.1955 0.0302 0.1363 0.2548

VarG(Ia) Woolwt:Wrinkl -0.0212 0.0331 -0.0861 0.0438

VarP(I) Woolwt:Wrinkl 0.1269 0.0187 0.0901 0.1636

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Length 0.567 0.0223 0.523 0.611

VarG(Ia) Woolwt:Length 0.294 0.0336 0.228 0.360

VarP(I) Woolwt:Length 0.495 0.0155 0.464 0.525

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Flcwt 0.912 0.00863 0.895 0.929

VarG(Ia) Woolwt:Flcwt 0.783 0.02397 0.736 0.830

VarP(I) Woolwt:Flcwt 0.890 0.00675 0.877 0.903

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

.....
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Just looking at the proportion of variance for ”VarG(Ia)” ( ie additive her-
itability) we find that most wool traits have a heritability of around 0.4 in
agreement with published results ( eg Brown and Turner(1968) [4]). The excep-
tions are Woolwt which is only 0.18 (and Flcwt which is almost the same thing
except it includes grease and dirt) and Bodywt. This is unexpected so it bears
further investigation.

Also listed are the genetic correlations of Woolwt with other traits. These
are important in relation to selection for Woolwt. All these genetic correlations
look reasonable and relate well to other published estimates. In particular the
important genetic correlation of Woolwt with Diamtr is 0.16 agrees closely with
published results.

If one were to list all the parameter estimates there would be a printout of
around 20 pages. The reason for the traitset and componentset arguments to
gsummary() should now be obvious. It is important to be able to browse subsets
of the results.

The standard errors of parameter estimates all appear acceptable, and this
is another good indicator of a reasonable model for the data and absence of
collinearities.

The results for fitting this simple model would seem to be a sound base, and
useful for comparison with other more complex models.

9.4 Investigation of maternal additive genetic and mater-
nal environmental variation

We now extend the model to include maternal additive genetic and maternal
environmental variances, and their genetic and environmental covariances with
individual variation. The aim is to see if maternal effects on wool traits are
large enough to warrant consideration in selection studies.

> merino.fitiama <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)", "VarE(M)", "VarG(Ma)", "CovG(Ia,Ma)",

"CovG(Ma,Ia)","CovE(I,M)", "CovE(M,I)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 8

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

DME substep:

QR option on dyadic model equations:
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DME substep completed:

OLS-b step completed:

>merino.fitiama$dme.corre

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovE(I,M)

VarE(I) 1.000000e+00 0.4169643 4.860238e-01 0.3318052 6.577546e-06

VarG(Ia) 4.169643e-01 1.0000000 3.727328e-01 0.4781302 1.811512e-01

VarE(M) 4.860238e-01 0.3727328 1.000000e+00 0.6816931 -4.326229e-05

VarG(Ma) 3.318052e-01 0.4781302 6.816931e-01 1.0000000 1.443848e-01

CovE(I,M) 6.577546e-06 0.1811512 -4.326229e-05 0.1443848 1.000000e+00

CovE(M,I) 6.577546e-06 0.1811512 -4.326229e-05 0.1443848 -8.916420e-06

CovG(Ia,Ma) 2.109631e-01 0.5930327 4.337594e-01 0.6950698 3.702673e-01

CovG(Ma,Ia) 2.109631e-01 0.5930327 4.337594e-01 0.6950698 9.175759e-02

CovE(M,I) CovG(Ia,Ma) CovG(Ma,Ia)

VarE(I) 6.577546e-06 0.21096311 0.21096311

VarG(Ia) 1.811512e-01 0.59303269 0.59303269

VarE(M) -4.326229e-05 0.43375940 0.43375940

VarG(Ma) 1.443848e-01 0.69506983 0.69506983

CovE(I,M) -8.916420e-06 0.37026729 0.09175759

CovE(M,I) 1.000000e+00 0.09175759 0.37026729

CovG(Ia,Ma) 9.175759e-02 1.00000000 0.47942974

CovG(Ma,Ia) 3.702673e-01 0.47942974 1.00000000

>

The above run took 9 mins real time and used 29Gb of memory, so adding
6 more components has only doubled the processing time.

The correlations are surprisingly good, the largest being 0.69 between VarG(Ma)
and CovG(Ia,Ma). We can proceed with some confidence to look at parameter
estimates. Just 3 traits for a start ( the gsummary output for all traits is now
so long it exceeds my scrollback length).

> gsummary(merino.fitiama, traitset=c("Birwt","Diamtr","Woolwt"))

Call:

gsummary.dmm(dmmobj = merino.fitiama, traitset = c("Birwt", "Diamtr",

"Woolwt"))

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.4137 0.0174 0.3795 0.44788

VarG(Ia) Birwt 0.1961 0.0129 0.1708 0.22146

VarE(M) Birwt 0.1404 0.0117 0.1175 0.16329

VarG(Ma) Birwt 0.2243 0.0141 0.1966 0.25197

CovE(I,M) Birwt 0.0399 0.0187 0.0033 0.07645

CovE(M,I) Birwt 0.0399 0.0187 0.0033 0.07645

CovG(Ia,Ma) Birwt -0.0271 0.0119 -0.0505 -0.00377

CovG(Ma,Ia) Birwt -0.0271 0.0119 -0.0505 -0.00377
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VarP(I) Birwt 1.0000 0.0000 1.0000 1.00000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.4670 0.0217 0.42451 0.50956

VarG(Ia) Diamtr 0.6156 0.0280 0.56076 0.67042

VarE(M) Diamtr 0.0501 0.0138 0.02302 0.07721

VarG(Ma) Diamtr 0.0185 0.0140 -0.00895 0.04598

CovE(I,M) Diamtr -0.0388 0.0249 -0.08765 0.00998

CovE(M,I) Diamtr -0.0388 0.0249 -0.08765 0.00998

CovG(Ia,Ma) Diamtr -0.0368 0.0145 -0.06523 -0.00835

CovG(Ma,Ia) Diamtr -0.0368 0.0145 -0.06523 -0.00835

VarP(I) Diamtr 1.0000 0.0000 1.00000 1.00000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.6994 0.0235 0.6533 0.7455

VarG(Ia) Woolwt 0.1899 0.0142 0.1620 0.2178

VarE(M) Woolwt 0.0357 0.0126 0.0109 0.0604

VarG(Ma) Woolwt 0.0797 0.0133 0.0536 0.1057

CovE(I,M) Woolwt 0.0505 0.0205 0.0103 0.0907

CovE(M,I) Woolwt 0.0505 0.0205 0.0103 0.0907

CovG(Ia,Ma) Woolwt -0.0528 0.0133 -0.0789 -0.0266

CovG(Ma,Ia) Woolwt -0.0528 0.0133 -0.0789 -0.0266

VarP(I) Woolwt 1.0000 0.0000 1.0000 1.0000

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarG(Ia) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarE(M) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarG(Ma) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

CovE(I,M) Birwt:Birwt 0.165 0.0804 0.00791 0.3230

CovE(M,I) Birwt:Birwt 0.165 0.0804 0.00791 0.3230

CovG(Ia,Ma) Birwt:Birwt -0.129 0.0527 -0.23261 -0.0261

CovG(Ma,Ia) Birwt:Birwt -0.129 0.0527 -0.23261 -0.0261

VarP(I) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Diamtr 0.0118 0.0488 -0.0838 0.107

VarG(Ia) Birwt:Diamtr -0.2417 0.0336 -0.3075 -0.176

VarE(M) Birwt:Diamtr 0.3388 0.1653 0.0147 0.663

VarG(Ma) Birwt:Diamtr 0.8375 0.3687 0.1149 1.560

CovE(I,M) Birwt:Diamtr 0.5157 0.1676 0.1872 0.844

CovE(M,I) Birwt:Diamtr 0.0790 0.0842 -0.0861 0.244

CovG(Ia,Ma) Birwt:Diamtr -0.2671 0.2537 -0.7644 0.230
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CovG(Ma,Ia) Birwt:Diamtr -0.1086 0.0355 -0.1781 -0.039

VarP(I) Birwt:Diamtr 0.0417 0.0341 -0.0251 0.108

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Woolwt 0.153 0.0366 0.08112 0.2245

VarG(Ia) Birwt:Woolwt 0.313 0.0553 0.20441 0.4212

VarE(M) Birwt:Woolwt 0.329 0.1665 0.00307 0.6557

VarG(Ma) Birwt:Woolwt 0.546 0.0901 0.36901 0.7223

CovE(I,M) Birwt:Woolwt 0.470 0.1889 0.10012 0.8408

CovE(M,I) Birwt:Woolwt 0.078 0.0656 -0.05060 0.2067

CovG(Ia,Ma) Birwt:Woolwt -0.248 0.0993 -0.44216 -0.0530

CovG(Ma,Ia) Birwt:Woolwt -0.184 0.0599 -0.30120 -0.0664

VarP(I) Birwt:Woolwt 0.252 0.0313 0.19021 0.3128

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Birwt 0.0118 0.0488 -0.0838 0.107

VarG(Ia) Diamtr:Birwt -0.2417 0.0336 -0.3075 -0.176

VarE(M) Diamtr:Birwt 0.3388 0.1653 0.0147 0.663

VarG(Ma) Diamtr:Birwt 0.8375 0.3687 0.1149 1.560

CovE(I,M) Diamtr:Birwt 0.0790 0.0842 -0.0861 0.244

CovE(M,I) Diamtr:Birwt 0.5157 0.1676 0.1872 0.844

CovG(Ia,Ma) Diamtr:Birwt -0.1086 0.0355 -0.1781 -0.039

CovG(Ma,Ia) Diamtr:Birwt -0.2671 0.2537 -0.7644 0.230

VarP(I) Diamtr:Birwt 0.0417 0.0341 -0.0251 0.108

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarG(Ia) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarE(M) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarG(Ma) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

CovE(I,M) Diamtr:Diamtr -0.254 0.165 -0.577 0.0694

CovE(M,I) Diamtr:Diamtr -0.254 0.165 -0.577 0.0694

CovG(Ia,Ma) Diamtr:Diamtr -0.345 0.113 -0.566 -0.1233

CovG(Ma,Ia) Diamtr:Diamtr -0.345 0.113 -0.566 -0.1233

VarP(I) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Woolwt 0.225 0.0377 0.151 0.2986

VarG(Ia) Diamtr:Woolwt 0.187 0.0347 0.119 0.2555

VarE(M) Diamtr:Woolwt 0.450 0.2992 -0.137 1.0363

VarG(Ma) Diamtr:Woolwt 0.913 0.4136 0.102 1.7239

CovE(I,M) Diamtr:Woolwt -0.258 0.1854 -0.621 0.1055

CovE(M,I) Diamtr:Woolwt 0.139 0.1229 -0.102 0.3795

CovG(Ia,Ma) Diamtr:Woolwt -0.039 0.0612 -0.159 0.0809

CovG(Ma,Ia) Diamtr:Woolwt -0.600 0.2966 -1.182 -0.0192

VarP(I) Diamtr:Woolwt 0.195 0.0346 0.127 0.2629
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.153 0.0366 0.08112 0.2245

VarG(Ia) Woolwt:Birwt 0.313 0.0553 0.20441 0.4212

VarE(M) Woolwt:Birwt 0.329 0.1665 0.00307 0.6557

VarG(Ma) Woolwt:Birwt 0.546 0.0901 0.36901 0.7223

CovE(I,M) Woolwt:Birwt 0.078 0.0656 -0.05060 0.2067

CovE(M,I) Woolwt:Birwt 0.470 0.1889 0.10012 0.8408

CovG(Ia,Ma) Woolwt:Birwt -0.184 0.0599 -0.30120 -0.0664

CovG(Ma,Ia) Woolwt:Birwt -0.248 0.0993 -0.44216 -0.0530

VarP(I) Woolwt:Birwt 0.252 0.0313 0.19021 0.3128

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.225 0.0377 0.151 0.2986

VarG(Ia) Woolwt:Diamtr 0.187 0.0347 0.119 0.2555

VarE(M) Woolwt:Diamtr 0.450 0.2992 -0.137 1.0363

VarG(Ma) Woolwt:Diamtr 0.913 0.4136 0.102 1.7239

CovE(I,M) Woolwt:Diamtr 0.139 0.1229 -0.102 0.3795

CovE(M,I) Woolwt:Diamtr -0.258 0.1854 -0.621 0.1055

CovG(Ia,Ma) Woolwt:Diamtr -0.600 0.2966 -1.182 -0.0192

CovG(Ma,Ia) Woolwt:Diamtr -0.039 0.0612 -0.159 0.0809

VarP(I) Woolwt:Diamtr 0.195 0.0346 0.127 0.2629

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarG(Ia) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarE(M) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarG(Ma) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

CovE(I,M) Woolwt:Woolwt 0.320 0.1422 0.0408 0.598

CovE(M,I) Woolwt:Woolwt 0.320 0.1422 0.0408 0.598

CovG(Ia,Ma) Woolwt:Woolwt -0.429 0.0866 -0.5987 -0.259

CovG(Ma,Ia) Woolwt:Woolwt -0.429 0.0866 -0.5987 -0.259

VarP(I) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Birwt:Birwt 0.3089 0.00950 0.2903 0.3275

2 Birwt:Diamtr 0.0469 0.03812 -0.0279 0.1216

3 Birwt:Woolwt 0.0603 0.00777 0.0451 0.0755

4 Diamtr:Birwt 0.0469 0.03812 -0.0279 0.1216

5 Diamtr:Diamtr 4.0907 0.15276 3.7913 4.3902

6 Diamtr:Woolwt 0.1701 0.03116 0.1091 0.2312

7 Woolwt:Birwt 0.0603 0.00777 0.0451 0.0755

8 Woolwt:Diamtr 0.1701 0.03116 0.1091 0.2312

108



9 Woolwt:Woolwt 0.1861 0.00635 0.1736 0.1985

>

There is very little maternal additive genetic variance, except for traits
’Birwt’ and ’Weanwt’. There is a slight amount for ’Bodywt’, ’Flcwt’, and
’Woolwt’. For wool traits other than weight there is near-zero ”VarG(Ma)”.
The genetic and environmental covariances of individual and maternal effcts
are negligable for all traits.

The possibility that fitting ’Birls’ and ’Weanls’ fixed effects had obscured
any maternal efects was investigated with a run omitting the above two fixed
effects. The result was almost the same as above, and is not reported.

9.5 Investigation of individual additive genetic sexlinked
variation

We now try extending the model in a different direction. We wish to see if there
is evidence for existence of genetic sexlinked variation, so we fit ”VarGs(Ia)” in
addition to the basic model of ”VarE(I)” + ”VarG(Ia)”.

> merino.fitiasl <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

> gsummary(merino.fitiasl)

Call:

gsummary.dmm(dmmobj = merino.fitiasl)

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):
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Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.208 0.02229 0.165 0.252

VarG(Ia) Birwt 0.194 0.00897 0.176 0.211

VarGs(Ia) Birwt 0.598 0.02240 0.554 0.642

VarP(I) Birwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Weanwt 0.442 0.0231 0.3972 0.488

VarG(Ia) Weanwt 0.118 0.0098 0.0991 0.138

VarGs(Ia) Weanwt 0.439 0.0242 0.3917 0.487

VarP(I) Weanwt 1.000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Crimp 0.409 0.01996 0.370 0.448

VarG(Ia) Crimp 0.367 0.00985 0.348 0.386

VarGs(Ia) Crimp 0.224 0.01984 0.185 0.263

VarP(I) Crimp 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Densty 0.50436 0.0191 0.4669 0.5418

VarG(Ia) Densty 0.49331 0.0109 0.4719 0.5147

VarGs(Ia) Densty 0.00233 0.0193 -0.0355 0.0402

VarP(I) Densty 1.00000 0.0000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.5116 0.01746 0.4774 0.5459

VarG(Ia) Diamtr 0.4314 0.00944 0.4129 0.4499

VarGs(Ia) Diamtr 0.0569 0.01768 0.0223 0.0916

VarP(I) Diamtr 1.0000 0.00000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Yield 0.534 0.0234 0.4879 0.579

VarG(Ia) Yield 0.344 0.0118 0.3209 0.367

VarGs(Ia) Yield 0.122 0.0239 0.0755 0.169

VarP(I) Yield 1.000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bodywt 0.631 0.0226 0.586 0.675

VarG(Ia) Bodywt 0.137 0.0102 0.117 0.157

VarGs(Ia) Bodywt 0.233 0.0241 0.186 0.280

VarP(I) Bodywt 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Wrinkl 0.5160 0.0226 0.4717 0.560

VarG(Ia) Wrinkl 0.4149 0.0121 0.3912 0.439

VarGs(Ia) Wrinkl 0.0691 0.0229 0.0242 0.114
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VarP(I) Wrinkl 1.0000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Length 0.547 0.01862 0.510 0.583

VarG(Ia) Length 0.251 0.00876 0.234 0.268

VarGs(Ia) Length 0.202 0.01928 0.164 0.240

VarP(I) Length 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Flcwt 0.6305 0.02083 0.5897 0.6713

VarG(Ia) Flcwt 0.0808 0.00922 0.0627 0.0988

VarGs(Ia) Flcwt 0.2888 0.02236 0.2449 0.3326

VarP(I) Flcwt 1.0000 0.00000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.657 0.02116 0.615 0.698

VarG(Ia) Woolwt 0.147 0.00964 0.128 0.165

VarGs(Ia) Woolwt 0.196 0.02254 0.152 0.241

VarP(I) Woolwt 1.000 0.00000 1.000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-b):

....

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt -0.0433 0.0717 -0.184 0.0973

VarG(Ia) Woolwt:Birwt 0.2115 0.0512 0.111 0.3118

VarGs(Ia) Woolwt:Birwt 0.6284 0.0640 0.503 0.7538

VarP(I) Woolwt:Birwt 0.2350 0.0162 0.203 0.2668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Weanwt 0.198 0.0484 0.103 0.292

VarG(Ia) Woolwt:Weanwt 0.347 0.0681 0.214 0.481

VarGs(Ia) Woolwt:Weanwt 0.467 0.0730 0.323 0.610

VarP(I) Woolwt:Weanwt 0.289 0.0170 0.256 0.323

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Crimp -0.0175 0.0467 -0.109 0.0741

VarG(Ia) Woolwt:Crimp -0.3813 0.0360 -0.452 -0.3107

VarGs(Ia) Woolwt:Crimp -0.6502 0.0948 -0.836 -0.4644

VarP(I) Woolwt:Crimp -0.2339 0.0158 -0.265 -0.2030

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Densty -0.0171 0.0442 -0.1036 0.0695

VarG(Ia) Woolwt:Densty 0.1421 0.0319 0.0795 0.2047

VarGs(Ia) Woolwt:Densty 0.8900 1.2007 -1.4633 3.2434
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VarP(I) Woolwt:Densty 0.0475 0.0163 0.0155 0.0794

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.208 0.0399 0.1297 0.286

VarG(Ia) Woolwt:Diamtr 0.160 0.0323 0.0972 0.224

VarGs(Ia) Woolwt:Diamtr 0.769 0.1981 0.3809 1.158

VarP(I) Woolwt:Diamtr 0.242 0.0152 0.2125 0.272

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Yield 0.391 0.0404 0.3121 0.471

VarG(Ia) Woolwt:Yield 0.773 0.0366 0.7009 0.845

VarGs(Ia) Woolwt:Yield 0.231 0.1301 -0.0242 0.486

VarP(I) Woolwt:Yield 0.441 0.0156 0.4105 0.472

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Bodywt 0.4281 0.0379 0.354 0.5023

VarG(Ia) Woolwt:Bodywt -0.0895 0.0722 -0.231 0.0519

VarGs(Ia) Woolwt:Bodywt 0.4269 0.0940 0.243 0.6111

VarP(I) Woolwt:Bodywt 0.3542 0.0163 0.322 0.3860

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Wrinkl 0.2142 0.0459 0.1242 0.3042

VarG(Ia) Woolwt:Wrinkl -0.0230 0.0390 -0.0995 0.0535

VarGs(Ia) Woolwt:Wrinkl -0.0365 0.2342 -0.4956 0.4226

VarP(I) Woolwt:Wrinkl 0.1148 0.0177 0.0802 0.1494

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Length 0.551 0.0331 0.486 0.616

VarG(Ia) Woolwt:Length 0.277 0.0393 0.200 0.355

VarGs(Ia) Woolwt:Length 0.690 0.0803 0.533 0.848

VarP(I) Woolwt:Length 0.521 0.0131 0.495 0.547

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Flcwt 0.927 0.01419 0.899 0.955

VarG(Ia) Woolwt:Flcwt 0.783 0.03260 0.719 0.847

VarGs(Ia) Woolwt:Flcwt 0.895 0.03237 0.832 0.958

VarP(I) Woolwt:Flcwt 0.895 0.00612 0.883 0.907

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarGs(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

.....
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>

First look at the proportions. There is a significant ”VarGs(Ia)” proportion
for Birwt, Weanwt, Crimp, Yield, Bodywt, Length, Flcwt, and Woolwt. In
most cases this extra component of variance has come out of VarE(I), which is
thereby reduced.

For Woolwt and Flcwt we now have 2 genetic components of variance (VarG(Ia)
and VarGs(Ia)) which add up to about 0.35 of the phenotypic variance. This
may explain why published results for heritability of Woolwt of around 0.4
disagree with the current analysis. Published estimates come from either pater-
nal half-sisters or dam-daughter analyses, which would be expected to include
sexlinked genetic variance (Fairbairn and Roff(2006) [6]). In the present analysis
based on full pedigree information and including male obsevations the sexlinked
variation is separated, so the the ”VarG(Ia)” component ends up smaller. For
other traits, the sexlinked component is small, and they end up with heritabili-
ties which agree with published figures.

If there is a real sexlinked genetic component for Flcwt and Woolwt, it is
interesting to ask which physical components of wool weight show it. It can be
seen that there is no ”VarGs(Ia)” for Densty or Diamtr or Wrinkl, but there is
for Length and Bodywt. So the components which are set early in life do not
show it.

The standard errors of these proportions are sometimes a little larger than
those when only VarE(I) and VarG(Ia) are fitted, but there is nothing to indicate
an overfitting or too much collinearity.

The genetic correlations require more caution in interpretation. The stan-
dard errors are larger than when just VarE(I) and VarG(Ia) are fitted. One
should also be wary of attaching too much importance to genetic correlations for
traits for which the corresponding proportion(s) are close to zero. For example,
the important Diamtr x Woolwt correlation - for VarG(Ia) the 0.16 is believable
and significant and agrees with published results (Brown and Turner(1968) [4]),
but for VarGs(Ia) the 0.76 should be ignored. Correlations among delicately
balanced near zero quantities are not of interest. On the other hand, the 0.69
correlation for VarGs(Ia) for Length x Woolwt is large and significant and means
something.

The consequences of a VarGs(Ia) component for selection are interesting.
Genetic change in a population can be divided into four pathways

� male-to-male

� male-to-female

� female-to-male

� female-to-female

If there is a lot of sexlinked genetic variance, the male-to-male pathway is inef-
fective, because a male passes its X chromasome only to daughters. This may
explain why breeding programs involving selection for Woolwt are sometimes
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less effective than anticipated . Selection tends to be concentrated on males
because the intensity can be higher and the male-to-male generation interval is
small.

A more comprehensive study of the consequences of selection for Woolwt
under this sexlinked additive model must await further development of the
gresponse() function, which currently does not have the facility to deal with
sexlinked components of variation.

There is also a need to check the above conclusions with other datasets.
A recognition of the presence of sexlinked genetic variation for wool traits in
Australian Merino sheep would have consequences for the implementation of
breeding plans. One needs to be sure of its correctness and general applica-
bility before proceeding with field recommendations. One simple independent
check would be to look separately at the genetic superiority of male and female
offspring of selected males.

There is one additional check which we can do. We can rerun the analysis
using the dmeopt=”pcr” argument. This will tell us how serious the collinearities
are and offers an option to remove them by constraining the estimates (see
section 7.4). Unfortunately the model with 11 traits exceeds the array size limit
in R if ”pcr” is used. What we can do is revert to just one trait.

> merinokeep.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","S.hopi"),keep=T)

.....

>

> merino.fitiaslpcr <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"),

dmeopt="pcr")

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

DME substep:

PCR option on dyadic model equations:

.....

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 77.81599 96.22261 100.00000
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evec 0.03008 0.03997 0.04277

DME substep completed:

OLS-b step completed:

>

> attributes(merino.fitiaslpcr)

$names

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "pcr.loadings"

[13] "dmeopt" "siga" "sesiga"

[16] "vard" "degfd" "component"

[19] "correlation" "correlation.variance" "correlation.se"

[22] "fraction" "fraction.variance" "fraction.se"

[25] "variance.components" "variance.components.se" "phenotypic.variance"

[28] "phenotypic.variance.se" "observed.variance" "call"

$class

[1] "dmm"

> merino.fitiaslpcr$pcr.loadings

Loadings:

Comp 1 Comp 2 Comp 3

‘VarE(I)‘ 0.235 -0.563 0.792

‘VarG(Ia)‘ 0.892 0.450

‘VarGs(Ia)‘ 0.387 -0.693 -0.608

Comp 1 Comp 2 Comp 3

SS loadings 1.000 1.000 1.000

Proportion Var 0.333 0.333 0.333

Cumulative Var 0.333 0.667 1.000

>

The ”% variance explained” shows that we can delete one principal compo-
nent and still analyse 96.22 percent of the variation. The loadings show that if
we proceed with just 2 principal components we are applying the constraint

0.792× V arE(I)− 0.608× V arGs(Ia) = 0

which defines a plane in 3D component space to which the estimates are
confined. If we proceed with two principal components we get the following

> merino.fitiaslpcr2 <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"),

dmeopt="pcr",dmekeepfit=T,ncomp=2)
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Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

DME substep:

PCR option on dyadic model equations:

.....

DME substep completed:

OLS-b step completed:

>

> gsummary(merino.fitiaslpcr2)

Call:

gsummary.dmm(dmmobj = merino.fitiaslpcr2)

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.365 0.00733 0.351 0.379

VarG(Ia) Woolwt 0.147 0.01429 0.119 0.175

VarGs(Ia) Woolwt 0.488 0.00730 0.474 0.503

VarP(I) Woolwt 1.000 0.00000 1.000 1.000

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarGs(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.146 0.00472 0.136 0.155

>
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These estimates compare favourably with those obtained with the default
dmeopt=”qr” argument. The standard errors are smaller, the estimates are
similar, and the assumption of independence is not violated because the two
principal components used are uncorrelated.

We conclude that one can have some confidence in the default dmeopt=”qr”
results and that the presence of an individual additive genetic sexlinked com-
ponent of variance is real and of a significant magnitude.

9.6 Investigation of maternal additive genetic sexlinked
variation

It is possible for maternal additive effects to be sexlinked. To investigate this we
need to add the component ”VarGs(Ma)”. It would not make sense to fit this
component without also fitting a maternal additive autosomal componment. So
we need to resurrect ”VarG(Ma)” even though we have already concluded that
it is insignificant for most traits. Also to fit maternal genetic effects without
a corresponding maternal environmental effect would be inappropriate, so we
also resurrect ”VarE(M)”. We will, however, avoid the covariances (individual
x maternal) previously fitted. We fit a 6 component model as follows.

> merino.fitiamasl <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)","VarGs(Ia)","VarE(M)","VarG(Ma)",

"VarGs(Ma)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 6

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

DME substep:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

> merino.fitiamasl$dme.corre

VarE(I) VarG(Ia) VarGs(Ia) VarE(M) VarG(Ma) VarGs(Ma)

VarE(I) 1.0000000 0.4169643 0.7540543 0.4860238 0.3318052 0.3923530

VarG(Ia) 0.4169643 1.0000000 0.5575606 0.3727328 0.4781302 0.4516340

VarGs(Ia) 0.7540543 0.5575606 1.0000000 0.6578486 0.6740459 0.7968618

VarE(M) 0.4860238 0.3727328 0.6578486 1.0000000 0.6816931 0.8072148

VarG(Ma) 0.3318052 0.4781302 0.6740459 0.6816931 1.0000000 0.8462307
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VarGs(Ma) 0.3923530 0.4516340 0.7968618 0.8072148 0.8462307 1.0000000

>

> gsummary(merino.fitiamasl,traitset=c("Birwt","Diamtr","Woolwt"))

Call:

gsummary.dmm(dmmobj = merino.fitiamasl, traitset = c("Birwt",

"Diamtr", "Woolwt"))

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.3802 0.02192 0.3373 0.423

VarG(Ia) Birwt 0.1365 0.00659 0.1236 0.149

VarGs(Ia) Birwt 0.0987 0.02682 0.0461 0.151

VarE(M) Birwt 0.0720 0.01122 0.0500 0.094

VarG(Ma) Birwt 0.0986 0.00804 0.0829 0.114

VarGs(Ma) Birwt 0.2139 0.01557 0.1834 0.244

VarP(I) Birwt 1.0000 0.00000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.40157 0.02475 0.3531 0.4501

VarG(Ia) Diamtr 0.42181 0.00912 0.4039 0.4397

VarGs(Ia) Diamtr 0.08907 0.03038 0.0295 0.1486

VarE(M) Diamtr 0.06726 0.01271 0.0424 0.0922

VarG(Ma) Diamtr 0.00812 0.00904 -0.0096 0.0258

VarGs(Ma) Diamtr 0.01218 0.01738 -0.0219 0.0462

VarP(I) Diamtr 1.00000 0.00000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.58630 0.02550 0.5363 0.6363

VarG(Ia) Woolwt 0.12212 0.00787 0.1067 0.1375

VarGs(Ia) Woolwt 0.15043 0.03223 0.0873 0.2136

VarE(M) Woolwt 0.03789 0.01344 0.0116 0.0642

VarG(Ma) Woolwt 0.00493 0.00957 -0.0138 0.0237

VarGs(Ma) Woolwt 0.09832 0.01847 0.0621 0.1345

VarP(I) Woolwt 1.00000 0.00000 1.0000 1.0000

Correlation corresponding to each var/covariance component partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Birwt 1 0 1 1

VarG(Ia) Birwt:Birwt 1 0 1 1

VarGs(Ia) Birwt:Birwt 1 0 1 1

VarE(M) Birwt:Birwt 1 0 1 1

VarG(Ma) Birwt:Birwt 1 0 1 1
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VarGs(Ma) Birwt:Birwt 1 0 1 1

VarP(I) Birwt:Birwt 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Diamtr -0.0955 0.0644 -0.2218 0.0308

VarG(Ia) Birwt:Diamtr -0.3268 0.0290 -0.3836 -0.2700

VarGs(Ia) Birwt:Diamtr 0.6062 0.3522 -0.0841 1.2966

VarE(M) Birwt:Diamtr 0.4145 0.1851 0.0516 0.7773

VarG(Ma) Birwt:Diamtr 0.7088 0.4994 -0.2701 1.6876

VarGs(Ma) Birwt:Diamtr 0.8744 0.6524 -0.4042 2.1530

VarP(I) Birwt:Diamtr 0.0346 0.0126 0.0099 0.0593

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Woolwt 0.113 0.0539 0.00694 0.218

VarG(Ia) Birwt:Woolwt 0.207 0.0528 0.10343 0.310

VarGs(Ia) Birwt:Woolwt 0.124 0.2187 -0.30437 0.553

VarE(M) Birwt:Woolwt 0.510 0.2282 0.06284 0.957

VarG(Ma) Birwt:Woolwt 0.324 0.3921 -0.44458 1.092

VarGs(Ma) Birwt:Woolwt 0.298 0.1115 0.07924 0.516

VarP(I) Birwt:Woolwt 0.172 0.0126 0.14728 0.197

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Birwt -0.0955 0.0644 -0.2218 0.0308

VarG(Ia) Diamtr:Birwt -0.3268 0.0290 -0.3836 -0.2700

VarGs(Ia) Diamtr:Birwt 0.6062 0.3522 -0.0841 1.2966

VarE(M) Diamtr:Birwt 0.4145 0.1851 0.0516 0.7773

VarG(Ma) Diamtr:Birwt 0.7088 0.4994 -0.2701 1.6876

VarGs(Ma) Diamtr:Birwt 0.8744 0.6524 -0.4042 2.1530

VarP(I) Diamtr:Birwt 0.0346 0.0126 0.0099 0.0593

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Diamtr 1 0 1.00 1.00

VarG(Ia) Diamtr:Diamtr 1 0 1.00 1.00

VarGs(Ia) Diamtr:Diamtr 1 0 1.00 1.00

VarE(M) Diamtr:Diamtr 1 0 1.00 1.00

VarG(Ma) Diamtr:Diamtr 1 1 -0.96 2.96

VarGs(Ma) Diamtr:Diamtr 1 0 1.00 1.00

VarP(I) Diamtr:Diamtr 1 0 1.00 1.00

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Woolwt 0.243 0.0552 0.1350 0.351

VarG(Ia) Diamtr:Woolwt 0.160 0.0321 0.0973 0.223

VarGs(Ia) Diamtr:Woolwt 0.792 0.2738 0.2553 1.329

VarE(M) Diamtr:Woolwt 0.389 0.2456 -0.0924 0.870

VarG(Ma) Diamtr:Woolwt -0.317 8.3706 -16.7234 16.090

VarGs(Ma) Diamtr:Woolwt 0.616 0.5470 -0.4565 1.688
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VarP(I) Diamtr:Woolwt 0.285 0.0133 0.2589 0.311

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.113 0.0539 0.00694 0.218

VarG(Ia) Woolwt:Birwt 0.207 0.0528 0.10343 0.310

VarGs(Ia) Woolwt:Birwt 0.124 0.2187 -0.30437 0.553

VarE(M) Woolwt:Birwt 0.510 0.2282 0.06284 0.957

VarG(Ma) Woolwt:Birwt 0.324 0.3921 -0.44458 1.092

VarGs(Ma) Woolwt:Birwt 0.298 0.1115 0.07924 0.516

VarP(I) Woolwt:Birwt 0.172 0.0126 0.14728 0.197

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.243 0.0552 0.1350 0.351

VarG(Ia) Woolwt:Diamtr 0.160 0.0321 0.0973 0.223

VarGs(Ia) Woolwt:Diamtr 0.792 0.2738 0.2553 1.329

VarE(M) Woolwt:Diamtr 0.389 0.2456 -0.0924 0.870

VarG(Ma) Woolwt:Diamtr -0.317 8.3706 -16.7234 16.090

VarGs(Ma) Woolwt:Diamtr 0.616 0.5470 -0.4565 1.688

VarP(I) Woolwt:Diamtr 0.285 0.0133 0.2589 0.311

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1.00 1.00

VarG(Ia) Woolwt:Woolwt 1 0 1.00 1.00

VarGs(Ia) Woolwt:Woolwt 1 0 1.00 1.00

VarE(M) Woolwt:Woolwt 1 0 1.00 1.00

VarG(Ma) Woolwt:Woolwt 1 1 -0.96 2.96

VarGs(Ma) Woolwt:Woolwt 1 0 1.00 1.00

VarP(I) Woolwt:Woolwt 1 0 1.00 1.00

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Birwt:Birwt 0.4049 0.00478 0.3955 0.4142

2 Birwt:Diamtr 0.0528 0.01918 0.0152 0.0904

3 Birwt:Woolwt 0.0519 0.00391 0.0443 0.0596

4 Diamtr:Birwt 0.0528 0.01918 0.0152 0.0904

5 Diamtr:Diamtr 5.7428 0.07685 5.5922 5.8935

6 Diamtr:Woolwt 0.3242 0.01567 0.2935 0.3550

7 Woolwt:Birwt 0.0519 0.00391 0.0443 0.0596

8 Woolwt:Diamtr 0.3242 0.01567 0.2935 0.3550

9 Woolwt:Woolwt 0.2254 0.00319 0.2191 0.2317

>
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On initial inspection this model seems to be a reasonable fit. The standard
errors of estimates of proportions are generally as small as those in previous
models. There is evidence of ”VarGs(Ma)” being a significant proportion of the
variance for Birwt, Weanwt, Flcwt, and Woolwt. For these traits the other ma-
ternal components are reduced, indicating that ”VarGs(Ma)” has taken variance
away from the autosomal genetic and environmental maternal components. In
the case of Birwt, the individual sexlinked component is also reduced, but not
for other traits.

There are more collinearities in this model than in previous models. The
column correlations have two exceeding 0.8 and two more exceeding 0.7. We
need to rerun with dmeopt=”pcr” and see what effect removing the collinearities
has on the estimates. Again we have to revert to one trait

> merinokeep.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","S.hopi"),keep=T)

.....

> merino.fitiamaslpcr <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)",

"VarE(M)","VarG(Ma)","VarGs(Ma)"), dmeopt="pcr")

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 6

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

DME substep:

PCR option on dyadic model equations:

Data: X dimension: 7480225 6

Y dimension: 7480225 1

Fit method: svdpc

Number of components considered: 6

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611

adjCV 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611
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TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

X 71.64997 85.71700 93.01582 96.65201 99.60010 100.00000

evec 0.01946 0.02729 0.03319 0.04001 0.04196 0.04297

DME substep completed:

OLS-b step completed:

>

> merino.fitiamaslpcr$pcr.loadings

Loadings:

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

‘VarE(I)‘ 0.112 -0.115 0.344 -0.528 -0.457 0.606

‘VarG(Ia)‘ 0.324 -0.918 0.214

‘VarGs(Ia)‘ 0.250 0.247 -0.604 -0.711

‘VarE(M)‘ 0.388 0.217 0.604 0.548 -0.338 -0.151

‘VarG(Ma)‘ 0.611 0.191 -0.660 -0.392

‘VarGs(Ma)‘ 0.545 0.235 0.139 -0.100 0.719 0.320

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167

Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

>

This shows that we can omit principal components 5 and 6 and still analyze
96.65 percent of the variation. The constraints implied by dropping components
5 and 6 are shown by the respective columns of the loadings. If we rerun the
”pcr” analysis with only 4 principal components we get

> merino.fitiamaslpcr2 <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)",

"VarE(M)","VarG(Ma)","VarGs(Ma)"), dmeopt="pcr",ncomp=4)

Dyadic mixed model fit for datafile: merinokeep.mdf

.....

OLS-b step completed:

>

> gsummary(merino.fitiamaslpcr2)

Call:

gsummary.dmm(dmmobj = merino.fitiamaslpcr2)

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 3.54e-01 0.00960 0.3354 0.373

VarG(Ia) Woolwt 1.63e-01 0.01198 0.1391 0.186
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VarGs(Ia) Woolwt 3.72e-01 0.01045 0.3512 0.392

VarE(M) Woolwt 5.80e-09 Inf -Inf Inf

VarG(Ma) Woolwt 5.80e-09 Inf -Inf Inf

VarGs(Ma) Woolwt 1.12e-01 0.00884 0.0942 0.129

VarP(I) Woolwt 1.00e+00 0.00000 1.0000 1.000

.....

Phenotypic var/covariance from components partitioned by DME (OLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.172 0.00435 0.164 0.181

>

So we have some nasty standard errors and near-zero estimates for ”VarE(M)”
and ”VarG(Ma)” suggesting that they should not be fitted. However the esti-
mates for the other components are similar to those obtained with dmeopt=”qr”
and their standard errors are small. We conclude that the components ”VarGs(Ia)”
and ”VarGs(Ma)” are real and of sufficient magnitude to warrant inclusion in
the model. If the constrained estimate obtained with ”pcr” do not differ greatly
from the unconstrained estimates obtained with ”qr” it is an indication that the
collinearities are not serious. If we were to drop ”VarE(M)” and ”VarG(Ma)”
some of the strongest column correlations would be removed. We will pursue
this course for the final run with gls=T in the following section.

9.7 Final analysis and GLS-b estimates

It is convenient to use OLS-b estimates when investigating models, then finish
off with an iterative GLS-b run to obtain bias-corrected ML estimates. We shall
now do this omitting ”VarE(M)” and ”VarG(Ma)” as noted above.

> merino.fitgls <- dmm(merino.mdf, Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"),gls=T)

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 4

OLS-b step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

DME substep:
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QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

GLS-b step:

Warning: Multivariate GLS is not same as multiple univariate GLS’s

Error in matrix(0, am$n * am$n * am$l * am$l, am$v) :

too many elements specified

>

So we cannot complete the GLS-b step with 11 traits - One of the arrays used
exceeds the R limit of 231 − 1 elements. So lets do it with one trait

> merino.fitgls <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"),gls=T)

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 4

OLS-b step:

.....

OLS-b step completed:

GLS-b step:

Round = 1 Stopcrit = 0.01250322

Round = 2 Stopcrit = 0.002486147

Iteration completed - count = 2

Convergence achieved

GLS-b step completed successfully:

>

> gsummary(merino.fitgls,gls=T)

Call:

gsummary.dmm(dmmobj = merino.fitgls, gls = T)

Proportion of phenotypic var/covariance partitioned by DME to each component (OLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.7485 0.0283 0.692933 0.8040

VarG(Ia) Woolwt 0.1561 0.0102 0.136055 0.1761

VarGs(Ia) Woolwt 0.0675 0.0399 -0.010722 0.1458

VarGs(Ma) Woolwt 0.0279 0.0145 -0.000569 0.0564

VarP(I) Woolwt 1.0000 0.0000 1.000000 1.0000

.....
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Proportion of phenotypic var/covariance partitioned by DME to each component (GLS-b):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.7429 0.02831 0.687363 0.7983

VarG(Ia) Woolwt 0.1546 0.00999 0.135021 0.1742

VarGs(Ia) Woolwt 0.0778 0.03987 -0.000332 0.1560

VarGs(Ma) Woolwt 0.0247 0.01450 -0.003692 0.0532

VarP(I) Woolwt 1.0000 0.00000 1.000000 1.0000

.....

Phenotypic var/covariance from components partitioned by DME (GLS-b):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.166 0.00311 0.16 0.172

>

The OLS-b and GLS-b estimates are almost identical for this trait. GLS-b
offers a slight improvement in the standard errors. In my experience this is what
happens whenever the model is reasonable for the dataset and the dataset is
sufficiently large. What causes OLS-b and GLS-b to differ is correlations among
the residuals, and that only happens when the model is inappropriate.

We conclude that the above 4 component model is appropriate and proceed
with some further analysis of genetic (co)variation among wool traits.

9.8 Investigation of genetic (co)variation among Merino
wool traits

Wool is a more complicated product than most production traits to which quan-
titative genetics is applied. It takes a number of measured traits to describe the
quantity and quality of the wool obtained from a sheep, and a further number
of traits to understand its relationship to the sheep as a whole.

Now that we have an appropriate model for estimating genetic (co)variance
components for wool traits, we can take a closer look at the genetic corelations
and what they might imply about the structure of the wool genome.

We start with a final run of the ’best’ model, and them embark on a study
of the structure of each genetic (co)variance matrix (VarG(Ia), VarGs(Ia), and
VarGs(Ma)).

> merino.fitlast <- dmm(merino.mdf, Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"))

.....

>
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One of the difficulties of principal components analysis is that its results are
seriously biased if all traits are not measured in the same units. The traditional
way of dealing with this is to do everything in standard deviation units, that
is to use a correlation matrix uinstead of a covariance matrix. In our case this
would amount to scaling to genetic standard deviation units. However we are
not going to do that, we are going to scale to phenotypic standard deviation
units which is the traditional approach of quantitative genetics to scaling. To do
this we need to do a principal component analysis on the matrix shown below
for the two trait case

HG(Ia) =

[
h2
1 h1h2rG(Ia)

h1h2rG(Ia) h2
2

]
and similar matrices for Gs(Ia) and Gs(Ma).
One reason for this approach is to avoid giving excess weight to traits for

which the proportion of variance is small. By putting heritabilities (or propor-
tion of variance) on the diagonal we are weighting each trait by its heritability.
That is what is required if we wish to compare genetic variation of various traits.

TheH matrices are not the same as the matrixGP−1 from the multivariate
breeders equation 14. That matrix is in trait units and is not symmetric and
is for prediction of genetic change. Here we are attempting to study genetic
variation itself, not prediction.

The required H matrices are readily calculated from variance component
estimates as follows. First extract the required covariance matrices

> covgia <- matrix(merino.fitlast$siga["VarG(Ia)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covgsia <- matrix(merino.fitlast$siga["VarGs(Ia)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covgsma <- matrix(merino.fitlast$siga["VarGs(Ma)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covpia <- merino.fitlast$phenotypic.variance

Then do the HG(Ia) matrix and its principal component analysis

> pdiag <- diag(1/sqrt(diag(covpia)))

> covhia <- pdiag %*% covgia %*% pdiag

> dimnames(covhia) <- dimnames(covgia)

> covhia

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.185250434 0.03929988 -0.03353903 0.099824593 -0.09390297

Weanwt 0.039299878 0.10941694 -0.04923602 -0.088406290 0.07556103

Crimp -0.033539029 -0.04923602 0.37070449 0.068197321 -0.08545129

Densty 0.099824593 -0.08840629 0.06819732 0.492360864 -0.36754001

Diamtr -0.093902972 0.07556103 -0.08545129 -0.367540007 0.43504635

Yield 0.076601452 0.07578843 -0.19534958 0.008542196 0.01562528

Bodywt 0.033581775 0.09258608 -0.03186814 -0.101092848 0.07110460
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Wrinkl -0.059993649 -0.08225562 0.11941112 0.022897920 0.12636478

Length 0.003896161 0.04859919 -0.12248895 -0.145037715 0.02423141

Flcwt 0.012666618 0.01374432 -0.00896495 0.046896192 0.02653705

Woolwt 0.031968963 0.04022985 -0.08175608 0.035292205 0.03720690

Yield Bodywt Wrinkl Length Flcwt

Birwt 0.0766014519 0.0335817755 -0.059993649 0.003896161 0.01266662

Weanwt 0.0757884344 0.0925860805 -0.082255622 0.048599189 0.01374432

Crimp -0.1953495806 -0.0318681375 0.119411117 -0.122488953 -0.00896495

Densty 0.0085421965 -0.1010928476 0.022897920 -0.145037715 0.04689619

Diamtr 0.0156252782 0.0711045965 0.126364776 0.024231412 0.02653705

Yield 0.3373245271 0.0007260227 -0.157966278 0.166419417 0.03442103

Bodywt 0.0007260227 0.1368491936 -0.044559996 0.007385097 -0.01056552

Wrinkl -0.1579662783 -0.0445599956 0.399766067 -0.223431622 0.05312845

Length 0.1664194166 0.0073850966 -0.223431622 0.229604913 -0.01642479

Flcwt 0.0344210271 -0.0105655207 0.053128447 -0.016424791 0.07006928

Woolwt 0.1580510425 -0.0118929591 -0.005243948 0.046841331 0.07292928

Woolwt

Birwt 0.031968963

Weanwt 0.040229846

Crimp -0.081756079

Densty 0.035292205

Diamtr 0.037206896

Yield 0.158051042

Bodywt -0.011892959

Wrinkl -0.005243948

Length 0.046841331

Flcwt 0.072929279

Woolwt 0.123820403

>

> covhia.list <- list(cov=covhia,center=rep(0,11),n.obs=2599)

> prinhia <- princomp(covmat=covhia.list)

> summary(prinhia)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.9957620 0.9192753 0.6441519 0.48108792 0.44317179

Proportion of Variance 0.3430688 0.2923892 0.1435643 0.08007906 0.06795389

Cumulative Proportion 0.3430688 0.6354580 0.7790223 0.85910138 0.92705527

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Standard deviation 0.30851264 0.2368932 0.20775519 0.116454014 0.0529312089

Proportion of Variance 0.03293184 0.0194167 0.01493392 0.004692227 0.0009693792

Cumulative Proportion 0.95998711 0.9794038 0.99433773 0.999029954 0.9999993333

Comp.11

Standard deviation 1.388134e-03

Proportion of Variance 6.667039e-07

Cumulative Proportion 1.000000e+00

>
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> loadings(prinhia)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt -0.243 -0.572 0.721 -0.233 0.144

Weanwt 0.203 -0.460 -0.326 0.654 -0.452

Crimp -0.372 0.256 0.335 -0.226 0.778

Densty -0.555 -0.405 -0.290 -0.290 0.267 -0.291 -0.433

Diamtr 0.450 0.470 -0.265 0.577 -0.310 -0.227

Yield 0.308 -0.412 -0.359 0.359 0.599

Bodywt 0.152 0.111 -0.575 -0.201 -0.314 0.230 -0.385 -0.530

Wrinkl -0.249 0.486 -0.538 0.261 0.199 -0.468 -0.284

Length 0.341 -0.241 0.229 0.261 0.256 0.194 -0.239 -0.378 -0.274 -0.559

Flcwt -0.289 0.196 -0.218 -0.602 -0.178 -0.109 0.159

Woolwt 0.113 -0.149 -0.397 0.316 -0.164 -0.238 -0.151 0.350

Comp.11

Birwt

Weanwt

Crimp

Densty -0.108

Diamtr

Yield 0.313

Bodywt

Wrinkl

Length -0.117

Flcwt 0.627

Woolwt -0.686

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.909 1.000

>

Then construct the HGs(Ia) matrix and do its principal component analysis

> covhsia <- pdiag %*% covgsia %*% pdiag

> dimnames(covhsia) <- dimnames(covgsia)

> covhsia

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.060128044 -2.570243e-02 -0.060687741 0.008348901 0.05209222

Weanwt -0.025702433 4.315879e-02 0.061761044 -0.003353315 -0.02661258
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Crimp -0.060687741 6.176104e-02 0.159211280 -0.014082210 -0.09986772

Densty 0.008348901 -3.353315e-03 -0.014082210 0.001774278 0.01177068

Diamtr 0.052092218 -2.661258e-02 -0.099867718 0.011770679 0.09047465

Yield 0.047431553 -2.191617e-02 -0.056677638 0.007172361 0.03608505

Bodywt 0.016112986 5.055761e-02 0.035293668 0.003982618 0.01385322

Wrinkl -0.004737217 -2.861619e-02 0.008036627 -0.004155290 -0.01149093

Length 0.002021006 1.725220e-04 -0.095304872 0.010574906 0.10112966

Flcwt 0.022473403 9.346233e-05 -0.087593073 0.011411457 0.11699630

Woolwt 0.048915663 -1.786171e-02 -0.138921426 0.016499676 0.11833350

Yield Bodywt Wrinkl Length Flcwt

Birwt 0.047431553 0.016112986 -0.0047372169 0.0020210061 2.247340e-02

Weanwt -0.021916172 0.050557606 -0.0286161921 0.0001725220 9.346233e-05

Crimp -0.056677638 0.035293668 0.0080366270 -0.0953048716 -8.759307e-02

Densty 0.007172361 0.003982618 -0.0041552896 0.0105749065 1.141146e-02

Diamtr 0.036085050 0.013853220 -0.0114909298 0.1011296643 1.169963e-01

Yield 0.047598384 0.013098530 -0.0214068355 -0.0134504843 -1.201379e-02

Bodywt 0.013098530 0.111362916 -0.0615829646 0.0224709056 3.270802e-02

Wrinkl -0.021406835 -0.061582965 0.1005839556 0.0001208749 3.500162e-03

Length -0.013450484 0.022470906 0.0001208749 0.2469677111 2.356635e-01

Flcwt -0.012013793 0.032708021 0.0035001621 0.2356634618 2.692642e-01

Woolwt 0.039745698 0.040076273 -0.0315794032 0.1957919828 1.822150e-01

Woolwt

Birwt 0.04891566

Weanwt -0.01786171

Crimp -0.13892143

Densty 0.01649968

Diamtr 0.11833350

Yield 0.03974570

Bodywt 0.04007627

Wrinkl -0.03157940

Length 0.19579198

Flcwt 0.18221497

Woolwt 0.21701532

>

> covhsia.list <- list(cov=covhsia, center=rep(0,11), n.obs=2599)

> prinhsia <- princomp(covmat=covhsia.list)

> summary(prinhsia)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.8942314 0.4953254 0.4440996 0.25763953 0.18687404

Proportion of Variance 0.5934147 0.1820705 0.1463589 0.04925876 0.02591531

Cumulative Proportion 0.5934147 0.7754853 0.9218442 0.97110296 0.99701827

Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 0.063386995 2.394215e-04 1.554766e-04 7.119635e-05

Proportion of Variance 0.002981665 4.253877e-08 1.793860e-08 3.761612e-09

Cumulative Proportion 0.999999934 1.000000e+00 1.000000e+00 1.000000e+00
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Comp.10 Comp.11

Standard deviation 4.762722e-05 1.586003e-05

Proportion of Variance 1.683329e-09 1.866666e-10

Cumulative Proportion 1.000000e+00 1.000000e+00

>

> loadings(prinhsia)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt 0.105 0.319 -0.221 -0.501 -0.129 0.751

Weanwt -0.372 -0.192 0.106 0.659 -0.610

Crimp -0.320 -0.544 -0.260 -0.460 -0.512 -0.205

Densty

Diamtr 0.302 0.192 -0.228 0.251 0.506 -0.289 -0.613 0.149

Yield 0.334 -0.285 -0.127 -0.109 -0.249 0.362 -0.436 -0.616

Bodywt -0.334 -0.598 -0.339 -0.257 0.205 -0.201 0.257 0.437

Wrinkl 0.592 -0.542 -0.516 -0.184 0.191

Length 0.512 -0.296 0.211 0.243 -0.243 0.512 0.396 0.133 -0.213

Flcwt 0.525 -0.319 0.191 -0.325 0.516 -0.358 -0.161 0.233

Woolwt 0.495 -0.184 0.196 -0.506 -0.524 -0.124 -0.361

Comp.11

Birwt

Weanwt

Crimp

Densty 0.996

Diamtr

Yield

Bodywt

Wrinkl

Length

Flcwt

Woolwt

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.909 1.000

>

Then construct theHGs(Ma) matrix and do its principal component analysis

> covhsma <- pdiag %*% covgsma %*% pdiag
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> dimnames(covhsma) <- dimnames(covgsma)

> covhsma

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.267363026 0.137241387 0.0340141735 0.0224145197 -0.0027497253

Weanwt 0.137241387 0.206176335 -0.0025871132 0.0269415586 -0.0070518859

Crimp 0.034014174 -0.002587113 0.0366677689 0.0007726814 -0.0052437348

Densty 0.022414520 0.026941559 0.0007726814 0.0046208666 0.0007816775

Diamtr -0.002749725 -0.007051886 -0.0052437348 0.0007816775 0.0071639766

Yield -0.050803949 -0.026813088 -0.0219610494 -0.0094145295 -0.0043997441

Bodywt 0.073497448 0.099223370 0.0104932768 0.0117539224 -0.0102842487

Wrinkl 0.049807133 0.039388864 0.0143645776 0.0057306131 -0.0013607385

Length -0.011232973 -0.012591844 -0.0191543654 -0.0045433551 0.0030477222

Flcwt 0.031466941 0.060447774 0.0166763649 0.0026909844 -0.0087321184

Woolwt -0.006234029 0.029886280 0.0171577640 -0.0027997247 -0.0108419599

Yield Bodywt Wrinkl Length Flcwt

Birwt -0.050803949 0.07349745 0.049807133 -0.011232973 0.031466941

Weanwt -0.026813088 0.09922337 0.039388864 -0.012591844 0.060447774

Crimp -0.021961049 0.01049328 0.014364578 -0.019154365 0.016676365

Densty -0.009414529 0.01175392 0.005730613 -0.004543355 0.002690984

Diamtr -0.004399744 -0.01028425 -0.001360738 0.003047722 -0.008732118

Yield 0.043100910 -0.01277511 -0.014046311 0.026590788 0.010112202

Bodywt -0.012775111 0.05591314 0.022014273 -0.011791399 0.038009444

Wrinkl -0.014046311 0.02201427 0.015504705 -0.006105715 0.020147123

Length 0.026590788 -0.01179140 -0.006105715 0.026340875 0.002615934

Flcwt 0.010112202 0.03800944 0.020147123 0.002615934 0.075838894

Woolwt 0.020990923 0.02575638 0.013663099 0.006666227 0.071446316

Woolwt

Birwt -0.006234029

Weanwt 0.029886280

Crimp 0.017157764

Densty -0.002799725

Diamtr -0.010841960

Yield 0.020990923

Bodywt 0.025756376

Wrinkl 0.013663099

Length 0.006666227

Flcwt 0.071446316

Woolwt 0.076916059

>

>

> covhsma.list <- list(cov=covhsma, center=rep(0,11), n.obs=2599)

> prinhsma <- princomp(covmat=covhsma.list)

> summary(prinhsma)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.6794515 0.4198404 0.3065772 0.25493113 0.12124967
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Proportion of Variance 0.5660258 0.2161165 0.1152388 0.07968288 0.01802521

Cumulative Proportion 0.5660258 0.7821423 0.8973811 0.97706403 0.99508924

Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 0.063285913 3.249387e-04 1.407503e-04 9.169898e-05

Proportion of Variance 0.004910587 1.294560e-07 2.428947e-08 1.030975e-08

Cumulative Proportion 0.999999831 1.000000e+00 1.000000e+00 1.000000e+00

Comp.10 Comp.11

Standard deviation 6.037734e-05 2.042471e-05

Proportion of Variance 4.469585e-09 5.114829e-10

Cumulative Proportion 1.000000e+00 1.000000e+00

>

> loadings(prinhsma)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt -0.667 -0.470 0.371 -0.390 0.139 0.148

Weanwt -0.588 0.240 -0.612 0.105 0.114 -0.121 0.191 0.354

Crimp 0.477 0.412 -0.138 -0.389 -0.301 -0.308 0.439 0.208

Densty 0.122

Diamtr 0.602 0.105 0.597 -0.508

Yield 0.133 0.270 -0.544 -0.424 -0.113 0.292 0.540 0.114

Bodywt -0.310 0.167 -0.135 0.147 -0.490 -0.105 -0.129 -0.745

Wrinkl -0.163 0.119 0.196 -0.436 -0.241 0.797 -0.167

Length -0.577 0.221 -0.540 -0.277 -0.409 -0.260

Flcwt -0.204 0.513 0.290 0.281 0.528 -0.490 -0.101

Woolwt 0.585 0.360 -0.206 0.685

Comp.11

Birwt

Weanwt -0.116

Crimp

Densty 0.976

Diamtr

Yield 0.169

Bodywt

Wrinkl

Length

Flcwt

Woolwt

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091
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Cumulative Var 0.909 1.000

>

Now we are ready to interpret these analyses. First some general obser-
vations. The first principal component of an H matrix defines the direction
in 11-dimensional space in which it is easiest to achieve genetic change by se-
lection. The last (11th in this case) principal component defines the direction
in which it is most difficult to achieve genetic change by selection. All of the
significant components, that is those which explain 5 percent or more of the
variance, define directions in which it is possible to achieve genetic change by
selection. The remaining non-significant components define directions in which
it is very difficult or impossible to achieve genetic change by selection. Thus the
insignificant components are also of interest. In the present case the structure
of the genetic correlation matrices constrains the potential for genetic change
quite dramatically. In all three cases (G(Ia), Gs(Ia), and Gs(Ma)) there are
only 4 to 6 significant components - we have 11 traits, but genetic variation is
confined to a 4 to 6 dimensional subspace.

A word of caution. This does not mean that we can not change individual
traits. There has been ample demonstration of that in single-trait selection ex-
periments (Turner, Brooker, and Dolling(1970) [23]). Nor does it mean that the
4 to 6 principal components are the only possible directions of change, there can
be change in directions indicated by any mixture of the significant components.
What it means is that we can not change certain combinations of traits. Multi-
trait selection is known to be more difficult than single-trait selection. Adverse
genetic correlations may be due to the sheer physical impossibility of some trait
combinations or they may be due to more subtle biological limitations, or they
may be simply a genetic phenomenon such as pleiotropy or linkage.

Another word of caution. The rrelationship between traits may be nonlinear.
For exampls

Woolwt = F lcwt× Y ield

For this reason a precise interpretation of the numerical values of the loading
coefficients for any principal component is not advisable. Each component is a
linear function of the traits, but it may be approximating a set of relationships
which are not linear.

Now let us look specifically at the individual autosomal additive genetic
variation , that is the principal components of matrix covhia. There are 6
significant principal components but the first 4 are most notable. We attempt
to interpret their loadings as follows

Comp.1 Large sheep with coarse, long fibres and low wrinkle. And the oppo-
site.

Comp.2 Coarse fibred sheep with short fibres and high wrinkle. And the op-
posite

133



Comp.3 Fine fibred sheep with low yield (lots of grease), low Woolwt, low
wrinkle and high crimp frequency. And the opposite.

Comp.4 Small sheep with poor growth. And the opposite.

Among the insignificant components we might note that Comp.11 defines
the impossibility of changing Flcwt and Woolwt in opposite directions, and also
that Comp.9 and Comp.10 define the virtial impossibility of changing Densty
and Diamtr in opposite directions. The latter case has been extensively studied
and it is understood that Densty and Diamtr have a common cause because
they are the outcome of a development system in which the number of follicle
papilla cells determines both the number and size of follicles and fibres (Moore
and Jackson (1984) [16], Moore, Jackson, and Lax (1989) [17]).

None of the above principal components put much emphasis on Woolwt - for
the simple reason that it has a lower individual additive heritability than most
other traits.

We now look at individual sexlinked additive genetic variation. There are
only 3 significant principal components of matrix covhsia. We interpret their
loadings as follows

Comp.1 High Woolwt and long coarse fibres. And the opposite.

Comp.2 Large at birth but do not grow, low crimp and short coarse fibres.
And the opposite.

Comp.3 Small sheep with low growth and not wrinkled. And the opposite.

Comp.3 is similar to Comp.4 of the individual autosomal additive genetic
variance.

We also look at maternal sexlinked additive genetic variation. There are 4
significant principal components of matrix covhsma. We interpret their loadings
as follows

Comp.1 Small sheep with low growth and not wrinkled. And the opposite.

Comp.2 Small at birth but grow large and high Woolwt. And the opposite.

Comp.3 Small at birth but grow. High crimp and Woolwt. And the opposite.

Comp.4 Low yield, short fibres, high crimp. And the opposite

Again Comp.1 is similar to Comp.3 of covhsia and to Comp.4 of covhia.
The most striking thing across all three analyses is the close tie between

body size and growth, on one hand, and wool length growth rate, Crimp and
Woolwt, on the other. The only suggestion of independence is around Densty
and Diamtr and only for individual additive variation.

It is tempting to interpret the independence of these principal components,
as suggesting that there are independent sets of genes affecting variation in each
orthogonal direction. I have never seen a proof that such a conclusion can be
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drawn. Certainly the G(Ia), Gs(Ia), and Gs(Ma) effects are independent - they
are defined that way. But the principal components within each of these may
or may not indicate separate gene effects or separate parts of the genome.

There remains the problem of response to selection. If we select for Woolwt,
which of the above components change, and what does that mean? If we select
for the commercially desirable combination of high Woolwt and low Diamtr,
which components change? If we favour large sheep, what are the consequences
for wool traits? We have to leave these questions until gresponse() function has
been extended to deal with sexlinked variation.

9.9 Conclusions

We have shown that genetic variation in Woolwt comes from three sources,
individual autosomal additive gene effects, individual sexlinked additive gene
effects, an maternal sexlinked additive gene effects. The heritabilities of Woolwt
from these three sources sum to the heritability of 0.40 found in published work.
This is explained by published estimates being largely based on dam-daughter
analyses which would include sexlinked genetic variation.

The genetic correlations among the 11 traits studied severely constrain the
directions in which genetic improvement could be achieved, to 4 to 6 dimen-
sions in the 11 dimensional trait space. One dimension, which was identified
as a sort of small,low growth to large, high growth axis, was affected by all
3 types of gene effects, individual autosomal additive, individual sexlinked ad-
ditive, and maternal sexlinked additive. Another dimension, associated with
changing Densty and Diamtr in opposite directions, was only affected by indi-
vidual autosomal additive gene effects. The ways in which correlations constrain
genetic improvement are given by the nonsignificant dimensions of variation.

There have been some problems, but we have done enough to show that
dmm() can be useful for quantitative genetic analysis of a sizeable multi-trait
research dataset with a multi-generation pedigree and some significant fixed
effects.
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10 Wish list

Further development of dmm() and associated functions is likely. Some areas
requiring attention are

� Using an error term other than ’Residual’ from the monadic model to form
the dyadic model equations and consequent variance component estimates.
This would allow repeated measures models

� Extending the gresponse() function to deal with individual sexlinked and
maternal sexlinked genetic variation

� Exploration of other regression techniques for solving the dyadic model
equations. On my list are bootstrap methods and total least squares. The
latter would allow for errors in the pedigree information as well as in the
traits observed

� Allowing variance components to be split among levels of a fixed effect. For
example with Sex as a fixed effect it is possible to form male-male, female-
female, female-male, and male-female dyads and do their dyadic model
equations separately thus leading to sex-specific variance components and
genetic parameters.

� Do something about the very restrictive array size requirements with op-
tions gls=T and dmeopt=”pcr”

� There has been no reference to the excellent R package pedigreemm which
implements an entirely different approach to analysis of mixed model pedi-
gree data. Some comparison of methods and results would be desirable.

� Look at sparse matrix techniques, possibly with the Matrix package

� Develop S3 methods for plotting from objects of class dmm.

Suggestions and criticisms are welcome. The work started out of a need
to analyse certain types of sheep breeding research data, and grew into an
exploration of the feasibility of directly solving the dyadic model equations.
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