
FFTWTOOLS Timing and Simple Use (Version 0.9-7)

Karim J. Rahim

March 18, 2015

1 Overview

The package fftwtool provides a wrapper for FFTW code discussed in [1]. This vignette provides example
code for comparing execution times of fftw from the package fftwtools to the standard R fft function,
and it demonstrates how to replace the R function fft with fftw. The functions fftw and mvfftw mimic
the behaviour of the R functions fft and mvfft. There is an R package called FFTW which offers different
functionality than fftwtools, specifically it allows the user to set plans, and improve the speed with multiple
calls to fftw when using data sets of the same size, see [1].

2 Timing Example

We begin with a demonstration of the speed difference between a simple call to fftw and the default fft

function. The performance improvement is visible with large data sets. Using the example below with 220,
over one million, data points I observed the following execution times:

• R’s fft: 19.069 seconds

• fftw default call: 8.804 seconds

• fftw with HermConj set to FALSE: 7.594 seconds.

You can test timing at any size and decide which function to use. As the speed advantage from the use
of the package fftw is only seen in large examples, I currently use the R fft functions, and I change to fftw

only when I encounter significantly large data sets and speed becomes a concern.
To reduce the check and install times of this package, I reduced fftLength from 220 to 28 in the code

shown in this vignette. The standard R routine is faster using this number of samples, but it is not faster
with very large data sets.

To compare times, first we look at the time required for the default R fft routine.

> library("fftwtools")

> ## We increment by powers of 2, but one can use other incrementes

> ## We choose fftlength = 2^20, but

> ## **this was reduced to 2^8 for the vignette distribution.**

> fftLength <- 2^8

> set.seed(10)

> g <- rnorm(fftLength)

> ##Start the clock

> ptm <- proc.time()

> ## Loop through

> for (i in 1:100){

+ fft(g)

1

+ }

> ## Stop the clock

> proc.time() - ptm

user system elapsed

0.001 0.000 0.001

>

Next we look at replacing fft with fftw without any other changes.

> ##timing # Start the clock!

> ptm <- proc.time()

> # Loop through

> for (i in 1:100){

+ fftw(g)

+ }

> # Stop the clock

> proc.time() - ptm

user system elapsed

0.007 0.000 0.006

>

Finally we look to see how much additional improvement can by had by not returning the complex
conjugate which is not required for real data. It is likely this speed up is partially due to decreased memory
allocation.

> ## Start the clock!

> ptm <- proc.time()

> ## Loop through

> for (i in 1:100){

+ fftw(g, HermConj=FALSE)

+ }

> ## Stop the clock

> proc.time() - ptm

user system elapsed

0.005 0.000 0.005

>

3 Replace R’s fft call with fftw

The following is a quick and dirty way to replace fftw with fftw in existing code. It is more appropriate
to use a conditional statement in the replacement functions to call fftw and mvfftw when the length of z is
appropriately large.

> ## basic option ot overwrite calls

> fft <- function(z, inverse = FALSE) {

+ fftwtools::fftw(z, inverse=inverse)

+ }

> mvfft <- function(z, inverse=FALSE) {

+ fftwtools::mvfftw(z, invese=inverse)

+ }

2

The above is a simple method of replacing all fft calls with fftw calls in the multitaper package which
I maintain. If you are interested in the additional improvement available from not returning the unnecessary
complex conjugate when using real data, you can overwrite the call setting HermConj to FALSE.

> fft <- function(z, inverse = FALSE) {

+ fftwtools::fftw(z, inverse=inverse, HermConj=FALSE)

+ }

The last method is only valid when the input is not complex, and it may break certain calls depending
on when the complex conjugate is discarded. If you discard the complex conjugate, you will need the length
of the original data to perform an inverse Fourier transform. If you are using the latter method then it may
be wise to look into further functionality provided in the R packages FFTW and fftwtools.

3.1 Clean up

If you replace the R’s call to fft with fftw then it is good practice to clean up the replacement and restore
calls to fft and mvfft to the standard R routine when you are finished using fftw. The following code shows
how this cleanup is performed.

> rm(fft, mvfft)

References

[1] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

3

	Overview
	Timing Example
	Replace R's fft call with fftw
	Clean up

