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1 Introduction

In statistics, the univariate kernel density estimation (KDE) is a non-parametric way to estimate
the probability density function f(x) of a random variable X, is a fundamental data smoothing
problem where inferences about the population are made, based on a finite data sample. This
techniques are widely used in various inference procedures such as signal processing, data mining
and econometrics, see e.g., Silverman [1986], Wand and Jones [1995], Jeffrey [1996], Wolfgang et
all [2004], Alexandre [2009]. The kernel estimator are standard in many books with applications
and computer vision, see Wolfgang [1991], Scott [1992], Bowman and Azzalini [1997], Venables
and Ripley [2002], for computational complexity and with implementation in S, for an overview.
Estimation of the density derivatives also comes up in various other applications like estimation of
modes and inflexion points of densities, a good list of applications which require the estimation of
density derivatives can be found in Singh [1977].

There already exist a number of packages that can perform kernel density estimation in R

(density in R base); see for example KernSmooth [Wand and Ripley, 2013], sm [Bowman and Az-
zalini, 2013], np [Tristen and Jeffrey, 2008] and feature [Duong and Matt, 2013], they exist also of
functions for kernel density derivative estimation (KDDE), e.g., kdde in ks package [Duong, 2007].
We introduce in this vignette a new R package kedd [Guidoum, 2015] for use with the statistical
programming environment R Development Core Team [2013], which implements smoothing tech-
niques and computing bandwidth selectors of the rth derivative of a probability density f(x) for
univariate data, using several kernels functions.

2 Convolutions and derivatives in kernels

In non-parametric statistics, a kernel is a weighting function used in non-parametric estimation
techniques. Kernels are used in kernel density estimation to estimate random variables density
functions f(x), or in kernel regression to estimate the conditional expectation of a random variable,
see e.g., Silverman [1986], Wand and Jones [1995]. In general any functions having the following
assumptions can be used as a kernel:

(A1) K(x) ≥ 0 and
∫
RK(x)dx = 1.

(A2) Symmetric about the origin, e.g.,
∫
R xK(x)dx = 0.
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(A3) Has finite second moment, e.g., µ2(K) =
∫
R x

2K(x)dx <∞. We denote R(K) =
∫
R (K(x))2 dx.

If K(x) is a kernel, then so is the function K̄(x) defined by K̄(x) = λK(λx), where λ > 0, this can
be used to select a scale that is appropriate for the data. The kernel function is very important to
spreading a probability mass of 1/n, the most widely used kernel is the Gaussian of zero mean and
unit variance. Some classical of kernel function K(x; r) (r is the maximum derivative of kernel) in
kedd package are the following:

Kernel K(x; r) R(K) µ2(K)

Gaussian K(x;∞) = 1√
2π

exp
(
−x2

2

)
1]−∞,+∞[ 1/ (2

√
π) 1

Epanechnikov K(x; 2) = 3
4

(
1− x2

)
1(|x|≤1) 3/5 1/5

Uniform K(x; 0) = 1
21(|x|≤1) 1/2 1/3

Triangular K(x; 1) = (1− |x|)1(|x|≤1) 2/3 1/6

Triweight K(x; 6) = 35
32

(
1− x2

)3
1(|x|≤1) 350/429 1/9

Tricube K(x; 9) = 70
81

(
1− |x|3

)3
1(|x|≤1) 175/247 35/243

Biweight K(x; 4) = 15
16

(
1− x2

)2
1(|x|≤1) 5/7 1/7

Cosine K(x;∞) = π
4 cos

(
π
2x
)

1(|x|≤1) π2/16
(
−8 + π2

)
/π2

Table 1: Kernel functions in kedd pakage.

The rth derivative of the kernel function K(x) is written as:

K(r)(x) =
dr

dxr
K(x) (1)

and convolution of K(r)(x) is:

K(r) ∗K(r)(x) =

∫
R
K(r)(x)K(r)(x− y)dy (2)

for example the rth derivative of the Gaussian kernel is given by:

K(r)(x) = (−1)rHr(x)K(x)

and the rth convolution can be written as:

K(r) ∗K(r)(x) = (−1)2r
∫
R
Hr(x)Hr(x− y)K(x)K(x− y)dy

where Hr(x) is the rth Hermite polynomial, see e.g., Olver et all [2010]. We use kernel.fun for
kernel derivative defined by (1), and kernel.conv for kernel convolution defined by (2).
For example the first derivative of the Gaussian kernel displayed on the left in Figure 1. On the
right is the first convolution of the Gaussian kernel.

> library(kedd)

> kernel.fun(x = seq(-0.02,0.02,by=0.01), deriv.order = 1, kernel = "gaussian")$kx

[1] 0.007977250 0.003989223 0.000000000 -0.003989223 -0.007977250

> kernel.conv(x = seq(-0.02,0.02,by=0.01), deriv.order = 1, kernel = "gaussian")$kx

[1] -0.1410051 -0.1410368 -0.1410474 -0.1410368 -0.1410051

> plot(kernel.fun(deriv.order = 1, kernel = "gaussian"))

> plot(kernel.conv(deriv.order = 1, kernel = "gaussian"))
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Figure 1: (Left) First derivative of the Gaussian kernel. (Right) Convolution of the first derivative
Gaussian kernel.

3 Kernel density derivative estimator

Let (X1, X2, . . . , Xn) be a data sample, independent and identically distributed of a continuous
random variable X, with density function f(x). If the kernel K is differentiable r times then a
natural estimator of the rth derivative of f(x) the rth derivative of the kernel estimate [Bhattacharya,
1967, Schuster, 1969, Alekseev, 1972]:

f̂
(r)
h (x) =

dr

dxr
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

nhr+1

n∑
i=1

K(r)

(
x−Xi

h

)
(3)

where K(r) is rth derivative of the kernel function K, which we take to be a symmetric probability
density with at least r non zero derivatives when estimating f (r)(x), and h is the bandwidth, this
parameter is very important that controls the degree of smoothing applied to the data.

The following assumptions on the density f (r)(x), the bandwidth h, and the kernel K:

(A4) The (r + 2) derivatives f (r+2)(x) is continuous, square integrable and ultimately monotone.

(A5) In the asymptotic framework, as limn→∞ hn = 0 and limn→∞ nh
2r+1
n =∞, i.e., as the number

of sample n is increased h approaches zero at a rate slower than 1/n2r+1.

(A6) Assumptions about K are introduced in the previous section.

As seen in Equation (3), when working with a kernel estimator of the rth derivative function two
choices must be made: the kernel function K and the smoothing parameter or bandwidth h. The
choice ofK is a problem of less importance, becauseK is not very sensitive to the shape of estimator,
and different functions that produce good results can be used. In practice, the choice of an efficient
method for the computation of h, for an observed data sample is a crucial problem, because of the
effect of the bandwidth on the shape of the corresponding estimator. If the bandwidth is small, we
will obtain an under smoothed estimator, with high variability. On the contrary, if the value of h
is big, the resulting estimator will be over smooth and farther from the function that we are trying
to estimate.
An example is drawn in Figure 2 where we show in left four different kernel (Gaussian, biweight,
triweight and tricube) estimators of the first derivative of a bimodal (separated) Gaussian density
(Equation 5), and a given value of h = 0.6. On the right, using the Gaussian kernel and four
different values for the bandwidth.
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Figure 2: (Left) Different kernels for estimation, with h = 0.6. (Right) Effect of the bandwidth on
the kernel estimator.

We have implemented in R the function dkde corresponds to the derivative of kernel density
estimator (Equation 3). Eight possibilities are allowed for the kernel functions that are summarized
in Table 1. We enumerate the arguments and results of this function in Table 2.

Arguments Description

x The data sample.
y The points of the grid at which the density derivative is to be estimated.

The default are 4h outside of range(x).
deriv.order Derivative order (scalar).
h The smoothing bandwidth to be used. The default, ”ucv” unbiased cross-

validation.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

eval.points The coordinates of the points where the density derivative is estimated.
est.fx The estimated density derivative values (Equation 3).

Table 2: Summary of arguments and results of dkde.

Working with the dataset ’bimodal’ correspond to data sample of 200 random numbers of a bi-
modality (separated) of a two-component Gaussian mixture density (Equation 4), with the following
parameters: −µ1 = µ2 = 3/2 and σ1 = σ2 = 1/2. The dkde function enables to compute the rth

derivative of kernel density estimator over a grid of points, with a bandwidth selected by the user,
but it also allows to estimate directly this parameter by the unbiased cross-validation method h.ucv

(see following Section). We have chosen this method as the automatic one because it is the fastest
in computation time terms. Now we estimate the first three derivatives of f(x), can be written as:

f(x) = 0.5φ(µ1, σ1) + 0.5φ(µ2, σ2) (4)

f (1)(x) = 0.5(−4x− 6)φ(µ1, σ1) + 0.5(−4x+ 6)φ(µ2, σ2) (5)

f (2)(x) = 0.5
(

(−4x− 6)2 − 4
)
φ(µ1, σ1) + 0.5

(
(−4x+ 6)2 − 4

)
φ(µ2, σ2) (6)

f (3)(x) = 0.5(−4x− 6)
(

(−4x− 6)2 − 12
)
φ(µ1, σ1) + 0.5(−4x+ 6)(

(−4x+ 6)2 − 12
)
φ(µ2, σ2) (7)
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where φ is a standard normal density.

> hatf <- dkde(bimodal, deriv.order = 0)

Data: bimodal (200 obs.); Kernel: gaussian

Derivative order: 0; Bandwidth 'h' = 0.2098

eval.points est.fx

Min. :-3.86436 Min. :0.0000032

1st Qu.:-1.98016 1st Qu.:0.0147846

Median :-0.09595 Median :0.0737948

Mean :-0.09595 Mean :0.1324227

3rd Qu.: 1.78826 3rd Qu.:0.2326044

Max. : 3.67246 Max. :0.4374314

> hatf1 <- dkde(bimodal, deriv.order = 1)

Data: bimodal (200 obs.); Kernel: gaussian

Derivative order: 1; Bandwidth 'h' = 0.259

eval.points est.fx

Min. :-4.06125 Min. :-0.4870865

1st Qu.:-2.07860 1st Qu.:-0.1521016

Median :-0.09595 Median : 0.0009041

Mean :-0.09595 Mean : 0.0000000

3rd Qu.: 1.88670 3rd Qu.: 0.1731795

Max. : 3.86935 Max. : 0.5038096

> hatf2 <- dkde(bimodal, deriv.order = 2)

Data: bimodal (200 obs.); Kernel: gaussian

Derivative order: 2; Bandwidth 'h' = 0.3017

eval.points est.fx

Min. :-4.23200 Min. :-1.6800486

1st Qu.:-2.16398 1st Qu.: 0.0012798

Median :-0.09595 Median : 0.1421495

Mean :-0.09595 Mean :-0.0000073

3rd Qu.: 1.97208 3rd Qu.: 0.3389096

Max. : 4.04010 Max. : 0.7457487

> hatf3 <- dkde(bimodal, deriv.order = 3)

Data: bimodal (200 obs.); Kernel: gaussian

Derivative order: 3; Bandwidth 'h' = 0.3367

eval.points est.fx

Min. :-4.37205 Min. :-4.353602

1st Qu.:-2.23400 1st Qu.:-0.472761

Median :-0.09595 Median : 0.001312

Mean :-0.09595 Mean :-0.000008

3rd Qu.: 2.04210 3rd Qu.: 0.388689

Max. : 4.18016 Max. : 3.614749
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By default, the function dkde selects a grid of 512 points in the data range and used the Gaussian
kernel. The output is a list containing the estimated values in the points of the grid, this last
sequence and the bandwidth h (by default, using unbiased cross-validation method). In Figure 3
we show the first three derivatives estimators of f(x) obtained with the code:

> fx <- function(x) 0.5 * dnorm(x,-1.5,0.5) + 0.5 * dnorm(x,1.5,0.5)

> fx1 <- function(x) 0.5 *(-4*x-6)* dnorm(x,-1.5,0.5) + 0.5 *(-4*x+6) *

+ dnorm(x,1.5,0.5)

> fx2 <- function(x) 0.5 * ((-4*x-6)^2 - 4) * dnorm(x,-1.5,0.5) + 0.5 *

+ ((-4*x+6)^2 - 4) * dnorm(x,1.5,0.5)

> fx3 <- function(x) 0.5 * (-4*x-6) * ((-4*x-6)^2 - 12) * dnorm(x,-1.5,0.5) +

+ 0.5 * (-4*x+6) * ((-4*x+6)^2 - 12) * dnorm(x,1.5,0.5)

> plot(hatf ,fx = fx)

> plot(hatf1,fx = fx1)

> plot(hatf2,fx = fx2)

> plot(hatf3,fx = fx3)
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Figure 3: Kernel density derivative estimates obtained with the function dkde. (top left) density

estimate f̂h(x). (top right) first derivative f̂
(1)
h (x). (bottom left) second derivative f̂

(2)
h (x). (bottom

right) third derivative f̂
(3)
h (x).
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4 Bandwidth selections

Despite the great number of bandwidth selection techniques in kernel density estimator or regression
estimation, as for example Rudemo [1982], Bowman [1984], Scott and George [1987], Sheather
and Jones [1991], Chiu [1991a,b, 1992], Feluch and Koronacki [1992], Stute [1992], Jones et all
[1996], Sheather [2004], Duong and Hazelton [2003, 2005], Heidenreich et all [2013], to the best of
our knowledge, only few paper have been studied in the context of estimating the rth derivative
of a density f(x), see Peter and Marron [1987], Wolfgang et all [1990], Jones and Kappenman
[1991], Stoker [1993]. In this section we summarize the techniques of cross-validation methods
for bandwidth choice in the kernel estimation of the derivatives of a probability density. The
practicality of this methods is demonstrated by an example.

4.1 Optimal bandwidth

We Consider the following AMISE version of the rth derivative of a probability density f(x) [Scott,
1992, p. 131]:

AMISE(h, r) =
R
(
K(r)

)
nh2r+1

+
1

4
h4µ22(K)R

(
f (r+2)

)
(8)

The optimal bandwidth minimizing (8) is:

h∗ =

[
(2r + 1)R

(
K(r)

)
µ22(K)R

(
f (r+2)

)]1/(2r+5)

n−1/(2r+5) (9)

whereof:

AMISE(h, r) =
2r + 5

4
R
(
K(r)

) 4
(2r+5)

[
µ22(K)R

(
f (r+2)

)
2r + 1

] 2r+1
2r+5

n−
4

2r+5 (10)

which is the smallest possible AMISE for estimation of f̂
(r)
h . The function h.amise provides the

optimal bandwidth under AMISE. The same possibilities for the kernel function as in the function
dkde appear here. We enumerate the arguments and results of this function in Table 3.

Arguments Description

x The data sample.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth (Equation 9).
amise The AMISE value (Equation 10).

Table 3: Summary of arguments and results of h.amise.

The following example computes this bandwidth for a first three derivatives estimators of (4).

> h.amise(bimodal, deriv.order = 0)

Call: Aymptotic Mean Integrated Squared Error

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

AMISE = 0.002602521; Bandwidth 'h' = 1.284843

> h.amise(bimodal, deriv.order = 1)
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Call: Aymptotic Mean Integrated Squared Error

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

AMISE = 0.0009282042; Bandwidth 'h' = 1.774593

> h.amise(bimodal, deriv.order = 2)

Call: Aymptotic Mean Integrated Squared Error

Derivative order = 2

Data: bimodal (200 obs.); Kernel: gaussian

AMISE = 0.0003062873; Bandwidth 'h' = 2.245869

> h.amise(bimodal, deriv.order = 3)

Call: Aymptotic Mean Integrated Squared Error

Derivative order = 3

Data: bimodal (200 obs.); Kernel: gaussian

AMISE = 8.793292e-05; Bandwidth 'h' = 2.690288

4.2 Maximum likelihood cross-validation

This method was proposed by Habbema, Hermans and Van den Broek [1974] and Duin [1976].
They proposed to choose h so that the pseudo-likelihood

∏n
i=1 f̂h(Xi) is maximized. However this

has a trivial maximum at h = 0, so the cross-validation principle is invoked by replacing f̂h(x) by
the leave-one-out f̂h,i(x), where:

f̂h,i(Xi) =
1

(n− 1)h

∑
j 6=i

K

(
Xj −Xi

h

)
Define that h as good which approaches the finite maximum of

hmlcv = argmax
h>0

MLCV(h) (11)

MLCV(h) =

n−1 n∑
i=1

log

∑
j 6=i

K

(
Xj −Xi

h

)− log[(n− 1)h]

 (12)

The function h.mlcv computed the maximum likelihood cross-validation for bandwidth selection.
We enumerate the arguments and results of this function in Table 4.

Arguments Description

x The data sample.
lower,upper Range over which to minimize. The default is almost always satisfactory.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth (Equation 11).
mlcv The MLCV value (Equation 12).

Table 4: Summary of arguments and results of h.mlcv.

The following example computes this bandwidth of bimodal Gaussian density (Equation 4), by
different kernels.
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> kernels <- eval(formals(h.mlcv.default)$kernel)

> hmlcv <- numeric()

> for(i in 1:length(kernels))

+ hmlcv[i] <- h.mlcv(bimodal, kernel = kernels[i])$h

> data.frame(kernels,hmlcv)

kernels hmlcv

1 gaussian 0.2302871

2 epanechnikov 0.4480106

3 uniform 0.3417343

4 triangular 0.4897095

5 triweight 0.6383113

6 tricube 0.5445540

7 biweight 0.5620119

8 cosine 0.4554530

The plot of the maximal likelihood cross validation function MLCV is shown in Figure 4 for Gaussian
kernel in the left, and Epanechnikov kernel in the right, obtained with the code:

> plot(h.mlcv(bimodal, kernel = kernels[1]), seq.bws = seq(0.1,1,length=50))

> plot(h.mlcv(bimodal, kernel = kernels[2]), seq.bws = seq(0.1,1,length=50))
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Figure 4: MLCV function obtained by h.mlcv, using Gaussian kernel (Left) and Epanechnikov
kernel (Right).

4.3 Unbiased cross-validation

Rudemo [1982] and Bowman [1984] proposed a so-called unbiased (least-squares) cross-validation
(UCV) in kernel density estimator, is probably the most popular and best studied one. An adapta-
tion of unbiased cross-validation is proposed by Wolfgang et all [1990] for bandwidth choice in the
rth derivative of kernel density estimator. The essential idea of this methods, it aims to estimate h
the minimizer of ISE(h). The minimization criterion is defined by:

hucv = argmin
h>0

UCV(h, r) (13)
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UCV(h, r) =
R
(
K(r)

)
nh2r+1

+
(−1)r

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

(
K(r) ∗K(r) − 2K(2r)

)(Xj −Xi

h

)
(14)

In general, cross-validation functions in non-parametric bandwidth selection present several local
minima. These minima are more likely to appear at too small values of the bandwidth [Peter and
Marron, 1991]. The function h.ucv computes the unbiased cross-validation for bandwidth selection.
We enumerate the arguments and results of this function in Table 5.

Arguments Description

x The data sample.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth (Equation 13).
min.ucv The minimal UCV value (Equation 14).

Table 5: Summary of arguments and results of h.ucv.

The following example computes the bandwidth h by this method for a first three derivatives
estimators of (4).

> h.ucv(bimodal, deriv.order = 0)

Call: Unbiased Cross-Validation

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min UCV = -0.290735; Bandwidth 'h' = 0.2098

> h.ucv(bimodal, deriv.order = 1)

Call: Unbiased Cross-Validation

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min UCV = -0.6523005; Bandwidth 'h' = 0.2590212

> h.ucv(bimodal, deriv.order = 2)

Call: Unbiased Cross-Validation

Derivative order = 2

Data: bimodal (200 obs.); Kernel: gaussian

Min UCV = -4.374522; Bandwidth 'h' = 0.3017092

> h.ucv(bimodal, deriv.order = 3)

Call: Unbiased Cross-Validation

Derivative order = 3

Data: bimodal (200 obs.); Kernel: gaussian

Min UCV = -46.74623; Bandwidth 'h' = 0.3367229

The plot of UCV function obtained with the code (Figure 5):

> for (i in 0:3) plot(h.ucv(bimodal, deriv.order = i))
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Figure 5: UCV function obtained by h.ucv. (top left) deriv.order = 0. (top right) deriv.order
= 1. (bottom left) deriv.order = 2. (bottom right) deriv.order = 3.

4.4 Biased cross-validation

Biased cross-validation was proposed by Scott and George [1987], which has as its immediate target
the AMISE (8). They proposed to estimate R

(
f (r+2)

)
by!

R̂
(
f (r+2)

)
= R

(
f̂
(r+2)
h

)
−

R
(
K(r+2)

)
nh2r+5

There are two versions of BCV, depending on the estimator of R
(
f (r+2)

)
. We can use [Scott and

George, 1987]

R̂
(
f (r+2)

)
=

(−1)r+2

n(n− 1)h2r+5

n∑
i=1

n∑
j=1
j 6=i

K(r+2) ∗K(r+2)

(
Xj −Xi

h

)

or we could use [Jones and Kappenman, 1991]

R̂
(
f (r+2)

)
=

(−1)r+2

n(n− 1)h2r+5

n∑
i=1

n∑
j=1
j 6=i

K(2r+4)

(
Xj −Xi

h

)
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From this we obtain respectively an adaptation of biased cross-validation for bandwidth choice in
the rth derivative of kernel density estimator, is given by:

BCV1(h, r) =
R
(
K(r)

)
nh2r+1

+
µ22(K)

4

(−1)r+2

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

K(r+2) ∗K(r+2)

(
Xj −Xi

h

)
(15)

BCV2(h, r) =
R
(
K(r)

)
nh2r+1

+
µ22(K)

4

(−1)r+2

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

K(2r+4)

(
Xj −Xi

h

)
(16)

The BCV selectors hbcv1 and hbcv2 are the minimisers of the appropriate BCV function. The
function h.bcv computes the biased cross-validation for bandwidth selection. We enumerate the
arguments and results of this function in Table 6.

Arguments Description

x The data sample.
whichbcv Method selected, 1 = BCV1 or 2 = BCV2, by default BCV1.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth.
min.bcv The minimal BCV value (Equation 15 or 16).

Table 6: Summary of arguments and results of h.bcv.

The following example computes the bandwidth parameter by this method for kernel estimator of
Equation (4) and its first derivative estimators.

> h.bcv(bimodal, whichbcv = 1, deriv.order = 0)

Call: Biased Cross-Validation 1

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min BCV = 0.008406978; Bandwidth 'h' = 0.2239608

> h.bcv(bimodal, whichbcv = 2, deriv.order = 0)

Call: Biased Cross-Validation 2

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min BCV = 0.007133677; Bandwidth 'h' = 0.1748194

> h.bcv(bimodal, whichbcv = 1, deriv.order = 1, lower=0.1, upper=0.8)

Call: Biased Cross-Validation 1

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min BCV = 0.06626954; Bandwidth 'h' = 0.3366177

> h.bcv(bimodal, whichbcv = 2, deriv.order = 1, lower=0.1, upper=0.8)

12



Call: Biased Cross-Validation 2

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min BCV = -0.3470459; Bandwidth 'h' = 0.1356763

The plot of BCV function obtained with the code h.bcv (Figure 6):

> ## deriv.order = 0

> plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 0))

> lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 0),col="red")

> legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"),

+ inset = .015)

> ## deriv.order = 1

> plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 1),seq.bws =

+ seq(0.1,0.8,length=50))

> lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 1),col="red")

> legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"),

+ inset = .015)
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Figure 6: BCV function obtained by h.bcv. (Left) BCV1 vs BCV2 (deriv.order = 0). (Right)
BCV1 vs BCV2 (deriv.order = 1).

4.5 Complete cross-validation

Jones and Kappenman [1991] proposed a so-called complete cross-validation (CCV) in kernel density
estimator. This method can be extended to the estimation of derivative of the density, basing our
estimate of integrated squared density derivative [Peter and Marron, 1987] we get the following.
Thus, hccv, say, is the h that minimises:

CCV(h, r) = R
(
f̂
(r)
h

)
− θ̄r(h) +

1

2
µ2(K)h2θ̄r+1(h) +

1

24

(
6µ22(K)− δ(K)

)
h4θ̄r+2(h) (17)

where,

R
(
f̂
(r)
h

)
=

R
(
K(r)

)
nh2r+1

+
(−1)r

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

K(r) ∗K(r)

(
Xj −Xi

h

)
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and

θ̄r(h) =
(−1)r

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

K(2r)

(
Xj −Xi

h

)

with : δ(K) =
∫
R x

4K(x)dx.
The function h.ccv computes the complete cross-validation for bandwidth selection. We enumerate
the arguments and results of this function in Table 7.

Arguments Description

x The data sample.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth.
min.ccv The minimal CCV value (Equation 17).

Table 7: Summary of arguments and results of h.ccv.

The following example computes the bandwidth h by this method for a first three derivatives
estimators of (4). This time we set Over-smoothing in upper = 0.5.

> h.ccv(bimodal, deriv.order = 0, upper = 0.5)

Call: Complete Cross-Validation

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min CCV = 0.00764383; Bandwidth 'h' = 0.1790795

> h.ccv(bimodal, deriv.order = 1, upper = 0.5)

Call: Complete Cross-Validation

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min CCV = -0.197061; Bandwidth 'h' = 0.1427856

> h.ccv(bimodal, deriv.order = 2, upper = 0.5)

Call: Complete Cross-Validation

Derivative order = 2

Data: bimodal (200 obs.); Kernel: gaussian

Min CCV = -127.6184; Bandwidth 'h' = 0.1259258

> h.ccv(bimodal, deriv.order = 3, upper = 0.5)

Call: Complete Cross-Validation

Derivative order = 3

Data: bimodal (200 obs.); Kernel: gaussian

Min CCV = -35547.32; Bandwidth 'h' = 0.1426445
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The plot of CCV function obtained with the code (Figure 7):

> for (i in 0:3)

+ plot(h.ccv(bimodal, deriv.order = i), seq.bws=seq(0.1,0.5,length=50))
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Figure 7: CCV function obtained by h.ccv. (top left) deriv.order = 0. (top right) deriv.order
= 1. (bottom left) deriv.order = 2. (bottom right) deriv.order = 3.

4.6 Modified cross-validation

Stute [1992] proposed a so-called modified cross-validation (MCV) in kernel density estimator. This
method can be extended to the estimation of derivative of a probability density, the essential idea
based on approximated the problematic term by the aid of the Hajek projection. The minimization
criterion is defined by:

MCV(h, r) =
R
(
K(r)

)
nh2r+1

+
(−1)r

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

ϕ(r)

(
Xj −Xi

h

)
(18)

where

ϕ(r)(c) =

(
K(r) ∗K(r) −K(2r) − µ2(K)

2
K(2r+2)

)
(c)
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The function h.mcv computes the modified cross-validation for bandwidth selection. We enumerate
the arguments and results of this function in Table 8.

Arguments Description

x The data sample.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth.
min.mcv The minimal MCV value (Equation 18).

Table 8: Summary of arguments and results of h.mcv.

The following example computes the bandwidth h by this method for a first three derivatives
estimators of (4). We set Over-smoothing in upper = 0.5.

> h.mcv(bimodal, deriv.order = 0, upper = 0.5)

Call: Modified Cross-Validation

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min MCV = 0.007370888; Bandwidth 'h' = 0.2402603

> h.mcv(bimodal, deriv.order = 1, upper = 0.5)

Call: Modified Cross-Validation

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min MCV = 0.04308772; Bandwidth 'h' = 0.196102

> h.mcv(bimodal, deriv.order = 2, upper = 0.5)

Call: Modified Cross-Validation

Derivative order = 2

Data: bimodal (200 obs.); Kernel: gaussian

Min MCV = -19.17733; Bandwidth 'h' = 0.1304198

> h.mcv(bimodal, deriv.order = 3, upper = 0.5)

Call: Modified Cross-Validation

Derivative order = 3

Data: bimodal (200 obs.); Kernel: gaussian

Min MCV = -8391.447; Bandwidth 'h' = 0.1426445

The plot of MCV function obtained with the code (Figure 8):

> for (i in 0:3)

+ plot(h.mcv(bimodal, deriv.order = i), seq.bws=seq(0.1,0.5,length=50))
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Figure 8: MCV function obtained by h.mcv. (top left) deriv.order = 0. (top right) deriv.order
= 1. (bottom left) deriv.order = 2. (bottom right) deriv.order = 3.

4.7 Trimmed cross-validation

Feluch and Koronacki [1992] proposed a so-called trimmed cross-validation (TCV) in kernel density
estimator, a simple modification of the unbiased (least-squares) cross-validation criterion (14). We
consider the following ”trimmed” version of ”unbiased”, to be minimized with respect to h:

TCV(h, r) =
R
(
K(r)

)
nh2r+1

+
(−1)r

n(n− 1)h2r+1

n∑
i=1

n∑
j=1
j 6=i

ϕ(r)

(
Xj −Xi

h

)
(19)

where
ϕ(r)(c) =

[
K(r) ∗K(r) − 2K(2r)1

(
|c| > cn

h2r+1

)]
(c)

1(.) denotes the indicator function and cn is a sequence of positive constants, as limn→∞ cn/h
2r+1 →

0, here we take cn = 1/n, for assure the convergence. The function h.tcv computes the trimmed
cross-validation for bandwidth selection. We enumerate the arguments and results of this function
in Table 9.
The following example computes the bandwidth h by this method for a first three derivatives
estimators of (4).
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Arguments Description

x The data sample.
deriv.order Derivative order (scalar).
lower,upper Range over which to minimize. The default is almost always satisfactory,

hos (Over-smoothing) is calculated internally from an kernel.
tol The convergence tolerance for optimize.
kernel The kernel function (see Table 1), by default "gaussian".

Results Description

h Value of bandwidth.
min.tcv The minimal TCV value (Equation 19).

Table 9: Summary of arguments and results of h.tcv.

> h.tcv(bimodal, deriv.order = 0)

Call: Trimmed Cross-Validation

Derivative order = 0

Data: bimodal (200 obs.); Kernel: gaussian

Min TCV = -0.2806542; Bandwidth 'h' = 0.2570739

> h.tcv(bimodal, deriv.order = 1)

Call: Trimmed Cross-Validation

Derivative order = 1

Data: bimodal (200 obs.); Kernel: gaussian

Min TCV = -0.3956968; Bandwidth 'h' = 0.5095463

> h.tcv(bimodal, deriv.order = 2)

Call: Trimmed Cross-Validation

Derivative order = 2

Data: bimodal (200 obs.); Kernel: gaussian

Min TCV = -1.153544; Bandwidth 'h' = 0.65599

> h.tcv(bimodal, deriv.order = 3)

Call: Trimmed Cross-Validation

Derivative order = 3

Data: bimodal (200 obs.); Kernel: gaussian

Min TCV = -3.961823; Bandwidth 'h' = 0.7453813

The plot of TCV function obtained with the code (Figure 9):

> for (i in 0:3) plot(h.tcv(bimodal, deriv.order = i))
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Figure 9: TCV function obtained by h.tcv. (top left) deriv.order = 0. (top right) deriv.order
= 1. (bottom left) deriv.order = 2. (bottom right) deriv.order = 3.

5 Summary

We have implemented in R the estimators of the defined functions and the bandwidth selection
procedures of the above sections. The package kedd contains seven functions, in Table 10 we can
find a summary of the contents of the package.

The current feature set of the package can be split in four main categories: compute the convolu-
tions and derivatives of a kernel function, compute the kernel estimators for a density of probability
and its derivatives, computing the bandwidth selectors with different methods, displaying the ker-
nel estimators and selection functions of the bandwidth. Moreover, the package follows the general
R philosophy of working with model objects. This means that instead of merely returning, say, a
kernel estimator of rth derivative of a density, many functions will return an object containing, it’s
functions are S3 classes (S3method). The object can then be manipulated at oneâ€™s will using
various extraction, summary or plotting functions. Whenever possible, we develop a graphical user
interface of the various functions of a coherent whole, to facilitate the use of this package.
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Function Description

dkde Derivatives of kernel density estimator, as defined in Equation 3.
h.amise AMISE for optimal bandwidth selectors (Equation 10).
h.mlcv Maximum-likelihood cross-validation bandwidth selection (Equation 12).
h.ucv Unbiased cross-validation bandwidth selection (Equation 14).
h.bcv Biased cross-validation bandwidth selection (Equations 15 and 16) .
h.ccv Complete cross-validation bandwidth selection (Equation 17).
h.mcv Modified cross-validation bandwidth selection (Equation 18).
h.tcv Trimmed cross-validation bandwidth selection (Equation 19).

Table 10: Summary of contents of the package.
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