
Using the koRpus Package for Text
Analysis

m.eik michalke

March 19, 2014

The R package koRpus aims to be a versatile tool for text analysis, with
an emphasis on scientific research on that topic. It implements dozens
of formulae to measure readability and lexical diversity. On a more basic
level koRpus can be used as an R wrapper for third party products, like the
tokenizer and POS tagger TreeTagger or language corpora of the Leipzig
Corpora Collection. This vignette takes a brief tour around its core com-
ponents, shows how they can be used and gives some insight on design
decisions.

1 What is koRpus?

Work on koRpus started in February 2011, primarily with the goal in mind to examine
how similar different texts are. Since then, it quickly grew into an R package which
implements dozens of formulae for readability and lexical diversity, and wrappers for
language corpus databases and a tokenizer/POS tagger.

2 Recommendations

2.1 TreeTagger

At the very beginning of almost every analysis with this package, the text you want to
examine has to be sliced into its components, and the components must be identified
and named. That is, it has to be split into its semantic parts (tokens), words, numbers,
punctuation marks. After that, each token will be tagged regarding its part-of-speech
(POS). For both of these steps, koRpus can use the third party software TreeTagger
(Schmid, 1994).1 Especially for Windows users installation of TreeTagger might be a

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

1

little more complex – e. g., it depends on Perl2, and you need a tool to extract .tar.gz
archives3. Detailed installations instructions are beyond the scope of this vignette.

If you don’t want to use TreeTagger, koRpus provides a simple tokenizer of its own
called tokenize(). While the tokenizing itself works quite well, tokenize() is not
as elaborate as is TreeTagger when it comes to POS tagging, as it can merely tell
words from numbers, punctuation and abbreviations. Although this is sufficient for
most readability formulae, you can’t evaluate word classes in detail. If that’s what you
want, a TreeTagger installation is needed.

2.2 Word lists

Some of the readability formulae depend on special word lists (like Dale & Chall, 1948;
Bormuth, 1968; Spache, 1953). For copyright reasons these lists are not included as of
now. This means, as long as you don’t have copies of these lists, you can’t calculate
these particular measures, but of course all others. The expected format to use a list
with this package is a simple text file with one word per line, preferably in UTF-8
encoding.

2.3 Language corpora

The frequency analysis functions in this package can look up how often each word in
a text is used in its language, given that a corpus database is provided. Databases
in Celex format are support, as is the Leipzig Corpora Collection (Quasthoff, Richter,
& Biemann, 2006) file format. To use such a database with this package, you simply
need to download one of the .zip/.tar files.

2.4 Translated Human Rights Declaration

If you want to estimate the language of a text, reference texts in known languages are
needed. In koRpus, the Universal Declaration of Human Rights with its more that 350
translations4 is used.

3 A sample session

From now on it is assumed that the above requirements are correctly installed and
working. If an optional component is used it will be noted. Further, we’ll need a
sample text to analyze. We’ll use the section on defense mechanisms of Phasmatodea
from Wikipedia5 for this purpose.

2For a free implementation try http://strawberryperl.com
3Like http://7-zip.org
4http://www.unicode.org/udhr/download.html
5http://en.wikipedia.org/wiki/Phasmatodea#Defense_mechanisms

2

3.1 Tokenizing and POS tagging

As explained earlier, splitting the text up into its basic components can be done by
TreeTagger. To achieve this and have the results available in R, the function treetag()

is used.

3.1.1 treetag()

At the very least you must provide it with the text, of course, and name the language
it is written in. In addition to that you must specify where you installed TreeTagger.
If you look at the package documentation you’ll see that treetag() understands a
number of options to configure TreeTagger, but in most cases using one of the built-in
presets should suffice. TreeTagger comes with batch/shell scripts for installed lan-
guages, and the presets of treetag() are basically just R implementations of these
scripts.

> tagged.text <- treetag("~/docs/sample_text.txt", treetagger="manual",

lang="en", TT.options=c(path="~/bin/treetagger/", preset="en"))

The first argument (file name) and lang should explain themselves. The treetagger
option can either take the full path to one of the original TreeTagger scripts mentioned
above, or the keyword ”manual”, which will cause the interpretation of what is defined
by TT.options. To use a preset, just put the path to your local TreeTagger installation
and a valid preset name here.6

The resulting S4 object is of a class called kRp.tagged. For this class of objects,
koRpus provides some comfortable methods to extract the portions you’re interested
in. For example, the main results are to be found in the slot TT.res. In addition to
TreeTagger’s original output (token, tag and lemma) treetag() also automatically
counts letters, assigns tokens to global word classes and explains the rather cryptic
POS tags. To get to these results, use the getter method taggedText():

> taggedText(tagged.text)

token tag lemma lttr wclass desc

[...]

30 an DT an 2 determiner Determiner

31 attack NN attack 6 noun Noun, singular or mass

32 has VBZ have 3 verb Verb, 3rd person singular present

33 been VBN be 4 verb Verb, past participle

34 initiated VBN initiate 9 verb Verb, past participle

35 (((1 punctuation Opening bracket

36 secondary JJ secondary 9 adjective Adjective

37 defense NN defense 7 noun Noun, singular or mass

38))) 1 punctuation Closing bracket

[...]

6As of 0.04-38, English, French, Italian, German, Spanish and Russian are implemented, refer to
package documentation.

3

Once you’ve come this far, i. e., having a valid object of class kRp.tagged, all fol-
lowing analyses should run smoothly.

Troubleshooting If treetag() should fail, you should first re-run it with the extra
option debug=TRUE. Most interestingly, that will print the contents of sys.tt.call,
which is the TreeTagger command given to your operating system for execution. With
that it should be possible to examine where exactly the erroneous behavior starts.

3.1.2 Alternative: tokenize()

If you don’t need detailed word class analysis, you should be fine using koRpus’ own
function tokenize(). As you can see, tokenize() comes to the same results regarding
the tokens, but is rather limited in recognizing word classes:

> tagged.text <- tokenize("~/docs/sample_text.txt", lang="en")

> taggedText(tagged.text)

token tag lemma lttr wclass desc

[...]

30 an word.kRp 2 word Word (kRp internal)

31 attack word.kRp 6 word Word (kRp internal)

32 has word.kRp 3 word Word (kRp internal)

33 been word.kRp 4 word Word (kRp internal)

34 initiated word.kRp 9 word Word (kRp internal)

35 ((kRp 1 punctuation Opening bracket (kRp internal)

36 secondary word.kRp 9 word Word (kRp internal)

37 defense word.kRp 7 word Word (kRp internal)

38))kRp 1 punctuation Closing bracket (kRp internal)

[...]

3.1.3 Descriptive statistics

All results of both treetag() and tokenize() also provide various descriptive statis-
tics calculated from the analyzed text. You can get them by calling describe() on
the object. If you deal with these for the first time, it’s a good idea to first look at its
structure:

> str(describe(tagged.text))

Amongst others, you will find several indices describing the number of characters:

all.chars: Counts each character, including all space characters

normalized.space: Like all.chars, but clusters of space characters (incl. line breaks)
are counted only as one character

chars.no.space: Counts all characters except any space characters

4

letters: Counts only letters, excluding(!) digits (which are counted seperately as
digits)

You’ll also find the number of words and sentences, as well as average word and
sentence lengths, and tables describing how the word length is distributed throughout
the text:

> describe(tagged.text)[["lttr.distrib"]]

1 2 3 4 5 6

num 19.000000 92.00000 74.00000 80.00000 51.000000 49.00000

cum.sum 19.000000 111.00000 185.00000 265.00000 316.000000 365.00000

cum.inv 537.000000 445.00000 371.00000 291.00000 240.000000 191.00000 [...]

pct 3.417266 16.54676 13.30935 14.38849 9.172662 8.81295

cum.pct 3.417266 19.96403 33.27338 47.66187 56.834532 65.64748

pct.inv 96.582734 80.03597 66.72662 52.33813 43.165468 34.35252

For instance, we can learn that the text has 74 words with three letters, 185 with
three or less, and 371 with more than three. The last three lines show the percentages,
respectively.

3.2 Lexical diversity (type token ratios)

To analyze the lexical diversity of our text we can now simply hand over the tagged
text object to the lex.div() function:7

> lex.div(tagged.text)

Language: "en"

TTR.char: Calculate TTR values

reached token 1 to 50...

reached token 1 to 100...

reached token 1 to 150...

reached token 1 to 200...

[...]

Total number of tokens: 556

Total number of types: 294

Type-Token Ratio

TTR: 0.53

TTR characteristics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

7Please note that as of version 0.04-18, the correctness of some of these calculations has not been
extensively validated yet. The package was released nonetheless, also to find outstanding bugs in
the implemented measures. Any information on the validity of its results is very welcome!

5

0.5297 0.5443 0.5895 0.6139 0.6429 1.0000

Mean Segmental Type-Token Ratio

MSTTR: 0.72

Segment size: 100

Tokens dropped: 56

Hint: A segment size of 92 would reduce the drop rate to 4.

Maybe try ?segment.optimizer()

[...]

HD-D

HD-D: 0.85

HD-D characteristics:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.7677 0.8436 0.8463 0.8426 0.8504 0.8574 8.0000

Measure of Textual Lexical Diversity

MTLD: 97.18

Number of factors: 5.72

Factor size: 0.72

SD tokens/factor: 36.67 (all factors)

29.27 (complete factors only)

MTLD characteristics:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

14.00 76.14 86.00 81.96 93.21 103.60 1.00

The above output is only a small sample and really much longer. Let’s look at some
particular parts: At first we are informed of the language, which is read from the
tagged object. Following that is a growing feedback stream, letting you know how far
calculations of a measures’ characteristics8 have progressed. This was added because
if all possible measures are being calculated and the text is rather long, this can take
quite some time, and it might be uplifting to see that R didn’t just freeze. After
that the actual results are being printed, using the package’s show() method for this
particular kind of object. As you can see, it prints the actual value of each measure
before a summary of the characteristics9.

Some measures return more information than only their actual index value. For
instance, when the Mean Segmental Type-Token Ratio is calculated, you’ll be informed

8Characteristics can be looked at to examine each measure’s dependency on text length. They are
calculated by computing each measure repeatedly, beginning with only the first token, then adding
the next, progressing until the full text was analyzed.

9For informtaion on the measures shown see Tweedie and Baayen (1998); McCarthy and Jarvis
(2007, 2010).

6

how much of your text was dropped and hence not examined. A small feature tool
of koRpus, segment.optimizer(), automatically recommends you with a different
segment size if this could decrease the number of lost tokens.

By default, lex.div() calculates every measure of lexical diversity that was imple-
mented. Of course this is fully configurable, e. g. to completely skip the calculation of
characteristics just add the option char=NULL. If you’re only interested in one particu-
lar measure, it might be more convenient to call the according wrapper function instead
of lex.div(). For example, to calculate the measures proposed by Maas (1972):

> maas(tagged.text)

Language: "en"

Total number of tokens: 556

Total number of types: 294

Maas' Indices

a: 0.19

lgV0: 5.64

lgeV0: 12.99

Relative vocabulary growth (first half to full text)

a: 0.79

lgV0: 6.93

V': 0.43 (43 new types every 100 tokens)

All wrapper functions have characteristics turned off by default. The following
example demonstrates how to calculate the classic type-token ratio with characteristics:

> ttr.res <- TTR(tagged.text, char=TRUE)

> plot(ttr.res@TTR.char, type="l", main="TTR degredation over text length")

The plot then shows the typical degredation of TTR values with increasing text
length:

7

0 100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

TTR degredation over text length

token

va
lu

e

Since this package is intended for research, it should be possible to directly influence
all relevant values of each measure and examine the effects. For example, as mentioned
before segment.optimizer() recommended a change of segment size for MSTTR to
drop less words, which is easily done:

> MSTTR(tagged.text, segment=92)

Language: "en"

Total number of tokens: 556

Total number of types: 294

Mean Segmental Type-Token Ratio

8

MSTTR: 0.75

Segment size: 92

Tokens dropped: 4

Please see to the documentation for more detailed information on the available
measures and their references.

3.3 Frequency analysis

3.3.1 Importing language corpora data

This package has rudimentary support to import corpus databases.10 That is, it can
read frequency data for words into an R object and use this object for further analysis.
Next to the Celex11 database format (read.corp.celex()), it can read the LCC
flatfile format footnoteActually, it unterstands two different LCC formats, both the
older .zip and the newer .tar archive format. (read.corp.LCC()). The latter might be
of special interest, because the needed database archives can be freely downloaded.12

Once you’ve downloaded one of these archives, it can be comfortably imported:

> LCC.en <- read.corp.LCC("~/downloads/corpora/eng_news_2010_1M-text.tar")

read.corp.LCC() will automatically extract the files it needs from the archive.
Alernatively, you can specify the path to the unpacked archive as well. To work
with the imported data directly, the tool query() was added to the package. It helps
you to comfortably look up certain words, or ranges of interesting values:

> query(LCC.en, "word", "what")

num word freq pct pmio log10 rank.avg rank.min rank.rel.avg

160 210 what 16396 0.000780145 780 2.892095 260759 260759 99.95362

rank.rel.min

160 99.95362

> query(LCC.en, "pmio", c(780, 790))

num word freq pct pmio log10 rank.avg rank.min rank.rel.avg

156 206 many 16588 0.0007892806 789 2.897077 260763 260763 99.95515

157 207 per 16492 0.0007847128 784 2.894316 260762 260762 99.95477

158 208 down 16468 0.0007835708 783 2.893762 260761 260761 99.95439

10The package also has a function called read.corp.custom() which can be used to process language
corpora yourself, and store the results in an object of class kRp.corp.freq, which is the class
returned by read.corp.LCC() and read.corp.celex() as well. That is, if you can’t get any
already analyzed corpus database but have a huge language corpus at hand, you can create your
own frequency database. But be warned that depending on corpus size and your hardware, this
might take ages. On the other hand, read.corp.custom() will provide inverse document frequency
(idf) values for all types, which is necessary to compute tf-idf with freq.analysis()

11http://celex.mpi.nl
12http://corpora.informatik.uni-leipzig.de/download.html

9

159 209 since 16431 0.0007818103 781 2.892651 260760 260760 99.95400

160 210 what 16396 0.0007801450 780 2.892095 260759 260759 99.95362

rank.rel.min

156 99.95515

157 99.95477

158 99.95439

159 99.95400

160 99.95362

3.3.2 Conduct a frequency analysis

We can now conduct a full frequency analysis of our text:

> freq.analysis.res <- freq.analysis(tagged.text, corp.freq=LCC.en)

The resulting object holds a lot of information, even if no corpus data was used (i. e.,
corp.freq=NULL). To begin with, it contains the two slots TT.res and lang, which are
copied from the analyzed tagged text object. In this way analysis results can always
be converted back into kRp.tagged objects.13 However, if corpus data was provided,
the tagging results gained three new columns:

> taggedText(freq.analysis.res)

token tag lemma lttr [...] pmio rank.avg rank.min

[...]

30 an DT an 2 3817 99.98735 99.98735

31 attack NN attack 6 163 99.70370 99.70370

32 has VBZ have 3 4318 99.98888 99.98888

33 been VBN be 4 2488 99.98313 99.98313

34 initiated VBN initiate 9 11 97.32617 97.32137

35 (((1 854 99.96013 99.96013

36 secondary JJ secondary 9 21 98.23846 98.23674

37 defense NN defense 7 210 99.77499 99.77499

38))) 1 856 99.96052 99.96052

[...]

Perhaps most informatively, pmio shows how often the respective token appears
in a million tokens, according to the corpus data. Adding to this, the previously
introduced slot desc now contains some more descriptive statistics on our text, and
if we provided a corpus database, the slot freq.analysis lists summaries of various
frequency information that was calculated.

If the corpus object also provided inverse document frequency (i. e., values in column
idf) data, freq.analysis() will automatically compute tf-idf statistics and put them
in a column called tfidf.

13This can easily be done by calling as(freq.analysis.res, "kRp.tagged").

10

3.3.3 New to the desc slot

Amongst others, the descriptives now also give easy access to character vectors with
all words ($all.words) and all lemmata ($all.lemmata), all tokens sorted into word
classes (e. g., all verbs in $classes$verb)14, or the number of words in each sentece:

> describe(freq.analysis.res)[["sentc.length"]]

[1] 34 10 37 16 44 31 14 31 34 23 17 43 40 47 22 19 65 29

As a practical example, the list $classes has proven to be very helpful to debug
the results of TreeTagger, which is remarkably accurate, but of course not free from
making a mistake now and then. By looking through $classes, where all tokens are
grouped regarding to the global word class TreeTagger attributed to it, at least obvious
errors (like names mistakenly taken for a pronoun) are easily found:15

> describe(freq.analysis.res)$classes

$conjunction

[1] "both" "and" "and" "and" "and" "or" "or" "and" "and" "or"

[11] "and" "or" "and" "or" "and" "and" "and" "and"

$number

[1] "20" "one"

$determiner

[1] "an" "the" "an" "The" "the" "the" "some"

[8] "that" "Some" "the" "a" "a" "a" "the"

[15] "that" "the" "the" "Another" "which" "the" "a"

[22] "that" "a" "The" "a" "the" "that" "a"

[...]

3.4 Readability

The package comes with implementations of several readability formulae. Some of
them depend on the number of syllables in the text.16 To achieve this, the function
hyphen() takes objects of class kRp.tagged and applies an hyphenation algorithm
(Liang, 1983) to each word. This algorithm was originally developed for automatic
word hyphenation in LATEX, and is gracefully misused here to fulfill a slightly different
service.

> hyph.txt.en <- hyphen(tagged.text)

14This sorting depends on proper POS-tagging, so this will only contain useful data if you used
treetag() instead of tokenize().

15And can then be corrected by using the function correct.tag()
16Whether this is the case can be looked up in the documentation.

11

This seperate hyphenation step can actually be skipped, as readability() will do
it automatically if needed. But similar to TreeTagger, hyphen() will most likely not
produce perfect results. As a rule of thumb, if in doubt it seems to behave rather
conservative, that is, is underestimates the real number of syllables in a text. This,
however, would of course affect the results of several readability formulae.

So, the more accurate the end results should be, the less you should rely on the
automatic hyphenation alone. But it sure is a good starting point, for there is a
function called correct.hyph() to help you clean these results of errors later on.
Probably the most comfortable way to do this is to open the slot hyph.txt.en@hyphen,
which is a data frame with two colums, word (the hyphenated words) and syll (the
number of syllables), in a spread sheet editor:17

> hyph.txt.en@hyphen

syll word

[...]

20 1 first

21 1 place

22 1 primary

23 2 de-fense

24 1 and

[...]

You can then manually correct wrong hyphenations by removing or inserting “-” as
hyphenation indicators, and call the function without further arguments, which will
cause it to recount all syllables:

> hyph.txt.en <- correct.hyph(hyph.txt.en)

Of course the function can also be used to alter entries on its own:

> hyph.txt.en <- correct.hyph(hyph.txt.en, word="primary", hyphen="pri-ma-ry")

Changed

syll word

22 1 primary

into

syll word

22 3 pri-ma-ry

The hyphenated text object can now be given to readability(), to calculate the
measures of interest:18

17For example, this can be comfortably done with RKWard: http://rkward.sourceforge.net
18Please note that as of version 0.04-18, the correctness of some of these calculations has not been

extensively validated yet. The package was released nonetheless, also to find outstanding bugs in
the implemented measures. Any information on the validity of its results is very welcome!

12

> readbl.txt <- readability(tagged.text, hyphen=hyph.txt.en, index="all")

Similar to lex.div(), by default readability() calculates almost19 all available
measures:

> readbl.txt

Flesch Reading Ease

Parameters: en (Flesch)

RE: 39.76

Grade: >= 13 (college)

Flesch.PSK Reading Ease

Parameters: Powers-Sumner-Kearl

Grade: 7.5

Age: 12.5

[...]

Gunning Frequency of Gobbledygook (FOG)

Parameters: Powers-Sumner-Kearl

Score: 7.39

[...]

Coleman Formulas

Parameters: default

Pronouns: 1.62 (per 100 words)

Prepos.: 13.31 (per 100 words)

Formula 1: 39% cloze completions

Formula 2: 37% cloze completions

Formula 3: 35% cloze completions

Formula 4: 36% cloze completions

[...]

To get a more condensed overview of the results try the summary() method:

> summary(readbl.txt)

Text language: en

index flavour raw grade age

1 Flesch en (Flesch) 39.76 >= 13 (college)

2 Flesch Powers-Sumner-Kearl 7.5 12.5

3 Flesch de (Amstad) 55.26 >= 10 (high school)

4 Flesch es (Fernandez-Huerta) 79.07 7

5 Flesch fr (Kandel-Moles) 64.38 8-9

6 Flesch nl (Douma) 73.11 7

7 Flesch-Kincaid 15.39

19Measures which rely on word lists will be skipped if no list is provided.

13

8 Farr-Jenkins-Paterson 33.76

9 Farr-Jenkins-Paterson Powers-Sumner-Kearl 7.37

10 FOG 18.9

11 FOG Powers-Sumner-Kearl 7.39

12 FOG New FOG (NRI) 19

13 Coleman-Liau 32 14.26

14 SMOG 15.97

15 SMOG de ("Qu", Bamberger-Vanecek) 10.32

16 LIX 65.24

17 RIX 10.61 > 12 (college)

[...]

If you’re interested in a particular formula, again a wrapper function might be more
convenient:

> flesch.res <- flesch(tagged.text, hyphen=hyph.txt.en)

> lix.res <- LIX(tagged.text) # LIX doesn't need syllable count

> lix.res

Läsbarhetsindex (LIX)

Parameters: default

Index: 65.24

Text language: en

3.4.1 Readability from numeric data

It is possible to calculate the readability measures from the relevant key values di-
rectly, rather than analyze an actual text, by using readability.num() instead of
readability(). If you need to reanalyze a particular text, this can be considerably
faster. Therefore, all objects returned by readability() can directly be fed to read-

ability.num(), since all relevant data is present in the desc slot.

3.5 Language detection

Another feature of this package is the detection of the language a text was (most
probably) written in. This is done by gzipping reference texts in known languages,
gzipping them again with addition of a small sample of the text in unknown language,
and determining the case where the additional sample causes the smallest increase
in file size (as described in Benedetto, Caglioti, & Loreto, 2002). By default, the
compressed objects will be created in memory only.

To use the function guess.lang(), you first need to download the reference mate-
rial. In this implementation, the Universal Declaration of Human Rights in unicode
formatting is used, because the document holds the world record of beeing the text
translated into the most languages, and is publicly available20. Please get the zipped

20http://www.unicode.org/udhr/download.html

14

archive with all translations in .txt format. You can, but don’t have to unzip the
archive. The text to find the language of must also be in a unicode .txt file:

> guess.lang("~/docs/sample_text.txt", udhr.path="~/downloads/udhr_txt.zip")

Estimated language: English

Identifier: en

Country: UK (Europe)

377 different languages were checked.

4 Extending koRpus

The language support in this package was designed almost modular, so with a little
effort you should be able to add new languages yourself. You need the package sources
for this, then basically you will have to add a new file to it and rebuild/reinstall the
package. More details on this topic can be found in inst/README.languages. Once
you got a new language to work with koRpus, I’d be happy to include your module in
the official distribution.

References

Benedetto, D., Caglioti, E., & Loreto, V. (2002). Language trees and zipping. Physical
Review Letters, 88 (4), 048702.

Bormuth, J. R. (1968). Cloze test readability: Criterion reference scores. Journal of
Educational Measurement , 5 (3), 189–196.

Dale, E., & Chall, J. S. (1948). A formula for predicting readability. Educational
research bulletin, 11–28.

Liang, F. M. (1983). Word hy-phen-a-tion by com-put-er (Unpublished doctoral dis-
sertation). Stanford University, Dept. Computer Science, Stanford.

Maas, H. D. (1972). Über den Zusammenhang zwischen Wortschatzumfang und Länge
eines Textes. Zeitschrift f\ür Literaturwissenschaft und Linguistik , 2 (8), 73–79.

McCarthy, P. M., & Jarvis, S. (2007). vocd – a theoretical and empirical evaluation.
Language Testing , 24 (4), 459–488.

McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: a validation study
of sophisticated approaches to lexical diversity assessment. Behavior research
methods, 42 (2), 381–392.

Quasthoff, U., Richter, M., & Biemann, C. (2006). Corpus portal for search in mono-
lingual corpora. In Proceedings of the fifth international conference on language
resources and evaluation (pp. 1799–1802). Genoa.

Schmid, H. (1994). Probabilistic part-of-speec tagging using decision trees. In Inter-
national conference on new methods in language processing (pp. 44–49). Manch-
ester, UK.

15

Spache, G. (1953). A new readability formula for primary-grade reading materials.
The Elementary School Journal , 53 (7), 410–413.

Tweedie, F. J., & Baayen, R. H. (1998). How variable may a constant be? measures of
lexical richness in perspective. Computers and the Humanities, 32 (5), 323–352.

16

