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The mosaic package provides a command notation in R designed to make it easier to teach and to
learn introductory calculus, statistics, and modeling. The principle behind mosaic is that a notation
can more effectively support learning when it draws clear connections between related concepts, when
it is concise and consistent, and when it suppresses extraneous form. At the same time, the notation
needs to mesh clearly with R, facilitating students’ moving on from the basics to more advanced or
individualized work with R.

This document describes the calculus-related features of mosaic. As they have developed histori-
cally, and for the main as they are taught today, calculus instruction has little or nothing to do with
statistics. Calculus software is generally associated with computer algebra systems (CAS) such as
Mathematica, which provide the ability to carry out the operations of differentiation, integration, and
solving algebraic expressions.

The mosaic package provides functions implementing he core operations of calculus — differen-
tiation and integration — as well plotting, modeling, fitting, interpolating, smoothing, solving, etc.
The notation is designed to emphasize the roles of different kinds of mathematical objects — vari-
ables, functions, parameters, data — without unnecessarily turning one into another. For example,
the derivative of a function in mosaic, as in mathematics, is itself a function. The result of fitting a
functional form to data is similarly a function, not a set of numbers.

Traditionally, the calculus curriculum has emphasized symbolic algorithms and rules (such as
xn → nxn−1 and sin(x) → cos(x)). Computer algebra systems provide a way to automate such
symbolic algorithms and extend them beyond human capabilities. The mosaic package provides only
limited symbolic capabilities, so it will seem to many instructors that there is no mathematical reason
to consider using mosaic for teaching calculus. For such instructors, non-mathematical reasons may
not be very compelling for instance that R is widely available, that students can carry their R skills
from calculus to statistics, that R is clearly superior to the most widely encountered systems used in
practice, viz. graphing calculators. Indeed, instructors will often claim that it’s good for students to
learn multiple software systems — a claim that they don’t enforce on themselves nearly so often as on
their students.

Section 9 outlines an argument that computer algebra systems are in fact a mis-step in teaching
introductory calculus. Whether that argument applies to any given situation depends on the purpose

for teaching calculus. Of course, purpose can differ from setting to setting.
The mosaic calculus features were developed to support a calculus course with these goals:

• introduce the operations and applications of differentiation and integration (which is what cal-
culus is about),

• provide students with the skills needed to construct and interpret useful models that can apply
inter alia to biology, chemistry, physics, economics,
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• familiarize students with the basics of functions of multiple variables,

• give students computational skills that apply outside of calculuus,

• prepare students for the statistical interpretation of data and models relating to data.

These goals are very closely related to the objectives stated by the Mathematical Association of
American in its series of reports on Curriculum Reform and the First Two Years.[?] As such, even
though they may differ from the goals of a typical calculus class, they are likely a good set of goals to
aspire to in most settings.

1 Functions at the Core

In introducing calculus to a lay audience, mathematician Steven Strogatz wrote:

The subject is gargantuan — and so are its textbooks. Many exceed 1,000 pages and work

nicely as doorstops.

But within that bulk you’ll find two ideas shining through. All the rest, as Rabbi Hillel

said of the Golden Rule, is just commentary. Those two ideas are the “derivative” and the

“integral.” Each dominates its own half of the subject, named in their honor as differential

and integral calculus. — New York Times, April 11, 2010

Although generations of students have graduated calculus courses with the ideas that a deriva-
tive is “the slope of a tangent line” and the integral is the ‘area under a curve,” these are merely
interpretations of the application of derivatives and integrals — and limited ones at that.

More basically, a derivative is a function, as is an integral. What’s more, the operation of differen-
tiation takes a function as an input and produces a function as an output. Similarly with integration.
The “slope” and “area” interpretations relate to the values of those output functions when given a
specific input.

The traditional algebraic notation is problematic when it comes to reinforcing the function →
function operation of differentiation and integration. There is often a confusion between a “variable”
and a “function.” The notation doesn’t clearly identify what are the inputs and what is the output.
Parameters and constants are identified idiomatically: a, b, c for parameters, x, y for variables. When
it comes to functions, it’s usually implicit that x is the input and y is the output.

R has a standard syntax for defining functions, for instance:

f <- function(x) {
m * x + b

}

This syntax is nice in many respects. It’s completely explicit that a function is being created. The
input variable is also explicitly identified. To use this syntax, students need to learn how computer
notation for arithmetic differs from algebraic notation: m*x + b rather than mx+ b. This isn’t hard,
although it does take some practice. Assignment and naming must also be taught. Far from being
a distraction, this is an important component of doing technical computing and transfers to future
work, e.g. in statistics.
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The native syntax also has problems. In the example above, the parameters m and b pose a
particular difficulty. Where will those values come from? This is an issue of scoping. Scoping is a
difficult subject to teach and scoping rules differ among languages.

For many years I taught introductory calculus using the native function-creation syntax, trying to
finesse the matter of scoping by avoiding the use of symbolic parameters. This sent the wrong message
to students: they concluded that computer notation was not as flexible as traditional notation.

In the mosaic package we provide a simple means to step around scoping issues while retaining
the use of symbolic parameters. Here’s an example using makeFun().

f <- makeFun(m * x + b ~ x)

One difference is that the input variable is identified using R’s formula syntax: the “body” of the
function is on the left of ~ and the input variable to the right. This is perhaps a slightly cleaner
notation than function(), and indeed my experience with introductory calculus students is that they
make many fewer errors with the makeFun() notation.

More important, though, makeFun() provides a simple framework for scoping of symbolic param-
eters: they are all explicit arguments to the function being created. You can see this by examining
the function itself:

f

function (x, m, b)

m * x + b

When evaluating f(), you need to give values not just to the independent variables (x here), but
to the parameters. This is done using the standard named-argument syntax in R:

f(x = 2, m = 3.5, b = 10)

[1] 17

Typically, you will assign values to the symbolic parameters at the time the function is created:

f <- makeFun(m * x + b ~ x, m = 3.5, b = 10)

This allows the function to be used as if the only input were x, while allowing the roles of the
parameters to be explicit and self-documenting and enabling the parameters to be changed later on.

f(x = 2)

[1] 17

Functions can have more than one input. To identify a symbolic quantities as input variables, list
them to the right of the formula tilde, as here:
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g <- makeFun(A * x * cos(pi * x * y) ~ x + y, A = 3)

g

function (x, y, A = 3)

A * x * cos(pi * x * y)

Other symbolic quantities in the expression to the left of the tilde are treated as ”parameters.”
The only operational difference between an input variable and a parameter involves warning the user
whenever a parameter with no default value is given. For example, the following two functions are
equivalent except for the warning generated in making the second one:

g1 <- makeFun(A * x * cos(pi * x * y) ~ x + y + A)

g2 <- makeFun(A * x * cos(pi * x * y) ~ x + y)

Warning: Implicit variables without default values (dangerous!): A

Thus, it is entirely a matter of style whether you include a symbolic quantity such as A as a
“parameter” or an “input variable.” By giving a warning message, we are encouraging you to adopt
a style where parameters are assigned default values. The symbol pi is handled specially; it’s always
treated as the number π and never listed as a parameter.

When constructing a function, the order of the input variables and parameters is set more or less
arbitrarily. Quantities identified as input variables by being on the right of the tilde will appear first,
listed in the same order. Parameters will be listed after the variables in no particular order. When
you derive a new function — for instance, by differentiation — the order of variables in the derived
function may be different than that in the parent function.

In evaluating functions with multiple inputs, it’s a good practice to use the variable names to
identify which input is which:

g(x = 1, y = 2)

[1] 3

Using makeFun() to define functions has the following advantages for introdcutory calculus stu-
dents:

• The notation highlights the distinction between parameters and inputs to functions.

• Inputs are identified explicitly, but there is no artificial distinction between parameters and
“inputs.” Sometimes, you want to study what happens as you vary a parameter.

• R’s formula syntax is introduced early and in a fundamental way. The mosaic package builds
on this to enhance functionality while maintaining a common theme. In addition, the notation
sets students up for a natural transition to functions of multiple variables.

You can, of course, use functions constructed using functio n() or in any other way as well.
Indeed, mosaic is designed to make it straightforward to employ calculus operations to construct and
interpret functions that do not have a simple algebraic expression, for instance splines, smoothers, and
fitted functions. (See Section 7.)
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2 Graphs

The mosaic package provides plotFun() to simplify graphing functions of one or two variables. This
one function handles three different formats of graph: the standard line graph of a function of one
variable; a contour plot of a function of two variables; and a surface plot of a function of two variables.

The plotFun() interface is similar to that of makeFun(). The variables to the right of ~ set the
independent axes plotting variables. The plotting domain can be specified by a lim argument whose
name is constructed to be prefaced by the variable being set. For example, here’s are a conventional
line plot of a function of t and a contour plot of two variables:

plotFun(A*exp(k*t)*sin(2*pi*t/P) ~ t,

t.lim=range(0,10), k=-0.3, A=10, P=4)

plotFun(A*exp(k*t)*sin(2*pi*t/P) ~ t+k,

t.lim=range(0,10), k.lim=range(-0.3,0.0), A=10, P=4)
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For functions of two variables, you can override the default with surface=TRUE to obtain a surface
plot instead.

plotFun(A*exp(k*t)*sin(2*pi*t/P) ~ t+k,

t.lim=range(0,10), k.lim=range(-0.3,0.0), A=10, P=4,

surface=TRUE)
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Typically, surface plots are hard to interpret, but they are useful in teaching students how to interpret
contour plots.

The resolution of the two-variable plots can be changed with the npts argument. By default,
it’s set to be something that’s rather chunky in order to enhance the speed of drawing. A value of
npts=300 is generally satisfactory for publication purposes.

2.1 Overlaying Graphs

The standard lattice approach to overlaying graphs on a single plot can be daunting for students.
To make the task of overlaying plots easier, plotFun() has an add argument to control whether to
make a new plot or overlay an old one. Here’s an example of laying a constraint t+ 1/k ≤ 0 over the
surface plot another function:

plotFun(A*exp(k*t)*sin(2*pi*t/P) ~ t+k,

t.lim=range(0,10), k.lim=range(-0.3,0.0), A=10, P=4, auto.key=TRUE)

plotFun( t + 1/k <= 0 ~ t+k, add=TRUE, npts=300, alpha=.2)
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The lighter region shows where the constraint is satisfied. Note also that a high resolution (npts=300)
was used for plotting the constraint. At the default resolution, such contraints are often distractingly
chunky.

plotFun(dt(t, df) ~ t + df, t.lim = range(-3, 3), df.lim = range(1, 10))
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3 Differentiation

Differentiation is an operation that takes a function as input and returns a function as an output.
In mosaic, differentiation is implemented by the D() function.1 A function is not the only input to
differentiation; one also needs to specify the variable with respect to which the derivative is taken.
Traditionally, this is represented as the variable in the denominator of the Leibniz quotient, e.g. x in
∂/∂x.

The first input to the mosaic D() function is a formula. The left hand side of the formula is an
expression that applies the function to a variable or variables and the right hand side provides the
variable of differentiation. For instance,

D(sin(x) ~ x)

function (x)

cos(x)

This use of formulas makes it straightforward to move on to functions of multiple variables and
functions with symbolic parameters. For example,

D(A * x^2 * sin(y) ~ x)

function (x, A, y)

A * (2 * x) * sin(y)

D(A * x^2 * sin(y) ~ y)

function (y, A, x)

A * x^2 * cos(y)

Notice that the object returned by D() is a function. The function takes as arguments both the
variables of differentiation and any other variables or symbolic paremeters in the expression being
differentiated. Default values for parameters will be retained in the return function. Even parameters
or variables that are eliminated in the process of differentiation will be retained in the function. For
example:

D(A * x + b ~ y, A = 10, b = 5)

function (y, A = 10, b = 5, x)

0

The controlling rule here is that the derivative of a function should have the same arguments as
the function being differentiated.

Second- and higher-order derivatives can be handled using an obvious extension to the notation:

1The mosaic D() masks the original D() function from the stats package. But since the two use different syntax, the

old behavior is still available by using the original syntax.
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D(A * x^2 * sin(y) ~ x + x)

function (x, A, y)

A * 2 * sin(y)

D(A * x^2 * sin(y) ~ y + y)

function (y, A, x)

-(A * x^2 * sin(y))

D(A * x^2 * sin(y) ~ x + y) #mixed partial

function (x, y, A)

A * (2 * x) * cos(y)

The ability to carry out symbolic differentiation is inherited from the stats::deriv() function
This is valuable for two reasons. First, seeing R return something that matches the traditional form can
be re-assuring for students and instructors. Second, derivatives — especially higher-order derivatives
— can have noticeable pathologies when evaluated through non-symbolic methods such as simple
finite-differences. Fortunately, stats::deriv() is capable of handling the large majority of sorts of
expressions encountered in calculus courses.

But not every function has an algebraic form that can be differentiated using the algebraic rules
of differentiation. In such cases, numerical differentiation can be used. D() is designed to carry
out numerical differentiation and to package up the results as a function that can be used like any
other function. To illustrate, consider the derivative of the density of the t-distribution. The density
is implemented in R with the dt(t, df)() function, taking two parameters, t and the “degrees of
freedom” df. Here’s the derivative of density with respect to df constructed using D():

f1 = D(dt(t, df) ~ df)

f1(t = 2, df = 1)

[1] 0.012

plotFun(f1(t = 2, df = df) ~ df, df.lim = range(1, 10))
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Numerical differentiation, especially high-order differentiation, has problematic numerical proper-
ties. For this reason, only second-order numerical differentiation is directly supported. You can, of
course, construct a higher-order numerical derivative by iterating D(), but don’t expect very accurate
results.

4 Anti-Differentiation

The antiD() function carries out anti-differentiation. Like D(), antiD() uses a formula interface and
returns a function with the same arguments as the formula. Only first-order integration is directly
supported.

To illustrate, here is
∫
ax2dx (which should give a

3
x3 + C):

F = antiD(a * x^2 ~ x, a = 1)

F

function (x, a = 1, C = 0)

a * 1/3 * x^3 + C

The anti-derivative here has been computed symbolically, so the function F() contains a formula.
Note that the constant of integration, C has been included explicitly as an argument to the function
with a default value of 0.

If you want to use the anti-derivative to compute an integral, evaluate the anti-derivative at the
endpoints of the interval of integration and subtract the two results. For example, here is

∫
3

1
x2dx:
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F(x = 3) - F(x = 1) # Should be 9 - 1/3

[1] 8.667

antiD() is capable of performing some simple integrals symbolically. For instance

antiD(1/(a * x + b) ~ x)

function (x, C = 0, a, b)

1/(a) * log(((a * x + b))) + C

Not all mathematical functions have anti-derivatives that can be expressed in terms of simple
functions, and antiD() contains only a small number of symbolic forms. When antiD() cannot find
a symbolic form, the anti-derivative will be based on a process of numerical integration. For example:

P = antiD(exp(x^2) ~ x)

P

function (x, C = 0)

{

numerical_integration(.newf, .wrt, as.list(match.call())[-1],

formals(), from, ciName = intC, .tol)

}

<environment: 0x103e0b6d0>

Integration being carried out is numerical but the result is in the same format: a function of the
same arguments as the original, but including the constant of integration as a new argument. The
name of the constant of integration is generally C, but if this symbol is already in use in the function,
D will be used instead and down the line to Z.

The symbolic anti-derivatives and the numerical anti-derivatives are used in the same ways. The
symbolic forms will typically be more precise and in general will be faster to calculate, although this
is important only if you are doing many, many evaluations of the integral.

Technical Point: Unlike symbolic anti-differentiation, numerical anti-differentiation always requires
an interval of integration. By default, the lower bound of the interval is zero. If you are anti-
differentiating a function that has a singularity near zero (as does 1/x), you will want to choose a
lower bound to avoid the singularity. Do this using the optional lower.bound argument. If you will
be using the anti-derivative to evaluate integrals that do not include zero, for better precision you may
want to set lower.bound to a value closer to your interval of integration. In particular, if the function
you are integrating is non-zero over a small range, you will get better precision if lower.bound falls
in an interval where the function is non-zero. For instance, the function being integrated here is
numerically non-zero only within ±1 of x = 6000:

F = antiD(dnorm(x, mean = 6000, sd = 0.01) ~ x)
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The numerical integration method doesn’t discover the small range over which the integrand is
non-zero. For instance, the following integral should be 1.

F(Inf) - F(-Inf)

[1] 0

Setting lower.bound to a value of x where the integrand is numerically nonzero resolves the
problem:

F = antiD(dnorm(x, mean = 6000, sd = 0.01) ~ x, lower.bound = 6000)

F(Inf) - F(-Inf)

[1] 1

Unlike differentiation, integration has good numerical properties. Even integrals out to infinity
can often be handled with great precision. Here, for instance, is a calculation of the mean of a normal
distribution via integration from −∞ to ∞:

F = antiD(x * dnorm(x, mean = 3, sd = 2) ~ x, lower.bound = -Inf)

F(x = Inf)

[1] 3

And here are some examples using exponential distributions.

F = antiD(x * dexp(x, rate = rate) ~ x)

F(x = Inf, rate = 10) - F(x = 0, rate = 10)

[1] 0.1

F(x = Inf, rate = 100) - F(x = 0, rate = 100)

[1] 0.01

Because anti-differentiation will be done numerically when a symbolic method is not available, you
can compute the anti-derivative of any function that is numerically well behaved, even when there is
no simple algebraic form.

It’s also possible to take the anti-derivative of a function that is itself an anti-derivative. Here, for

example, is a double integral
∫
1

−1

∫
√

1−y2

0
1 dx dy for the area of the top half of a circle of radius 1

(which is, of course π/2.)

one = makeFun(1 ~ x + y)

by.x = antiD(one(x = x, y = y) ~ x)

by.xy = antiD(by.x(x = sqrt(1 - y^2), y = y) ~ y)

by.xy(y = 1) - by.xy(y = -1)

[1] 1.571
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4.1 Example: Jumping Off a Diving Board

The antiD() function allows you to specify the “constant of integration.”
As an example, imagine jumping off a diving board. Let the initial velocity be 1 m/s and the

height of the board 5 m. Acceleration due to gravity is −9.8 m/s. The velocity function is the integral
of acceleration due to gravity over time, plus the initial velocity:

vel <- antiD(-9.8 ~ t)

The velocity function vel() includes a constant of integration which, in this case, corresponds to
the velocity at time zero.

The position is, of course, the integral of velocity:

pos <- antiD(vel(t = t, C = v0) ~ t)

By assigning a symbolic value for the constant of integration in the velocity function, the value of
the velocity at time zero can be specified. The pos() function has it’s own constant of integration,
which corresponds to initial position. So, to plot the position of the diver with an initial position of 5
m and an initial velocity of 1 m/s:

plotFun(pos(t=t,v0=1,C=5)~t, t.lim=range(0,1.2),

xlab="Height (m)", ylab="Time (s)")
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The differential equation solver, described later, provides another way to approach this problem.
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5 Solving

The findZeros() function will locate zeros of a function in a flexible way that’s easy to use. The
syntax is very similar to that of plotFun(), D(), and antiD(): A fromula is used to describe the
function and it independent variable. The search for zeros is conducted over a range that can be
specified in a number of ways. To illustrate:

• Find the zeros within a specified range:

findZeros(sin(t) ~ t, t.lim = range(-5, 1))

t

1 -6.283

2 -3.142

3 0.000

4 3.142

• Find the nearest several zeros to a point:

findZeros(sin(t) ~ t, nearest = 5, near = 10)

t

1 3.142

2 6.283

3 9.425

4 12.566

5 15.708

• Specify a range via a center and width:

findZeros(sin(t) ~ t, near = 0, within = 8)

t

1 -9.425

2 -6.283

3 -3.142

4 0.000

5 3.142

6 6.283

7 9.425

Notice that in each of these cases, there is an expression to the left of the tilde. You may prefer to
write the expressions in the form of an equation. You will still need the tilde, but can use == as the
equal sign. For example, to find a solution to 4 sin(3x) = 2,
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solve(4 * sin(3 * x) == 2 ~ x, near = 0, within = 1)

x

1 0.1746

2 0.8726

You still need the tilde, since that indicates which variables to solve for.
findZeros() works with multiple functions of multiple variables. There are two basic settings:

• n functions in n unknowns. In this setting, the simultaneous zeros of all n functions will tend,
generically, to be isolated points. This is the classical setting taught to high-school students:
isolated zeros.

• p functions in n unknowns, where p < n. In this setting, high-school students have been taught
to believe that there is no solution. Nonsense. There are lots of solutions. In fact, this is an
easier situation to find a solution than with fully n functions.

The solutions are, generically, on a manifold of dimension n− p. That is, with one function in two
unknowns, the solutions typically lie on one-dimensional curves. With one function in three unknowns,
the solutions like on two-dimensional surfaces. With two functions in three unknowns, the solutions
are generically on one-dimensional curves.

To illustrate with the familiar situation of linear functions, here are two linear functions in two
unknowns:

s <- findZeros(3 * x + y - 5 ~ x & y, y + x - -2 ~ x & y)

Two functions in two unknowns typically have simultaneous zeros that are isolated points.
Let’s drop one of the equations. Then there is one function in two unknowns, and there will be an

infinite number of zeros along a continuous manifold.

s <- findZeros(3 * x + y - 5 ~ x & y)

s

x y

1 -25.197 80.590

2 -20.744 67.232

3 -18.150 59.451

4 -15.977 52.931

5 -10.992 37.975

6 -10.798 37.393

7 -9.528 33.583

8 3.107 -4.321

9 4.627 -8.880

10 24.563 -68.689

findZeros() didn’t give back all of the infinite number of zeros! How could it? To keep the
operation of findZeros() simple, it’s arranged to return a numerical sample of the zeros. It does this
in the form of a data frame, each row of which will evaluate to zero when plugged into the functions.
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with(data = s, 3 * x + y - 5)

[1] 1.421e-14 1.000e-05 -7.105e-15 -1.000e-05 0.000e+00 -1.000e-05

[7] 2.000e-06 1.000e-06 1.000e-06 -1.421e-14

findZeros() also works for nonlinear functions.

findZeros(x * y^2 - 8 ~ x & y, sin(x * y) - 0.5 ~ x & y)

x y

1 1.813e+01 -0.66430

2 1.679e+00 -2.18270

3 3.427e-02 15.27887

4 5.792e+00 1.17530

6 9.904e+00 0.89876

7 6.336e+01 -0.35532

9 2.263e+03 0.05945

Such systems often have more than one isolated zero. You can use near and within to specify a
locale.

findZeros(x * y^2 - 8 ~ x & y, sin(x * y) - 0.5 ~ x & y, near = c(x = 20, y = 0),

within = c(x = 5, y = 1))

x y

1 3.427e-02 15.278880

2 4.147e+00 -1.388989

3 8.567e-01 3.055775

4 2.586e+05 -0.005562

7 3.427e-02 15.278880

8 4.198e+01 -0.436539

9 3.427e-02 15.278870

Again, there’s no need to have as many functions as unknowns. To illustrate, consider all the zeros
of the function x2 + y2 + z2 − 10. These are points on a sphere of radius

√
10 in x, y, z space.

findZeros(x^2 + y^2 + z^2 - 10 ~ x & y & z, near = 0, within = 4)

x y z

1 1.305 -1.8665 2.1939

2 1.790 -1.1697 2.3296

3 1.861 -0.6357 2.4765

4 2.060 -1.2607 2.0415

5 2.242 -1.1766 1.8951

6 2.626 -0.6005 1.6567

7 2.687 -0.7627 1.4832

8 2.768 0.4391 1.4638
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9 2.815 1.1881 0.8153

10 2.844 0.9829 0.9738

To be able to show the surface nicely, you need lots of points. Here, 1000 points are requested

s1 <- findZeros(x^2 + y^2 + z^2 - 10 ~ x & y & z, near = 0, within = 10, nearest = 1000)

cloud(z ~ x + y, data = s1, pch = 19)
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6 Random-Example Functions

In teaching, it’s helpful to have a set of functions that can be employed to illustrate various concepts.
Sometimes, all you need is a smooth function that displays some ups and downs and has one or two
local maxima or minima. The rfun() function will generate such functions “at random.” That is, a
random seed can be used to control which function is generated.

f <- rfun(~x, seed = 345)

g <- rfun(~x)

h <- rfun(~x)

plotFun(f(x) ~ x, x.lim = range(-5, 5))

plotFun(g(x) ~ x, add = TRUE, col = "red")

plotFun(h(x) ~ x, add = TRUE, col = "darkgreen")
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These random functions are particularly helpful to develop intuition about functions of two vari-
ables, since they are readily interpreted as a landscape:

f = rfun(~x + y, seed = 345)

plotFun(f(x, y) ~ x + y, x.lim = range(-5, 5), y.lim = range(-5, 5))
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7 Functions from Data

Aside from rfun(), all the examples to this point have involved functions expressed algebraically, as
is traditional in calculus instruction. In practice, however, functions are often created from data. The
mosaic package supports three different types of such functions:

1. Interpolators: functions that connect data points.

2. Smoothers: smooth functions that follow general trends in data.

3. Fitted functions: parametrically specified functions where the parameters are chosen to approx-
imate the data in a least-squares sense.

7.1 Interpolators

Interpolating functions connect data points. Different interpolating functions have different properties
of smoothness, monotonicity, end-points, etc. These properties can be important in modeling. The
mosaic package implements several interpolation methods for functions of one variable.

To illustrate, here are some data from a classroom example intended to illustrate the measurement
of flow using derivatives. Water was poured out of a bottle into a cup set on a scale. Every three
seconds, a student read off the digital reading from the scale, in grams. Thus, the data indicate the
mass of the water in the cup.

Water <- data.frame(

mass=c(57,76,105,147,181,207,227,231,231,231),

time=c(0, 3, 6, 9, 12, 15, 18, 21, 24, 27))

Plotting out the data can be done in the usual way (using lattice graphics)

xyplot(mass ~ time, data = Water)
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Of course, the mass in the cup varied continuously with time. It’s just the recorded data that are
discrete. Here’s how to create a cubic-spline interpolant that connects the measured data:

f <- spliner(mass ~ time, data = Water)

The function f() created has input time. It’s been arranged so that when time is one of the values
in the data Water, the output will be the corresponding value of mass in the data.

f(time = c(0, 3, 6))

[1] 57 76 105

At intermediate values of time, the function takes on interpolated values:

f(time = c(0, 0.5, 1, 1.5, 2, 2.5, 3))

[1] 57.00 59.71 62.59 65.64 68.89 72.33 76.00

xyplot(mass ~ time, data = Water)

plotFun(f(t) ~ t, add = TRUE, t.lim = range(0, 27))
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Like any other smooth function, f() can be differentiated:

Df <- D(f(t) ~ t)

There are, of course, other interpolating functions. In situations that demand monotonicity (re-
member, the water was being poured into the cup, not spilling or draining out), monotonic, smooth
splines can be created

fmono <- spliner(mass ~ time, data = Water, monotonic = TRUE)

If smoothness isn’t important, the straight-line connector might be an appropriate interpolant:

fline <- connector(mass ~ time, data = Water)

The mathematical issues of smoothness and monotonicity are illustrated by these various inter-
polating functions in a natural way. Sometimes these are better ways to think about the choice of
functions for modeling — you’re not going to find a global polynomial or exponential or any other
classical function to represent these data.

Consider, for instance, the question of determining the rate of flow from the bottle. This is the
derivative of the mass measurement. Here are plots of the derivatives of the three interpolating
functions:

Df <- D(f(t) ~ t)

Dfmono <- D(fmono(t) ~ t)

Dfline <- D(fline(t) ~ t)

plotFun(Df(t) ~ t, t.lim = range(0, 30), lwd = 2, col = "black")
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plotFun(Dfmono(t) ~ t, t.lim = range(0, 30), add = TRUE, col = "blue")

plotFun(Dfline(t) ~ t, t.lim = range(0, 30), add = TRUE, col = "red")
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It’s a worthwhile classroom discussion: Which of the three estimates of flow is best? The smoothest
one has the unhappy property of negative flow near time 25 and positive flow even after the pouring
stopped.

7.2 Smoothers

A smoother is a function that follows general trends of data. Unlike an interpolating function, a
smoother need not replicate the data exactly. To illustrate, consider a moderate-sized data set CPS85
that gives wage and demographic data for 534 people in 1985.

data(CPS85)

There is no definite relationship between wage and age, but there are general trends:

xyplot(wage ~ age, data = CPS85)

f <- smoother(wage ~ age, span = 0.9, data = CPS85)

plotFun(f(age) ~ age, add = TRUE, lwd = 4)
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There appears to be a slight decline in wage — a negative derivative — for people older than 40.
Statistically, one might wonder whether the data provide good evidence for this small effect and the
extent to which the outlier affects matters. Let’s look at the resampling distribution of the second
derivative, stripping away the outlier:

CPSclean <- subset(CPS85, wage < 30)

f <- smoother(wage ~ age, span = 1, data = CPSclean)

f2 <- D(f(age) ~ age)

plotFun(f2(age) ~ age, age.lim = range(20, 60), ylab = "change in wage", lwd = 4)

do(10) * {
fr <- smoother(wage ~ age, span = 1, data = resample(CPSclean))

fr2 <- D(fr(age) ~ age)

plotFun(fr2(age) ~ age, add = TRUE, col = "gray40", alpha = 0.5)

}
# add horizontal line at 0

plotFun(0 ~ age, add = TRUE, lty = 2, col = "red", alpha = 0.5)

# replot on top of overlays

plotFun(f2(age) ~ age, age.lim = range(20, 60), lwd = 4, add = TRUE)
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With increasing age, the derivative gets smaller. It is positive — meaning that wage increases
with age — only up through the late 30s. After about 35 years of age, there’s weak evidence for any
systematic effect.

Smoothers can construct functions of more than one variable. Here, for instance, is a representation
of the relationship between wage, age, and education.

g <- smoother(log(wage) ~ age + educ + 1, span = 1, data = CPSclean)

plotFun(g(age = age, educ = educ) ~ age + educ, age.lim = range(20, 50), educ.lim = range(5,

14), main = "Log of wage as a function of age and education")
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Log of wage as a function of age and education
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The graph suggests that people with a longer education see a steeper and more prolonged increase in
wage with age. To see this in a different way, here’s the partial derivative of log wage with respect to
age, holding education constant:

DgAge <- D(g(age = age, educ = educ) ~ age)

plotFun(DgAge(age = age, educ = educ) ~ age + educ, age.lim = range(20, 50), educ.lim = range(5,

14))
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For economists, perhaps worthwhile to think about the elasticity of wages with respect to age for
different levels of education.

CPSclean$logage <- log(CPSclean$age)

g2 <- smoother(log(wage) ~ logage + educ + 1, span = 1, data = CPSclean)

elasticity <- D(g2(logage = logage, educ = educ) ~ logage)

plotFun(elasticity(logage = log(a), educ = educ) ~ a + educ, a.lim = range(20, 50),

educ.lim = range(5, 14))
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Elasticity seems to fall off with age at pretty much the same rate for different levels of education.
It just starts out more positive for the more highly educated.

7.3 Fitted Functions

Statisticians will be familiar with parametric functions fitted to data. The lm() function returns
information about the fitted model. The mosaic functon makeFun() takes the output of lm(), glm()
(generalized linear models), or nls() (nonlinear least squares) and packages it up into a model function.

model <- lm(log(wage) ~ age * educ + 1, data = CPS85)

g <- makeFun(model)

g(age = 40, educ = 12)

1

2.014

dgdeduc <- D(g(age = age, educ = educ) ~ educ)

dgdeduc(age = 40, educ = 12)

1

0.08422

In addition to applying makeFun() to models produced using the standard statistical modeling
functions lm(), glm(), and nls(), the mosaic function also provides fitModel() and fitSplin()

which fits an nonlinear and spline models and return the model as a function. The splines used by
fitSpline() are not interpolating splines but splines chosen by the method of least squares. In
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typical applications, one limits the number of knots (points where the piecewise polynomial function
is “stiched together”) fitModel() is roughly equivalent to first fitting the model with nls() and then
applying makeFun() but provides an easier syntax for setting starting points for the least squares
search algorithm.

The fitModel() function can be used to allow students to refine eyeballed fits to data. For
example, here’s an exponential model fitted to the CoolingWater data. From the graph, it’s easy to
see that the exponential “half-life” is approximately 30 minutes and the asymptotic temperature is
about 30C, so these can be used as starting guesses.

plotPoints(temp ~ time, data = CoolingWater)

mod <- fitModel(temp ~ A + B * exp(-k * time), start = list(A = 30, k = log(2)/30),

data = CoolingWater)

plotFun(mod(time) ~ time, add = TRUE, col = "red")
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The function returned by fitModel() shows the specific numerical values of the parameters:

mod

function (time, ..., transform = identity)

return(transform(predict(model, newdata = data.frame(time = time),

...)))

<environment: 0x104ee7d40>

attr(,"coefficients")

A k B

27.00448 0.02096 62.13547

attr(,"class")

[1] "nlsfunction" "function"

As a rule, starting guesses for linear parameters don’t need to be provided. For complicated models,
the fitting process may fail to converge unless the starting guess is good. Commonly encountered
examples of nonlinear parameters include the exponential scale k in the above, the period of a sine
wave.

f1 <- fitSpline(wage ~ age, data = CPSclean, df = 10, type = "natural")

f2 <- fitSpline(wage ~ age, data = CPSclean, df = 10, type = "polynomial", degree = 5)

xyplot(wage ~ age, data = CPSclean, col = "gray50")
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plotFun(f1(age) ~ age, add = TRUE, lwd = 3, col = "green")

plotFun(f2(age) ~ age, add = TRUE, lwd = 3, col = "orange")
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f1 <- fitSpline(mass ~ time, data = Water, df = 7, type = "natural", degree = 3)

f2 <- fitSpline(mass ~ time, data = Water, df = 5, type = "cubic")

xyplot(mass ~ time, data = Water, col = "gray50", xlim = c(-5, 35))

plotFun(f1(time) ~ time, add = TRUE, lwd = 2, col = "green")

plotFun(f2(time) ~ time, add = TRUE, lwd = 2, col = "orange")
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8 Differential Equations

A basic strategy in calculus is to divide a challenging problem into easier bits, and then put together
the bits to find the overall solution. Thus, areas are reduced to integrating heights. Volumes come
from integrating areas.

Differential equations provide an important and compelling setting for illustrating the calculus
strategy, while also providing insight into modeling approaches and a better understanding of real-
world phenomena. A differential equation relates the instantaneous “state” of a system to the in-
stantaneous change of state. “Solving” a differential equation amounts to finding the value of the
state as a function of independent variables. In an “ordinary differential equations,” there is only one
independent variable, typically called time. In a “partial differential equation,” there are two or more
dependent variables, for example, time and space.

The integrateODE() function solves an ordinary differential equation starting at a given initial
condition of the state.
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To illustrate, here is the differential equation corresponding to logistic growth:

dx

dt
= rx(1− x/K).

There is a state x. The equation describes how the change in state over time, dx/dt is a function of the
state. The typical application of the logistic equation is to limited population growth; for x < K the
population grows while for x > K the population decays. The state x = K is a “stable equilibrium.”
It’s an equilbrium because, when x = K, the change of state is nil: dx/dt = 0. It’s stable, because a
slight change in state will incur growth or decay that brings the system back to the equilibrium. The
state x = 0 is an unstable equilibrium.

The algebraic solution to this equation is a staple of calculus books. It is

x(t) =
Kx(0)

x(0) + (K − x(0)e−rt)
.

The solution gives the state as a function of time, x(t), whereas the differential equation gives the
change in state as a function of the state itself. The initial value of the state (the “initial condition”)
is x(0), that is, x at time zero.

The logistic equation is much beloved because of this algebraic solution. Equations that are very
closely related in their phenomenology, do not have analytic solutions.

The integrateODE() function takes the differential equation as an input, together with the initial
value of the state. Numerical values for all parameters must be specified, as they would in any case
to draw a graph of the solution. In addition, must specify the range of time for which you want the
function x(t). For example, here’s the solution for time running from 0 to 20.

soln <- integrateODE( dx ~ r*x*(1-x/K),

x=1, K=10, r=.5,

tdur=list(from=0,to=20))

The object that is created by integrateODE() is a function of time. Or, rather, it is a set of
solutions, one for each of the state variables. In the logistic equation, there is only one state variable
x. Finding the value of x at time t means evaluating the function at some value of t. Here are the
values at t = 0, 1, . . . , 5.

soln$x(0:5)

[1] 1.000 1.548 2.320 3.324 4.509 5.751

Often, you will plot out the solution against time:

plotFun(soln$x(t) ~ t, t.lim = range(0, 20))
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Differential equation systems with more than one state variable can be handled as well. To illus-
trate, here is the SIR model of the spread of epidemics, in which the state is the number of susceptibles
S and the number of infectives I in the population. Susceptibles become infective by meeting an in-
fective, infectives recover and leave the system. There is one equation for the change in S and a
corresponding equation for the change in I. The initial I = 1, corresponding to the start of the
epidemic.

epi = integrateODE(dS ~ -a * S * I, dI ~ a * S * I - b * I, a = 0.0026, b = 0.5,

S = 762, I = 1, tdur = 20)

This system of differential equations is solved to produce two functions, S(t) and I(t).

plotFun(epi$S(t) ~ t, t.lim = range(0, 20))

plotFun(epi$I(t) ~ t, add = TRUE, col = "red")
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In the solution, you can see the epidemic grow to a peak near t = 5. At this point, the number
of susceptibles has fallen so sharply that the number of infectives starts to fall as well. In the end,
almost every susceptible has been infected.

8.1 Example: Another Dive from the Board

Let’s return to the diving-board example, solving it as a differential equation with state variables v
and x.

dive = integrateODE(dv ~ -9.8, dx ~ v, v = 1, x = 5, tdur = 1.2)

plotFun(dive$x(t) ~ t, t.lim = range(0, 1.2), ylab = "Height (m)")
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What’s nice about the differential equation format is that it’s easy to add features like the buoyancy
of water and drag of the water. We’ll do that here by changing the acceleration (the dv term) so that
when x < 0 the acceleration is slightly positive with a drag term proportional to v2 in the direction
opposed to the motion.

diveFloat = integrateODE(dv ~ ifelse(x > 0, -9.8, 1 - sign(v) * v^2), dx ~ v, v = 1,

x = 5, tdur = 10)

plotFun(diveFloat$x(t) ~ t, t.lim = range(0, 10), ylab = "Height (m)")
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According to the model, the diver resurfaces after slightly more than 5 seconds, and then bobs
in the water. One might adjust the parameters for buoyancy and drag to try to match the observed
trajectory.

9 Algebra and Calculus

The acronym often used to describe the secondary-school mathematics curriculum is GATC: Geometry,
Algebra, Trigonometry, and Calculus. Until just a half-century ago, calculus was an advanced topic
first encountered in the university. Trigonometry was a practical subject, useful for navigation and
surveying and design. Geometry also related to design and construction; it served as well as an
introduction to proof. Calculus was a filter, helping to sort out which students were deemed suited
for continuing studies in science and engineering and even medicine.

Nowadays, calculus is widely taught in high-school rather than university. Trigonometry, having
lost its clientelle of surveyers and navigators, has become an algebraic prelude to calculus. Indeed, the
goal of GAT has become C — it’s all a preparation for doing calculus.

There is a broad dissatisfaction. Instructors fret that students are not prepared for the calculus
they teach. Students fail calculus at a high rate. Huge resources of time and student effort are
invested in “college algebra,” remedial courses intended to prepare students for a calculus course that
the vast majority — more than 90% — will never take. As stated in the Mathematical Association
of America’s CRAFTY report,“Students do not see the connections between mathematics and their
chosen disciplines; instead, they leave mathematics courses with a set of skills that they are unable to
apply in non-routine settings and whose importance to their future careers is not appreciated. Indeed,
the mathematics many students are taught often is not the most relevant to their chosen fields.”[?,
p.1] Seen in this context, college algebra is a filter that keeps students away from career paths for
which they are otherwise suited.
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Accept, for the sake of argument, that calculus is important, or at least is potentially important if
students are brought to relate calculus concepts to inform their understanding of the world.

Is algebra helpful for most students who study it? It’s not so much the direct applications. The
nursing students who are examined in completing the square will never use it or any form of factoring
in their careers. Underwood Dudley, in the 2010 Notices of the American Mathematical Society, wrote,
“I keep looking for the uses of algebra in jobs, but I keep being disappointed. To be more accurate, I
used to keep looking until I became convinced that there were essentially none.”

There was a time when algebra was essential to calculus, when performing calculus relied on
algebraic manipulation. The use of the past tense may surprise many readers. The way calculus is
taught, algebra is still essential to teaching calculus. Most people who study calculus think of the
operations in algebraic terms. For the last hundred years or more, however, there have been numerical
approaches to calculus problems.

The numerical approaches are rarely emphasized in introductory calculus, except as demonstra-
tions when trying to help students visualize operations like the integral that are otherwise too abstract.
There are both good and bad reasons for this lack of emphasis on numerics. Tradition and aesthetics
both play a role. The preference for exact solutions of algebra rather than the approximations of
numerics is understandable. Possibly also important is the lack of a computational skill set for stu-
dents and instructors; very few instructors and almost no high-school students learn about technical
computing in a way that would make it easier for them to do numerical calculus rather than alge-
braic calculus. (Here’s a test for instructors: In some computer language that you know, how do you
write a computer function that will return a computer function that provides even a rough and ready
approximation to the derivative of an arbitrary mathematical function?)

There are virtues to teaching calculus using numerics rather than algebra. Approximation is
important and should be a focus of courses such as calculus. As John Tukey said, “Far better an
approximate answer to the right question, which is often vague, than an exact answer to the wrong
question, which can always be made precise.” And computational skill is important. Indeed, it can
be one of the most useful outcomes of a calculus course.

In terms of the basic calculus operations themselves, the need to compute derivatives and integrals
using algebra-based algorithms limits the sorts of functions that can be employed in calculus. Students
and textbooks have to stay on a narrow track which allows the operations to be successfully performed.
That’s why there are so many calculus optimization problems that amount to differentiating a global
cubic and solving a quadratic.(When was the last time you used a global cubic to represent something
in the real world?) There’s little room for realism, innovation, and creativity in modeling. Indeed, so
much energy and time is needed for algebra, that its conventional for functions of multiple variables
to be deferred to a third-semester of calculus, a level reached by only a small fraction of students who
will use data intensively in their careers.

With time, it’s likely that more symbolic capabilities will be picked up in the mosaic package.2

This will speed up some computations, add precision, and be gratifying to those used to algebraic ex-
pressions. But it will not fundamentally change the pedagogical issues and the desirability of applying
the operations of calculus to functions that often may not be susceptible to symbolic calculation.

2The Ryacas package already provides an R interface to a computer algebra system.
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