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About These Notes

These materials were initially created for a workshop entitled Teach-
ing Statistics Using R prior to the 2011 United States Conference on
Teaching Statistics and revised for USCOTS 2011 and eCOTS 2014.
We organized these workshops to help instructors integrate R (as well
as some related technologies) into their statistics courses at all levels.
We received great feedback and many wonderful ideas from the par-
ticipants and those that we’ve shared this with since the workshops.

We present an approach to teaching introductory and intermediate
statistics courses that is tightly coupled with computing generally
and with R and RStudio in particular. These activities and examples
are intended to highlight a modern approach to statistical education
that focuses on modeling, resampling based inference, and multivari-
ate graphical techniques. A secondary goal is to facilitate computing
with data through use of small simulation studies and appropriate
statistical analysis workflow. This follows the philosophy outlined by
Nolan and Temple Lang1. 1

Throughout this book (and its companion volumes), we introduce
multiple activities, some appropriate for an introductory course,
others suitable for higher levels, that demonstrate key concepts in
statistics and modeling while also supporting the core material of
more traditional courses.

A Work in Progress
Caution!

Despite our best efforts, you WILL find
bugs both in this document and in our
code. Please let us know when you
encounter them so we can call in the
exterminators.

Consider these notes to be a work in progress. We appreciate any
feedback you are willing to share as we continue to work on these
materials and the accompanying mosaic package. Drop us an email
at pis@mosaic.org with any comments, suggestions, corrections, etc.

Updated versions will be posted at http://mosaic-web.org.

What’s Ours Is Yours – To a Point

This material is copyrighted by the authors under a Creative Com-
mons Attribution 3.0 Unported License. You are free to Share (to
copy, distribute and transmit the work) and to Remix (to adapt the

pis@mosaic.org
http://mosaic-web.org
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work) if you attribute our work. More detailed information about the
licensing is available at this web page: http://www.mosaic-web.org/
go/teachingRlicense.html.

Two Audiences

The primary audience for these materials is instructors of statistics at
the college or university level. A secondary audience is the students
these instructors teach. Some of the sections, examples, and exercises
are written with one or the other of these audiences more clearly at
the forefront. This means that

1. Some of the materials can be used essentially as is with students.

2. Some of the materials aim to equip instructors to develop their
own expertise in R and RStudio to develop their own teaching
materials.

Although the distinction can get blurry, and what works “as is"
in one setting may not work “as is" in another, we’ll try to indicate
which parts fit into each category as we go along.

R, RStudio and R Packages

R can be obtained from http://cran.r-project.org/. Download
and installation are quite straightforward for Mac, PC, or linux ma-
chines.

RStudio is an integrated development environment (IDE) that facili-
tates use of R for both novice and expert users. We have adopted it as
our standard teaching environment because it dramatically simplifies
the use of R for instructors and for students. There are several things
we use that can only be done in RStudio (mainly things that make use
manipulate() or RStudio’s support for reproducible research). RStudio

is available from http://www.rstudio.org/. RStudio can be installed
as a desktop (laptop) application or as a server application that is
accessible to users via the Internet.

In addition to R and RStudio, we will make use of several packages
that need to be installed and loaded separately. The mosaic package
(and its dependencies) will be used throughout. Other packages
appear from time to time as well.

http://www.mosaic-web.org/go/teachingRlicense.html
http://www.mosaic-web.org/go/teachingRlicense.html
http://cran.r-project.org/
http://www.rstudio.org/
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Marginal Notes

Marginal notes appear here and there. Sometimes these are side Have a great suggestion for a marginal
note? Pass it along.comments that we wanted to say, but we didn’t want to interrupt the

flow to mention them in the main text. Others provide teaching tips
or caution about traps, pitfalls and gotchas.

Document Creation
Digging Deeper

If you know LATEX as well as R, then
knitr provides a nice solution for
mixing the two. We used this system
to produce this book. We also use it
for our own research and to introduce
upper level students to reproducible
analysis methods. For beginners, we
introduce knitr with RMarkdown,
which produces PDF, HTML, or Word
files using a simpler syntax.

This document was created on August 22, 2014, using knitr and R
Under development (unstable) (2014-08-17 r66408).





Project MOSAIC

This book is a product of Project MOSAIC, a community of educators
working to develop new ways to introduce mathematics, statistics,
computation, and modeling to students in colleges and universities.

The goal of the MOSAIC project is to help share ideas and re-
sources to improve teaching, and to develop a curricular and assess-
ment infrastructure to support the dissemination and evaluation of
these approaches. Our goal is to provide a broader approach to quan-
titative studies that provides better support for work in science and
technology. The project highlights and integrates diverse aspects of
quantitative work that students in science, technology, and engineer-
ing will need in their professional lives, but which are today usually
taught in isolation, if at all.

In particular, we focus on:

Modeling The ability to create, manipulate and investigate useful
and informative mathematical representations of a real-world
situations.

Statistics The analysis of variability that draws on our ability to
quantify uncertainty and to draw logical inferences from obser-
vations and experiment.

Computation The capacity to think algorithmically, to manage data
on large scales, to visualize and interact with models, and to auto-
mate tasks for efficiency, accuracy, and reproducibility.

Calculus The traditional mathematical entry point for college and
university students and a subject that still has the potential to
provide important insights to today’s students.

Drawing on support from the US National Science Foundation
(NSF DUE-0920350), Project MOSAIC supports a number of initia-
tives to help achieve these goals, including:

Faculty development and training opportunities, such as the USCOTS
2011, USCOTS 2013, eCOTS 2014, and ICOTS 9 workshops on
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Teaching Statistics Using R and RStudio, our 2010 Project MOSAIC
kickoff workshop at the Institute for Mathematics and its Applica-
tions, and our Modeling: Early and Often in Undergraduate Calculus
AMS PREP workshops offered in 2012, 2013, and 2015.

M-casts, a series of regularly scheduled webinars, delivered via the
Internet, that provide a forum for instructors to share their in-
sights and innovations and to develop collaborations to refine and
develop them. Recordings of M-casts are available at the Project
MOSAIC web site, http://mosaic-web.org.

The construction of syllabi and materials for courses that teach the MO-
SAIC topics in a better integrated way. Such courses and materials
might be wholly new constructions, or they might be incremental
modifications of existing resources that draw on the connections
between the MOSAIC topics.

We welcome and encourage your participation in all of these initia-
tives.

http://mosaic-web.org


Statistical Computation, Computational Statistics, and
Data Science

There are at least two ways in which statistical software can be in-
troduced into a statistics course. In the first approach, the course
is taught essentially as it was before the introduction of statistical
software, but using a computer to speed up some of the calculations
and to prepare higher quality graphical displays. Perhaps the size of
the data sets will also be increased. We will refer to this approach as
statistical computation since the computer serves primarily as a com-
putational tool to replace pencil-and-paper calculations and drawing
plots manually.

In the second approach, more fundamental changes in the course
result from the introduction of the computer. Some new topics are
covered, some old topics are omitted. Some old topics are treated in
very different ways, and perhaps at different points in the course.
We will refer to this approach as computational statistics because
the availability of computation is shaping how statistics is done and
taught. This is a key capacity of data science, defined as the ability to
use data to answer questions and communicate those results.

Our students need to see aspects of
computation and data science early
and often to develop deeper skills.
Establishing precursors in introductory
courses will help them get started.

In practice, most courses will incorporate elements of both sta-
tistical computation and computational statistics, but the relative
proportions may differ dramatically from course to course. Where on
the spectrum a course lies will be depend on many factors including
the goals of the course, the availability of technology for student use,
the perspective of the text book used, and the comfort-level of the
instructor with both statistics and computation.

Among the various statistical software packages available, R is
becoming increasingly popular. The recent addition of RStudio has
made R both more powerful and more accessible. Because R and
RStudio are free, they have become widely used in research and in-
dustry. Training in R and RStudio is often seen as an important ad-
ditional skill that a statistics course can develop. Furthermore, an
increasing number of instructors are using R for their own statistical
work, so it is natural for them to use it in their teaching as well. At
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the same time, the development of R and of RStudio (an optional in-
terface and integrated development environment for R) are making it
easier and easier to get started with R.

Nevertheless, those who are unfamiliar with R or who have never
used R for teaching are often cautious about using it with students.
If you are in that category, then this book is for you. Our goal is to
reveal some of what we have learned teaching with R and to make
teaching statistics with R as rewarding and easy as possible – for both
students and faculty. We will cover both technical aspects of R and
RStudio (e.g., how do I get R to do thus and such?) as well as some
perspectives on how to use computation to teach statistics. The latter
will be illustrated in R but would be equally applicable with other
statistical software.

Others have used R in their courses, but have perhaps left the
course feeling like there must have been better ways to do this or that
topic. If that sounds more like you, then this book is for you, too. As
we have been working on this book, we have also been developing
the mosaic R package (available on CRAN) to make certain aspects
of statistical computation and computational statistics simpler for
beginners. You will also find here some of our favorite activities,
examples, and data sets, as well as answers to questions that we
have heard frequently from both students and faculty colleagues. We
invite you to scavenge from our materials and ideas and modify them
to fit your courses and your students.



Preface

These notes present a strategy for teaching statistical modeling. Mod-
eling is a way of making sense of the world by building a represen-
tation that is easy to explore and manipulate. Modeling is a key ca-
pacity for dealing with complexity that’s used in many ways. Mathe-
matical modeling refers to representations built out of mathematical
objects, particularly functions. Statistical modeling is an adaption of
mathematical modeling to the extraction of information from data.

The strategy for teaching modeling is based around notation: a
way of writing down forms of relationships among variables. Cou-
pled with modern computing, the notation comes to life. The form of
a relationship is translated by the computer into a fit that describes
the data at hand.

The same notation that can describe simple relationships — for
example, groupwise means, in which a quantitative response variable
is averaged separately in groups defined by a categorical explanatory
variable — can be extended to much richer relationships involving
multiple explanatory variables. What’s key is to have a notation in
which phrases like “response variable” and “explanatory variable”
have a discernible identity. Starting with that notation puts students
in a good place on the road to learning about modeling.

The notes are part of a series on teaching with R, but they are not
primarily about R. Other notes in the series introduce R, discuss how
to teach with R, and show how to carry out basic processes of sta-
tistical inference using conceptually simple operations implemented
transparently in R.

If you don’t already know R, we hope that you will think the com-
mands are simple enough that you can use them yourself; that you
can learn R by observation. Our students appear to be able to do
that.

It is possible to implement the strategy presented here using other
software. It might even be possible to present it without using soft-
ware at all. But you always need some notation to communicate.
The R computer notation is simple and concise, a rival for traditional
mathematical notation, even as it extends to include operations not in
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the algebraic repertoire: sampling, randomization, iteration, etc.
These notes are meant for teachers; this isn’t a textbook for stu-

dents. Examples of materials for students, including a textbook are DT Kaplan (2011) “Statistical Modeling:
A Fresh Approach” 2nd ed., Project
MOSAIC

available at www.mosaic-web.org/StatisticalModeling.

We wish to acknowledge the support of the Howard Hughes Med-
ical Institute, the W.M. Keck Foundation, and the US National Sci-
ence Foundation (DUE-0920350).

www.mosaic-web.org/StatisticalModeling


1
Graphics & Formulas

require(mosaic)

The R system provides a way for the
software development community to
add new functionality. “Packages" are
the standard way to deliver such soft-
ware. The statement require(mosaic)
loads in the mosaic package, which
itself includes several other packages.

The mosaic package provides many
of the commands that are used in
this book. We will also make use the
mosaicData package which contains a
number of data sets used in examples.

Once the package is loaded, it remains
loaded for the rest of the R session.

As you teach, you may find other
packages, such as fastR, that give
useful data sets or other capabilities.
These can be loaded using require() in
the same way.

The trebuchet data set was collected
by a high-school student, Andrew
Pruim, as part of a Science Olympiad
competition. These data are included in
the fastR package.

A trebuchet is a device used for throwing projectiles. A heavy counter-
weight pulls down the short end of the arm, rapidly accelerating a
projectile hanging in a sack at the long end of the arm. Introduced in
medieval times, trebuchets were used as a siege weapons to destroy
fortifications.

Visualization is sometimes called the gateway drug to statistics.
Since being a statistics addict is a good thing, it’s worthwhile to
start a statistics course with graphics: scatterplots, box-and-whisker
plots, histograms, etc. In addition to conveying lay ideas of variation,
graphics are close to the data themselves, compelling, and motivat-
ing. Students see the advantage of using software; they couldn’t
make such graphics by hand.

As always in these notes, you’ll be using, among other things,
functions from the mosaic package and data sets from mosaicData.
When working with your own data, the mosaicData package is not
required. You need to load this into R:

require(mosaic)

require(mosaicData)

This will also load allied packages, such as lattice graphics. Often,
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you will encounter methods or data that you want to use in others of
the many packages available for R. For instance, the next example in-
volves a data set about a toy trebuchet available in the fastR package:

require(fastR)

trebuchet = droplevels(subset(trebuchet, form == "a", drop = TRUE))

In R, these scatterplots and box-and-whisker graphs can be made
with xyplot() and bwplot(), for instance:

xyplot(distance ~ projectileWt, data = trebuchet)
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bwplot(distance ~ object, data = trebuchet)
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Each of these examples involves two variables. They are often
called y and x by students. Alternative names frequently encountered
are “vertical axis" and “horizontal axis,”, “dependent” and “inde-
pendent” variables, “input” and “output.” Among math teachers,
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“ordinate” and “abscissa” are sometimes the preferred terms. What-
ever you choose to call them — we’ll use explanatory and response
variables when describing models, and input and output for func-
tions — the notation must make clear which variable is in which role.

In R notation, a formula is an expression involving the ~ squiggle
character — also called “tilde” — that provides slots for laying out
how you want to relate variables: y versus x, what to break down by
what.

There’s more going on here than just identifying which variable
gets plotted on each axis: the formula in R provides a modeling lan-
guage that gives an easy path from basic graphics and basic statistics
to multivariable modeling. The path is easy enough that it makes
sense to start in that direction early: using the concepts, terminology,
and techniques of modeling as a way of introducing statistics. Here is
what such a journey might look like.

1.1 Formulas & Basic Statistics
It’s tempting to show students short-
cuts for looking at a data set, such as
summary().summary(trebuchet)

This unfortunately encourages students to think that there is such a
thing as a mean or median of a dataset. It’s important to distinguish
between variables and the datasets in which variables are contained.

The move to quantitative statistics is straightforward, since the
syntax is very much the same as with plots. For instance

mean(distance, data = trebuchet)

[1] 470.4

sd(distance, data = trebuchet)

[1] 302.6

In each case, the variable of interest is named along with the data set
in which that variable is included.

Using mosaic, the formula interface works with these basic statis-
tics in much the same way as for graphics, e.g:

mean(distance ~ object, data = trebuchet)

big washerb foose golf tennis ball

343.6 741.6 358.8 238.4

Eventually, the formula will be used to guide students to thinking
about using explanatory variables to account for a response variable,
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in this example, explaining distance by object. At this point, it works
well to present this to students as “breaking down” the distance
variable by the object variable, or just “dividing up into groups.”



2
From Means to Models

Remember to load the mosaic package:

require(mosaic)

Students often understand means algorithmically in a way that can
be expressed in plain English: “add them up and divide by n.” Such
arithmetic is considered basic.

Techniques such as regression involve more complicated algo-
rithms, ones that require algebraic notation. But strip away the algo-
rithm used to compute the parameters of the regression and consider
just the statement of the regression operation itself. Here is such a
statement in R, modeling distance flown by the projectile as a func-
tion of the projectile’s weight:

mod1 = lm(distance ~ projectileWt, data = trebuchet)

The syntax for constructing the model is very much the same as for
mean(). But what is the output, what is the model itself?

It helps to have some vocabulary:

• A model of this sort links inputs, called “explanatory variables,”
to an output, or “response variable". 1 In the example above, 1 Depending on the field, these may be

called “independent” and “dependent”
variables respectively. You may want
to avoid this nomenclature, since
those terms are confusingly similar in
pronunciation and are often mistaken
to confer special status on the quantities
themselves rather than their role in a
model.

distance is the response variable while projectileWt an the ex-
planatory variable.

• The model corresponds to a function, a mathematical representa-
tion of a relationship between an input and an output.

• The purpose of lm() is to construct a function that is as close to
the data as possible. That is, lm() finds the model that “best” fits
the data.

Students typically study functions using a traditional alge-
braic notation, e.g.

y = 4x + 2.

Such notation doesn’t emphasize the idea that y is a function of x,
that x is the input and y is the output. Indeed, there’s nothing ex-
plicit to say that y is a function at all; usually it’s understood to be a
variable.
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To introduce students to a notation that makes such relationships
explicit, mosaic provides makeFun(): Math students get used to the conven-

tion of writing functions as f (x) or
g(x). You’ll have to take care to remind
them that f is the function and x is the
name of the input. In these notes, we
tend to use names like f1 and f2 for
functions, and mod1 and mod2 for the
statistical models.

f = makeFun(4 * x + 2 ~ x)

You can evaluate the function by specifying the inputs, for in-
stance:

f(3)

[1] 14

Of course, functions such as this can be plotted in the ordinary
way:

plotFun(f(x) ~ x, x.lim = range(-2, 2))

x

f(
x)

−5

0

5

10

−1 0 1

The model, mod1, created earlier, is not exactly a function. It’s set You can see what’s in mod1 by giving it
as a command,

mod1

This displays the model coefficients. In
addition to makeFun(), you can use such
operations as rsquared(), fitted(),
and resid().

up this way because there are several different types of information
one might want to get from a model, not just the model function. You
can use makeFun() to extract the model function from mod1:

f1 = makeFun(mod1)

This use of makeFun() reformats the information that’s already in
mod1 as a mathematical function in R. Once that’s done, the function
can be evaluated in the ordinary way, by specifying the inputs.

The function f1 attempts to describe the relationship between
the explanatory and response variables: between distance and
projectileWt.

There are, of course, other possible functions that could be used
to describe the relationship between distance and projectileWt.
Taking some measurements off the scatter plot, one might reasonably
try a simple function, perhaps y = 1900 − 30 ∗ x. No reason to use the
names y and x, however. You can define the proposed function using
the names in the data set:



start modeling in r 21

f2 = makeFun(1900 - 30 * weight ~ weight)

Given these two functions, f1() and f2(), it’s natural to ask,
“Which is which is better?” Graphically, the answer is not so clear.
In the following plot, f2() is drawn as the thicker line:

xyplot(distance ~ projectileWt, data = trebuchet)

plotFun(f1(projectileWt) ~ projectileWt, add = TRUE)

plotFun(f2(projectileWt) ~ projectileWt, add = TRUE, lwd = 3)
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The usual way to quantify how close each function comes to the
data involves the residuals: the difference between the value as given
by the model function and the actual data value. For instance, for a
projectileWt of 60, the function values are: For models created fitted with lm(),

you can access the fitted values or
residuals directly from the model
structure, without needing to construct
the function and evaluate it. Use

fitted(mod1)

resid(mod1)

f1(60)

1

209

f2(60)

[1] 100

You can be more systematic and evaluate the functions at every one
of the data points:

trebuchet = transform(trebuchet,

f1resid=f1(projectileWt)-distance,

f2resid=f2(projectileWt)-distance)

There is one residual for each row in the dataset. There are sev-
eral good ways to describe the size of the residuals, e.g. the standard
deviation, variance, or the sum of squares. Here is the standard devi-
ation.
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sd(f1resid, data = trebuchet)

[1] 218.6

sd(f2resid, data = trebuchet)

[1] 316.6

It appears that the residuals from f1() are smaller. Instructor Note: It’s a good exercise to
try out many different alternatives. You
won’t be able to find any whose sum of
square residuals are smaller than those
produced by f1(). In this sense, f1(),
from the model constructed by lm(),
is the best of all possible straight-line
models of the data.

There are several ways to see the effect of projectileWt on distance.
The coefficients carry this information, but students need to be taught
how to interpret them:

coef(mod1)

(Intercept) projectileWt

1068.26 -14.32

This says that for every 1 gm increase in the weight of the projectile,
the predicted distance flown decreases by 14.3 cm. (The units of the
variables are given in the help file for the data, help(trebuchet).)

Another way to see this same thing, perhaps a bit more obvious
to the introductory student, is to evaluate the model function at two
different weights, for instance:

f1(51) - f1(50)

1

-14.32

It’s perfectly reasonable at this point to consider the extent to
which the data dictate the best fit, and whether other possible straight-
line functions, even if their residuals are not as small as those from Resampling provides an accessible way

to explore the sampling variation of a
model. See the mosaic package vignette
on resampling for more examples.

f1(), are reasonable fits.
For models created by lm(), access to confidence intervals is pro-

vided by the model function. Just ask for the interval, specifying
whether you want an interval on the model value itself or on the
predicted output for a given input. A confidence interval on a model value

indicates how much the model value
varies due to the particular random
sample of data on which the model is
based. A prediction interval includes
both the variation in the model value
and the variation in the value of an
individual case associated with typical
residuals from the model value.

f1(50, interval = "confidence", level = 0.95)

fit lwr upr

1 352.2 270.6 433.8

f1(50, interval = "prediction", level = 0.95)

fit lwr upr

1 352.2 -103.4 807.8
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Notice the absurdly wide prediction interval, which includes a
non-physical negative distance, even though no backward-going
launches are seen in the data itself. This suggests that there’s some-
thing wrong with the model for the purpose of making a prediction.
Let’s go there.

2.1 Multiple Inputs

Consider why one might build a model of a trebuchet. A practical
application, if you are a medieval warrior, is to predict the distance
travelled by a projectile: What weight is needed to reach the castle
walls?

A competent trebuchet technician will tell you that there’s another
issue: How heavy is the counter-weight on the trebuchet? You have
the option of adding or taking away weight from the counter-weight
in order to get your projectile on target.

Fitting a relevant model is a matter of including the counter-
weight (counterWt) in the set of explanatory variables. (It’s also
important that student Andrew Pruim collected the experimental
data over a range of counter-weights.) Here’s a simple model:

mod2 = lm( distance~projectileWt+counterWt, data=trebuchet)

Once students understand that the
name assigned to a function should
be in the format f rather than f (x),
you may want to start assigning more
descriptive names to functions. Notice
that in writing about functions, we use
the typographical notation f() rather
than the bare name f. But remember
than in assigning a name to a function
not to use the parentheses after the
function name.

To extract the corresponding function, which will be a function
of both projectileWt and counterWt, use makeFun(). We’ll call the
function ballistic():

ballistic = makeFun(mod2)

There are two input variables here, so an appropriate graphical
display is a contour plot

plotFun( ballistic(projectileWt=x,counterWt=y) ~ x&y,

x.lim=range(10,70),y.lim=range(.5,3),

xlab="Projectile (gms)",

ylab="Counter Weight (kg)",

main="Distance Thrown (cm)")
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The first two lines of this do all the work, the remaining lines are
just for setting labels. Note that x and y are being used as the plot-
ting variables. x is assigned to be the value of the projectile weight
while y is the value of the counter-weight. It’s helpful to use such
explicit names for the input variables just to avoid accidentally re-
versing the meaning of the variables. With functions of more than
one input it’s easy to get things wrong.

It takes a bit of practice to learn to interpret such graphs, but it’s
worth the time. Each contour shows the set of projectile weights
and counter weights that can reach a given distance. For instance,
to reach 600 cm distance, the model suggests that one could use a
projectile weight of 20 gm and a counterweight of about 1.25 kg, or
one could up the projectile weight to 60 gm and increase the counter-
weight to a bit more than 2 kg.

Adding in the counter-weight as an explanatory variable puts
creates a model that might be more useful to a trebuchet operator,
but it also has an important meaning in terms of statistics. The new
variable can help account for some of the distance data, and in so
doing can make the model a better fit.

Many students will be unfamiliar with functions of two variables,
simply because they don’t encounter them in their mathematics
classes. It’s a mistake to think that the standard mathematics curricu- Conrad Wolfram offers a compelling

critique of the traditional topics and
order of math education in a TED
talk: “Teaching kids real math with
computers.”
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lum has been designed to teach easy subjects first, and that subjects
not encountered in the standard curriculum are somehow more diffi-
cult. But you do have to orient your students to some of the basics of
functions of two (or more) variables.

A good place to start is to ask your students to imagine themselves
standing on a hillside. Is the slope the same in all directions? Many
students will respond, “yes.” They have an intuitive notion of the
gradient and are thinking that, at each point on the hillside, there
is just one slope. But, as skiers know, the hill is steep in some direc-
tions and not at all steep in others. (Indeed, for every point on every
hill, there is a direction where the landscape is flat.) Looking back at
the contour plot, ask the students whether the hill is steeper in the
East-West direction (that is, along the x-axis), or in the North-South
diretion (along the y axis). It’s easy to find the slope in each direc-
tion, by taking a small step in that direction and finding the change
in altitude.

For the trebuchet distance function, you can take such steps by
varying one variable while holding the other constant. For instance,
what’s the change in distance (according to the model) when chang-
ing the projectile weight by one gram while holding the counter-
weight constant. Pick a value for each variable and tweak projectile
weight:
ballistic(projectileWt=51,counterWt=1) - ballistic(projectileWt=50,counterWt=1)

1

-8.509

This indicates that a 1 gm increase in projectile weight is associ-
ated with a decrease of 8.5 cm in the distance flown.

On the other hand, increasing the counter weight is associated
with an increase in distance:
ballistic(projectileWt=50,counterWt=2) - ballistic(projectileWt=50,counterWt=1)

1

365.3

A 1 kg increase in the counter-weight is associated with an increase
of 365 cm in the distance.

Show your students the points on the contour plot corresponding
to these finite differences. This helps them to understand why each Practice is important here. The time

invested will pay off handsomely.input variable can be associated with a different connection to the
output. Once students understand this, it’s easier for them to gen-
eralize to functions of more than two variables. The key thing is to
move away from functions of a single variable.

It’s well worth observing that the two models, mod1 and mod2, give
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different answers to the question of how the distance changes with
a change in the projectile weight. For mod1 (translated into function
f1()) the answer is

f1(projectileWt = 51) - f1(projectileWt = 50)

1

-14.32

But for mod2 (translated into function ballistic()) the change in
distance is much less, as already seen:
ballistic(projectileWt=51,counterWt=1) - ballistic(projectileWt=50,counterWt=1)

1

-8.509

That the two functions give different answers can be confusing to
students. The difference comes about because the ballistic() func-
tion allows you to hold the counter-weight constant while changing
the projectile weight. This is, of course, completely natural — you can
change the projectile weight without changing the counter-weight.
But the experiment happened to be done in such a way that only the
lightest projectiles were used with the heaviest counterweights. Tip: The imbalance in this design —

that not all the levels of counterWt were
used for each level of projectileWt
— is the norm for many observational
studies. Modeling makes it clear that
imbalance introduces ambiguities that
are related to covariation and can be
dealt with in the same way.

tally(~projectileWt + counterWt, data = trebuchet)

counterWt

projectileWt 1 1.5 3

24 5 5 5

46 5 5 0

55 5 5 0

60 0 5 0

The result is that the light-weight projectiles flew, on average, much
further than the heavier projectiles: partly because the projectiles
were lighter and partly because the counter-weight was heavier.

If you’re thinking, "Well, the experiment should have been done
in a balanced way, with the same range of counter-weights used
for each projectile," true enough. But there experiment wasn’t done
this way and, as a result, counter-weight and projectile weight have
been connected to one another. To disconnect them, given the data,
requires that both counter-weight and projectile weight be used to
account for distance flown.

2.2 More variables give a better fit

Remember that your students have been raised mathematically in an
environment where there is always a correct answer, sometimes easy
to find and sometimes hard. Many students conflate the difficulty
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of finding the answer with the quality of the fit — data that show
a clear pattern are easier to deal with than data that don’t, and of
course the fit is better for the data that show a clear pattern.

Your students will naturally think that fitting a function of two
inputs is harder to fit than a function of a single input. That’s fair
enough. For a straight-line function of one variable, it’s pretty easy to
draw a plausible candidate and to use the techniques of high-school
algebra to find the parameters: a slope and intercept. But it’s hard to
draw a graph of a function of two variables, let alone use the eye to
relate data to the parameters of the fitted function.

Given this focus on the difficulty of the problem, it becomes con-
fusing to see that the function of two explanatory variables must
fit the response variable better than a function of one variable. So,
take the time to demonstrate this. A simple way to see that the two-
variable model is a better fit than the one-variable model is to look at
the size of the residuals. As always, the way to quantify residuals is It’s worthwhile to ask your students

why the mean of the residuals of a
fitted model is not a useful way to
characterize their size. Have them look
at the mean residual from different
models and figure out what’s going on.

with their standard deviation, or variance, or sum of squares.

sd(resid(mod1))

[1] 218.6

sd(resid(mod2))

[1] 60.59

The two-variable model also provides a more reliable prediction:

f1( projectileWt=50,

interval="prediction")

fit lwr upr

1 352.2 -103.4 807.8

ballistic( projectileWt=50,counterWt=2,

interval="prediction")

fit lwr upr

1 582.8 452.8 712.8

Notice how much narrower the prediction interval is for the two-
variable model compared to the one-variable model. The observation that adding an ex-

planatory variable to a model will
reduce the size of the residuals provides
a powerful segue to statistical inference.
The null hypothesis is often stated in
terms of “no difference” or “no effect.”
Perhaps better to state the null as “no
meaningful information in the explana-
tory variable(s).” You can generate such
uninformative explanatory variables
using random numbers or shuffling.
See the mosaic package resampling
vignette for more information.
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Functions with Categorical Variables

Remember to load the mosaic package:

require(mosaic)

In terms of notation, there’s not much difference between these two
statements:

vals = mean(distance~object,data=trebuchet)

mod = lm(distance~object,data=trebuchet)

The first calculates the groupwise means of distance, with the
groups defined by object.

vals = mean(distance ~ object, data = trebuchet)

vals

big washerb foose golf tennis ball

343.6 741.6 358.8 238.4

The second statement fits a model that accounts for the variation
in distance by the variation in object:
mod3 = lm(distance ~ object, data = trebuchet)

coef(mod3)

(Intercept) objectfoose objectgolf objecttennis ball

343.6 398.0 15.2 -105.2

As it happens, the model values from mod coincide directly with the
values produced by mean(). To see this, extract the function from the
model:
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g1 = makeFun(mod3)

g1("foose")

1

741.6

g1("golf")

1

358.8

g1("tennis ball")

1

238.4

It may seem odd to your students that a word (or character string)
can be used as the input to a function. Remind them that a function
is a machine that takes one or more inputs and produces an output.
There’s no requirement that the inputs be numbers.

The function g1() can be used to calculate a model value for each
case in the trebuchet data and, from that, the residuals:
trebuchet = transform(trebuchet, g1resids = distance-g1(object))

The size of the residuals can be described, as always, by their
standard deviation:
sd(g1resids, data = trebuchet)

[1] 210.3

To see what’s special about the model values here — that is, why
the groupwise mean is special — construct another function that
assigns a specific value to each group. For example, here’s a function
that says the golf balls go 300 cm, foose balls 500, tennis balls 100 and
washers 300.
g2 = makeFun(

switch(object,"golf"=300,"foose"=500,"tennis ball"=100,"big washerb"=300,NA) ~ object

)

This is not the traditional form for a function. The function g2 takes
an input object and compares it to the names of the different kinds
of balls. It returns the associated value (or NA if there is no associated
value), for instance:

g2("foose")

[1] 500

g2("golf")

[1] 300

g2("tennis ball")

[1] 100

Which gives a better description of the distances flown by the var-
ious objects, g1() or g2()? As previously, you can find the residuals
from this model and compare them to the residuals from g1().

The function g2() takes just a single character string. To allow it to
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work on a vector of character strings, you can vectorize it:

g2 = Vectorize(g2)

trebuchet = transform(trebuchet, g2resids = distance - g2(object))

sd(g1resids,data=trebuchet)

[1] 210.3

sd(g2resids,data=trebuchet)

[1] 251.8

g2() produces larger residuals than the function g1() produced by
fitting to data. The values of the parameters of the fitted model min-
imize the size of the residuals (as measured by the sum of squares or
the standard deviation) compared to any other parameter values.
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From r to R2

Remember to load the mosaic package:

require(mosaic)

The correlation coefficient, r, figures prominently in many intro-
ductory statistics courses. It’s typically presented as quantifying the
relationship between two quantitative variables. That r represents
a relationship is true enough. But it’s misleading to say that r de-
scribes the relationship. r quantifies the quality of fit of a straight-line
function, but that’s hardly the only relationship even when just two
variables are involved.

r is not as useful as its prominence suggests. It doesn’t handle
multiple explanatory variables. It doesn’t handle models with cate-
gorical variables. It doesn’t handle nonlinear relationships. It doesn’t
even give an “effect size,” just a measure of the quality of fit to a
straight-line model.

On the other hand, R2 is much more generally useful. If you are
teaching modeling, it makes sense to introduce R2 as early as pos-
sible. The way to do this is not to treat R2 as the square of r. Such a
development inherits all the deficiencies of r. Instead, go back to a
basic question: How does the model account for the variation in the
response variable.

Earlier, the standard deviation was used as a way to quantify the
size of residuals. Let’s use it now to quantify the size of variation in
the response variable. For the distance variable in the trebuchet
data, this is:

sd(distance, data = trebuchet)

[1] 302.6

Now consider the size of the variation in the model values from the
various models we have fitted — mod1, mod2, and mod3 from which
were extracted the model functions f1(), ballistic(), and g2():

sd(f1(projectileWt), data = trebuchet)

[1] 209.3
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sd(ballistic(projectileWt, counterWt), data = trebuchet)

[1] 296.5

sd(g1(object), data = trebuchet)

[1] 217.6

In every case, the size of variation in the fitted model values is less
than the size of the response variables. Where’s the rest of the varia-
tion? In the residuals.

A fitted model partitions variation between that accounted for
by the model and that which remains unaccounted for. Measure the
variation accounted for using the variation in the fitted model values;
measure the rest of the variation using the residuals. For instance, for
mod1:

sd(fitted(mod1))

[1] 209.3

sd(resid(mod2))

[1] 60.59

It would be nice if the two parts of the variation added up to the
whole:

sd(distance, data = trebuchet)

[1] 302.6

sd(fitted(mod1)) + sd(resid(mod2))

[1] 269.9

Alas, that’s not exactly true. The reason, however, is that the stan-
dard deviation is not the natural statistic for measuring variation,
even if it is the one used in introductory statistics. Instead, use the
square of the standard deviation — the variance:

var(fitted(mod1))

[1] 43794

var(resid(mod1))

[1] 47774

var(distance, data = trebuchet)

[1] 91568

Note that the sum of variances of the fitted model values and the
residuals add up exactly to the variance of the response variable.
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var(fitted(mod1)) + var(resid(mod1))

[1] 91568

The situation here is analogous to one your students have en-
countered before: the Pythagorean theorem: A2 + B2 = C2. It’s the
square-length of the sides of a right triangle that add in a nice way,
not the lengths themselves. Similarly, the variances add in a nice way,
not the standard deviations.

The R2 statistic on a model describes what fraction of the vari-
ance in the response variable is accounted for by a model. You can
calculate it directly:

var(fitted(mod1))/var(distance, data = trebuchet)

[1] 0.4783

For convenience, you can extract the R2 statistic directly from the
model, just as you can extract the model function, the fitted values
and residuals:

rsquared(mod1)

[1] 0.4783

An important question is whether R2 can be used to compare
different model designs to decide which is best. For instance, R2 from
the groupwise-mean model mod3 is somewhat larger than for mod1:

rsquared(mod3)

[1] 0.517

Does this mean that mod3 is better than mod1? That will turn out to
be a productive route to studying statistical inference. But before
heading in that direction, let’s expand the set of models that students
can build and interpret.
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Combinations of categorical and quantitative variables

Remember to load the mosaic package:

require(mosaic)

So far, you have encountered these sorts of models:

• One quantitative explanatory variable.

• One categorical explanatory variable.

• Two quantitative explanatory variables.

All of these sorts models were constructed with the same syntax
and all of them fit into the same framework: explanatory and re-
sponse variables, fitted model values, residuals, R2. The syntax and
framework extend to more complicated models. You can add in more
explanatory variables using exactly the same syntax.

You can also add in interactions among explanatory variables.
To illustrate, consider world records in the 100 meter freestyle

swimming event as they have changed over the years. Plot these
separately for the two sexes.
xyplot(time ~ year | sex, data = SwimRecords)
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It’s evident from the data that, for both sexes the records are im-
proving over time. (How could they not? That’s the nature of a world
record.) The pattern is so clear that one hardly needs a model to
interpret it. But, to display the syntax of models, let’s do so anyways.
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The record time depends on both sex and year, but it’s your
choice what explanatory variables to include in a model. Here are
three plausible models:

swim1 = lm(time ~ sex, data = SwimRecords)

swim2 = lm(time ~ year, data = SwimRecords)

swim3 = lm(time ~ year + sex, data = SwimRecords)

To plot out the model function, first extract the function from the
model:

s1 = makeFun(swim1)

s2 = makeFun(swim2)

s3 = makeFun(swim3)

The first model doesn’t include year. Still, to graph the model
function on the axes, you need to include year in the plotting state-
ment.
xyplot(time ~ year | sex, data = SwimRecords)

plotFun(s1(sex = "F") ~ year, add = TRUE)

plotFun(s1(sex = "M") ~ year, add = TRUE, lty = "dotdash")
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The function s1() doesn’t depend on year, so the graphs of the
function are flat with respect to year. The function does have sex as
an input and you can see in the graph how the function values for
females (thick line) differ from those for males (thin line).

Now consider s2(), which depends on year() but not sex().
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xyplot(time ~ year | sex, data = SwimRecords)

plotFun(s2(year) ~ year, add = TRUE)

plotFun(s2(year) ~ year, add = TRUE, lty = "dotdash")
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The functions are the same for males and females, of course, so
they overlie one another on the graph.

Including both sex and year in the model produces a function that
depends on both variables:
xyplot(time ~ year | sex, data = SwimRecords)

plotFun(s3(year = year, sex = "F") ~ year, add = TRUE)

plotFun(s3(year = year, sex = "M") ~ year, add = TRUE, lty = "dotdash")

year

tim
e

50

60

70

80

90

1920 1940 1960 1980 2000

●

●●
●● ●●●●●●●●●● ●●●●● ●●●●●● ● ●● ● ●

F

1920 1940 1960 1980 2000

●●●● ●●●● ●●● ●●● ●● ●●●●●●●● ● ●●● ● ●●

M

You might be surprised to see that the graph of the function for
males is parallel to that for females. That’s because there was nothing
in the model design that produces a different slope with respect to
year for females and males: the two lines must therefore be parallel.

Including such a difference in a model is a matter of including an
interaction term between sex and year:
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swim4 = lm(time ~ year + sex + year:sex, data = SwimRecords)

s4 = makeFun(swim4)

xyplot(time ~ year | sex, data = SwimRecords)

plotFun(s4(year = year, sex = "F") ~ year, add = TRUE)

plotFun(s4(year = year, sex = "M") ~ year, add = TRUE, lty = "dotdash")
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Interactions are confusing; they imply a “difference of differ-
ences.” Students tend to want to interpret the word “interaction” as For students who have been exposed

to the algebra of functions of two
variables, it may be helpful to point
out that the model x + y + x : y
corresponds to the polynomial
f (x, y) = a0 + a1x + a2y + a3xy.
The coefficient on the interaction term
is a0. This corresponds to the mixed
partial derivative, ∂2 f /∂x∂y. This is the
calculus equivalent of “difference of
differences.”

meaning that one variable affects the other. This is not quite right. An
interaction describes how the effect of one variable on the response
is modulated by the other variable. For example, the interaction be-
tween sex and year tells how the relationship between year and
world-record time differs for the two sexes. You see that interaction
in the graph as different slopes for the fitted lines for the two sexes.

Another, way to describe the interaction is that the relationship
between sex and world-record time is changing over the years. You
can see that from the changing vertical distance between the lines for
females and males. Both these ways of describing the interaction —
how the relationship between sex and time is modulated over the
years, and how the relationship between year and time is different
for the two sexes — are equivalent. Given that the slopes of the two
lines is different, the vertical distance between the two lines is going
to change.
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5.1 Example: The Genetic Component of Human Height

The world-record swim-time data is ordered enough that it’s easy to
draw a satisfactory functional approximation by hand. That makes
it easier for students to visualize how different model terms set the
“shape” of the function. But students may wonder what statistics has
to do with it.

To place things more firmly in a statistical context, con- Francis Galton, “Correlations and their
measurement, chiefly from anthropo-
metric data” (1889) Nature 39:238, and
“Regression towards mediocrity in
hereditary stature” (1886) Journal of the
Anthropological Institute of Great Britain
and Ireland 15:246-263. For a commen-
tary and access to further background
on the data, see James Hanley, “ ‘Trans-
mutting’ Women into men: Galton’s
family data on human stature” (2004)
American Statistician 58(3):237-243)

sider the data collected by Francis Galton in 19th century London.
Galton was interested in exploring the heritability of biological traits,
in particular the relationship between the heights of parents and their
full-grown, adult children. These data played an important part in
the development of the correlation coefficient and regression toward
the mean

A man of his era, Galton focused on the heights of sons. Here are
both sexes of children, plotted out against the mother’s height:
xyplot(height ~ mother | sex, data = Galton)
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From the graph alone, it’s obvious that height differ from males to
females and there is a slight tendency that a taller mother is associ-
ated with taller children. Here’s a model that includes an interaction
term between the child’s sex and the mother’s height:
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xyplot(height ~ mother | sex, data = Galton)

hmod1 = lm(height ~ mother * sex, data = Galton)

h1 = makeFun(hmod1)

plotFun(h1(mother = m, sex = "F") ~ m, add = TRUE)

plotFun(h1(mother = m, sex = "M") ~ m, add = TRUE, lty = "dotdash")
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What’s new in this example is that a specific line can be judged as
the best fit to a cloud of data. Certainly a student could do this by
hand, but they would likely have little confidence that their particular
line was best. Certainly, the precision with which one might draw
a line by hand wouldn’t justify drawing lines of different slopes for
the males and females. Indeed, it remains to be seen whether the
interaction term is contributing much to the model. That sort of
question provides a segue to statistical inference. (See below.)

What’s the father’s role in this. In a scatter plot, it’s impossible
to use both the father and the mother along on the x-axis, one has
to choose. There are some tricks, for example creating panels for
different intervals of the father’s height, but it’s hard to gain much
quantitative insight from the graphic.
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xyplot(height ~ mother | cut(father,breaks=2) + sex, data=Galton)
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Instead, consider a model that uses both mother’s and father’s
height (and the child’s sex) to account for the child’s height. For now,
leave off the interaction terms; you can return to those later with
some statistical inference tools in hand:
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hmod2 = lm(height~mother+father+sex,data=Galton)

h2 = makeFun(hmod2)

xyplot(height ~ mother | cut(father,breaks=2) + sex, data=Galton)

plotFun(h1(mother=m,sex="F")~m,add=TRUE)

plotFun(h2(mother=m,father=64,sex="F")~m,add=TRUE,lty="dotdash")

plotFun(h2(mother=m,father=74,sex="F")~m,add=TRUE,lty="dotted")
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The dotted and dot-dashed lines show the mother+father model
values for two different heights of father (just for female children).
For comparison, the solid line shows the model with just the mother.
That the lines are different for the two different heights of father
shows the association between father’s height and child’s height, for
each given mother’s height.

5.2 Partial Change

“All things being equal” is an everyday phrase. In the Galton height
data, for instance, one can examine the association of mother’s height
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with child’s height, holding the other things constant, e.g., the
father’s height and the child’s sex. Given a model function, this
partial change is easy to calculate: look at the difference in child’s
model height for two different values of the mother’s height, while
holding father and sex constant. For instance,
h2(mother=66,father=68,sex="F") - h2(mother=65,father=68,sex="F")

1

0.3215

Similarly, one can examine the partial change with respect to
father and with respect to sex:
h2(mother=66,father=68,sex="F") - h2(mother=66,father=67,sex="F")

1

0.406

h2(mother=66,father=68,sex="F") - h2(mother=66,father=68,sex="M")

1

-5.226

The reason to call these differences “partial” change

is by analogy with partial derivatives in calculus: the change with
respect to one variable holding the other constant.

Of course, for the continuous variables — mother and father —
one can calculate the partial derivative itself. This would be appro-
priate for students who are familiar with derivatives, but it is not
essential that one consider any sort of limiting process as in calcu-
lus. The important point is that the change in model output can be
considered with respect to each of the input variables individually.

The partial change is a straightforward measure of effect size. The
intellectual question is what quantities to hold constant. Answering
this requires some expert knowledge. Students have considerable
expertise, even if it’s just about common sense matters. For instance,
it’s a form of expert knowledge to know that the mother’s height
doesn’t affect the sex of the child. So in considering the effect size of
mother’s height, it’s sensible to hold sex constant.

Occasionally, it makes sense to consider the change while varying
two or more variables simultaneously. As an example with a sim-
ple mechanism, consider trying to predict a person’s wage based on
their education and job experience. The CPS85 data contains infor-
mation from the Current Population Survey that can be used for this
purpose. First, build a model with both education and experience as
explanatory variables (and whatever covariates you think appropri-
ate), e.g.,
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wmod = lm(wage ~ educ + exper, data = CPS85)

Wage here is in dollars per hour (in 1985). To look at the “effect”
of a college education, you might examine the partial difference
with education varying to 16 years from 12 years while experience
is being held constant at, say, 10 years. (Twelve years of education
corresponds to a high-school graduate.)

w1 = makeFun(wmod)

w1(educ = 16, exper = 10) - w1(educ = 12, exper = 10)

1

3.704

Judging from this, the four years of extra education is associated
with a predicted increase in wage of $3.70 per hour.

But hold on. The four years of extra education comes by decreas-
ing work experience by those four years (if experience is ), so the
proper comparison is not a partial change in one variable alone, but a
simultaneous, compensatory change in education and experience:

w1(educ = 16, exper = 10) - w1(educ = 12, exper = 14)

1

3.283

5.3 Covariates

Often, the purpose of a model is to describe the relationship between
the response and a single explanatory variable, e.g. how does blood
pressure respond to a drug versus placebo. Almost always, though,
there are additional explanatory variables in which there is little or
no direct interest but which may play an important role in the rela-
tionship. The term covariate is used to designate such variables. Of
course, in a mathematical sense, covariates are just ordinary explana-
tory variables. The word “covariate” simply signals the modeler’s
lack of direct interest in them.

Other related terms are confounders or lurking variables. These
terms properly suggest the vulnerability of the conclusions drawn
from a model to unknowns or to known variables not included in a
model. But whenever a variable is known and measured, it should be
considered as a candidate to be included in a model. Unthinkingly to
leave a covariate out of a model is burying your head in the sand.

It’s traditional to point to the situation of an experiment. In one
form of experiment, identifiable confounders are held constant by



start modeling in r 47

design. In another form, both identifiable and unidentified condi-
tions are balanced by randomized assignment (since the coin flip of
randomization will tend to balance out other factors, on average).
Understandably, statistics textbooks warn about the perils of drawing
conclusions about causation from observational data. Such warnings
follow the conventions of a mathematical emphasis on proof.

There are lessons to be drawn from other fields, however. In epi-
demiology, for instance, important conclusions to guide action need
to be drawn from imperfect, observational data.

To illustrate, consider a news story (“Coffee and Smoking: A Daily
Habit Of Green Tea Or Coffee Cuts Stroke Risk", by Allison Aubrey,
NPR - March 15, 2013) reporting on research findings published in
the American Heart Association journal Stroke. The main result: a
daily habit of coffee or tea drinking is associated with a decrease of
20% in stroke risk. The news story puts this in a historical context:

It’s interesting to note how much the thinking about caffeine and
coffee has changed.

In the 1980s, surveys found that many Americans were trying to
avoid it; caffeine was thought to be harmful, even at moderate doses.

One reason? Meir Stampfer of the Harvard School of Public Health
says back then, coffee drinkers also tended to be heavy smokers. And
in early studies, it was very tough to disentangle the two habits.

“So it made coffee look bad in terms of health outcomes,” says
Stampfer.

But as newer studies began to separate out the effects of coffee and
tea, a new picture emerged suggesting benefits, not risks.

Researchers say there’s still a lot to learn here — they haven’t nailed
down all the mechanisms by which coffee and tea influence our health.
Nor have they ruled out that it may be other lifestyle habits among
coffee and tea drinkers that’s leading to the reduced risk of disease.

Austin Bradford Hill was an epidemiologist and statistician — the
president of the Royal Statistical Society who succeeded Fisher. He
pioneered randomized clinical trials, taken as the gold standard for
inferring causation in medicine. Hill’s famously offered nine view-
points for guiding causal inference. Number eight is “Experiment”:

AB Hill, “The environment and disease:
association or causation?” Proceedings
of the Royal Society of Medicine (1965)
58:295-300

Occasionally, it is possible to appeal to experiment, or semi-experimental
evidence. For example, because of an observed association some pre-
ventive active is taken. Does it in fact prevent? The dust in the work-
shop is reduced, lubricating oils are changed, persons stop smoking
cigarettes. Is the frequency of the associated events affected? Here the
strongest support for the causation hypothesis may be revealed.

The prior seven are strength, consistency, specificity, temporality,
biological gradient, plausibility, and coherence, each of which garners



48 kaplan, pruim, horton

a longer explanation by Hill than experiment. Experiment may be the
simplest and most compelling, but experiment is not always possible
or available.

If students are to operate in a world where causal inferences will
be drawn from non-experimental data, they certainly need to be
aware of confounding and lurking variables, the ecological fallacy,
etc. But they also need to have the tools to attempt to untangle con-
founding. Multivariable modeling provides a straightforward way to
do this.

DL Guber presents a nice example of untangling confounding Deborah Lynn Guber, “Getting what
you pay for: the debate over equity
in public school expenditures” (1999),
Journal of Statistics Education 7(2).

in the context of achievement and expenditure in public education.
Drawing on the 1997 Digest of Education Statistics, Guber assembled
a data set of state-by-state averages that can be used to relate school
expenditures to SAT. It’s easy to construct a model.

mod1 = lm(sat ~ expend, data = SAT)

summary(mod1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1089.29 44.390 24.539 8.168e-29

expend -20.89 7.328 -2.851 6.408e-03

Judging from this model, expenditures are negatively associated
with SAT scores. The relationship is statistically significant. Com-
menting on the association (if not the statistical significance), well-
known editorial columnist George Will points to Senator Pat Moyni- GF Will, “Meaningless money factor”

Washington Post, 12 Sept. 1993han’s humorous observation of a positive correlation between scores
on standardized math tests and distance of the states’ capitals from
the Canadian border, a correlation that’s stronger than that seen be-
tween test scores and per-pupil expenditures. Will goes on:

In a 1992 study ... Paul Barton argues that a more powerful measure of
school quality than the pupil-teacher ratio is the parent-teacher ratio. ...
The proportions of children in single-parent families vary substantially
among the states, so some conclusions are suggested by data such
as: In a recent year North Dakota had the nation’s second-highest
proportion of children in two-parent families and the highest math
scores. The District of Columbia ranked last on the family composition
scale and next to last in test scores.

While Moynihan’s distance-from-Canada variable is not meant to
be taken seriously, the parent-teacher ratio variable is a serious con-
tender. It’s hardly possible to do an experiment to vary the parent-
teacher ratio. Without experiment, what’s left?

Will writes:

The fact that the quality of schools correlates more positively with
the quality of the families from which children come to school than it
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does with education appropriations will have no effect on the teachers
unions’ insistence that money is the crucial variable.

What’s wrong here is the idea of the “crucial variable.” Teachers’
unions are understandably concerned with education appropriations,
just as editorial columnists are with the structure of families. That
these variables are “crucial” reflects the interests of the modelers —
it’s perfectly feasible for a model to include both variables. Rather
than identifying a single variable as crucial and looking for an as-
sociation with that variable to the exclusion of all other explanatory
variables, it’s more appropriate to construct a model with multiple
variables. The issue is confounding, not cruciality.

Returning to the SAT data, consider one simple confounder, frac,
the proportion of students in each state who take the SAT. In upper
Mid-west states like North Dakota, many college-bound students
take the ACT rather than the SAT; SATs tend to be taken by students
heading out of state, who are often higher-scoring. In many states,
only a small fraction of students take the SAT, and these students
also tend to be higher-scoring. So use frac as a covariate: Confounding occurs any time a covari-

ate is correlated with an explanatory
variable. The term Simpson’s paradox
is used to identify situations when the
coefficient on the explanatory variable
of interest changes sign when a co-
variate is introduced into a model. It’s
called a “paradox” because the sign
change isn’t anticipated by intuition.
But a change in coefficient is an in-
evitable result of the correlation of a
covariate with an explanatory variable.
“Paradox” shouldn’t be interpreted as
“rare” or “unlikely.” Confounding is a
perfectly ordinary situation.

mod2 = lm(sat ~ expend + frac, data = SAT)

summary(mod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 993.832 21.8332 45.519 1.579e-40

expend 12.287 4.2243 2.909 5.529e-03

frac -2.851 0.2151 -13.253 1.730e-17

Taking into account the covariate frac, the relationship between
expenditures and test scores is positive and statistically significant.
Such a substantial change in the value of a coefficient when including
a covariate is a sign of confounding.

More than one covariate can be included in a model, of course.
The models themselves won’t sort out what causes what, but they
provide a framework for having such a debate.

5.3.1 Example: What’s a Fireplace Worth?

Statistician Richard De Veaux has shared a data set on house prices in
Saratoga Springs, NY. In addition to the sales price of the house, the
there is a variable indicating whether or not the house has a fireplace:

houses = fetchData("SaratogaHouses.csv")

median(Price ~ Fireplace, data = houses)

N Y

115356 181516
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summary(lm(Price ~ Fireplace, data = houses))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 127955 3727 34.33 2.516e-174

FireplaceY 70500 4822 14.62 3.095e-44

Houses with a fireplace are about $70,000±9000 more expensive
than houses without. But this doesn’t mean that a fireplace is worth
$70,000. Houses with fireplace are have other traits that distinguish
them from houses without, for example, they tend to be larger.

summary(lm(Living.Area ~ Fireplace, data = houses))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1435.7 29.37 48.89 5.509e-274

FireplaceY 665.9 38.00 17.52 1.406e-60

It seems sensible to build a model that takes such confounding into
account by including Living.Area as a covariate:

summary(lm(Price ~ Fireplace + Living.Area, data = houses))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2914.14 4678.870 -0.6228 5.335e-01

FireplaceY 9805.02 3811.647 2.5724 1.024e-02

Living.Area 91.15 2.712 33.6103 3.511e-169

This model puts the value of a fireplace at about $10,000±8000. No-
tice that the difference between estimates made using the different
models is much larger than the margin of error for either model. This
illuminates a point that it’s often difficult to convey to students: a
margin of error has to do with sampling variation, not with proxim-
ity to the “true” value.
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Statistical Inference

Remember to load the mosaic package:

require(mosaic)

Statistical inference — confidence intervals, hypothesis testing, etc. —
is often presented as being about data. Data are undeniably central,
but it’s misleading to distract attention from the context in which the
data are being analyzed.

6.1 Hypothesis Testing

To someone familiar with t-tests, one-way ANOVA, etc., the previous
sentence may seem odd. What context is there to asking whether two
groups are different or whether there is a difference between multiple
groups. But consider the matter as it would be expressed in modeling
notation:

Two-way t test. Are the means of two different groups different? In
the modeling notation, this corresponds to the significance of the
coefficient on a grouping variable with two levels, e.g.

mod1 = lm(time ~ sex, data = SwimRecords)

coef(mod1)

(Intercept) sexM

65.19 -10.54

One-way ANOVA. Are the means of several different groups differ-
ent. In the modeling notation, this corresponds to the ability of
a categorical variable with more than two levels to account for
variation in the response variable.
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mod2 = lm(wage ~ sector, data = CPS85)

coef(mod2)

(Intercept) sectorconst sectormanag sectormanuf sectorother

7.4226 2.0794 5.2814 0.6135 1.0780

sectorprof sectorsales sectorservice

4.5249 0.1701 -0.8851

There are at least two strong advantages to presenting inference in
terms of the modeling notation.

• Modeling allows covariates to be introduced. There’s not much
point in worrying about the second digit in a p-value (that is, is
p < 0.05) when the first digit might be strongly influenced by
covariates.

• Modeling emphasizes the common logic of statistical inference,
allowing students to handle multiple different settings with the
same logic.

George Cobb has described the logic of statistical inference as the GW Cobb (2007). “The Introductory
Statistics Course: A Ptolemaic Curricu-
lum?” Technology Innovations in Statistics
Education, 1(1).

“Three Rs”: randomize, repeat, reject. To illustrate how this applies
to models, let’s construct a simple t- or ANOVA-type test on the two
models given above. More examples of the Three Rs are

given in the mosaic resampling vi-
gnette.

First, you need a test statistic. A convenient one is R2.
Next, you need to randomize the explanatory variable and calcu-

late the test statistic under randomization. Doing this many times
gives a sampling distribution under the Null Hypothesis. Comparing
the actual (non-randomized) value of the test statistic then allows a
p-value to be extracted.

As a specific example, consider a simple model with the swim-
records data and R2 as the test statistic:

mod1 = lm(time ~ sex, data = SwimRecords)

test.stat = rsquared(mod1) # test statistic

test.stat

[1] 0.2868

Now, just for demonstration, carry out one randomization trial and
find the test statistic:

# One randomization

rsquared(lm(time ~ shuffle(sex), data = SwimRecords))

[1] 6.883e-06

It’s worthwhile when working with students to repeat the above line
several times to show that the test statistic varies. Then you can move
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on to having the computer repeat the trials many times and collect
the results:
s = do(1000) * rsquared(lm(time ~ shuffle(sex), data = SwimRecords))

Loading required package: parallel

Finally, to ask how often the random trials produce a test statistic
at least as strong as that observed in the original data:
tally(~result >= test.stat, data = s, format = "count")

TRUE FALSE

0 1000

The result: in none of the 1000 trials did the randomization pro-
duce a test statistic as strong as that observed in the original data.
This suggests a p-value ∼ 0.001.

It’s exactly the same structure for the one-way ANOVA test.
mod2 = lm(wage ~ sector, data = CPS85)

test.stat2 = rsquared(mod2) # test statistic

s2 = do(1000) * rsquared(lm(wage ~ shuffle(sector), data = CPS85))

tally(~result >= test.stat2, data = s2, format = "count")

TRUE FALSE

0 1000

Once students see the structure of a hypothesis test, it’s easy for
them to switch to interpretation mode: using the built-in normal-
theory calculations to generate p-values:
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anova(mod1)

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 1721 1720.7 24.13 7.276e-06

Residuals 60 4278 71.3 NA NA

anova(mod2)

Df Sum Sq Mean Sq F value Pr(>F)

sector 7 2572 367.37 16.8 4.645e-20

Residuals 526 11505 21.87 NA NA

It may seem odd to get an ANOVA report instead of a t-test. But a
t-test is the same thing as ANOVA: For sticklers: It’s the equal variance

t-test that’s equivalent to ANOVA. But
when have you ever seen an unequal
variance t-test that performs better than
an equal-variance t-test on ranks? The
unequal variance t-test is a mathemati-
cal nicety, contributing little or nothing
to statistical insight.

t.test(time ~ sex, data = SwimRecords, var.equal = TRUE)

t = 4.912, df = 60, p-value = 7.276e-06

You may ask, doesn’t it matter that the simulation-based p-values
are different from the normal-theory p-values. Doesn’t this mean that
the simulations are wrong? The answer is that there’s not right or
wrong here, just what is reasonable. How precisely do you need to
know a p-value? Is there any value to reporting more than two digits
of a p-value?

What’s more, the p-values generated by the normal theory are
based on assumptions that may be unwarranted, so extreme preci-
sion in the reported value is itself unwarranted. As many statistical
educators recognize, there are distributional assumptions. Arguably
more important are the covariates. The statistical methods you teach
should allow students to include covariates as appropriate. The hy-
pothesis tests implemented by shuffle() or by the theory behind
anova() and the regression-table generator summary() extend auto-
matically and easily to models with covariates.

This also provides a new context for conducting hypothesis tests:
“Does including this covariate improve the model for the purpose?”
If the data provide little evidence for the non-null role of a covariate
in the context of the other explanatory variables, perhaps best to
leave it out of the model.

6.2 Confidence Intervals

Cobb’s randomize and repeat logic of statistical inference applies
to the construction of confidence intervals as well. In this setting,
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rather than shuffling variables, resample with replacement on a case-
by-case basis, so that each individual case preserves the authentic
relationship among its variables. To illustrate, here’s a resampling
based calculation of the standard error on a model of the coefficient
on projectileWt in a model of the trebuchet throw-distance:

tmod = lm(distance~projectileWt+counterWt,data=trebuchet)

s = do(1000)*lm(distance~projectileWt+counterWt,

data=resample(trebuchet))

sd(projectileWt,data=s)

[1] 0.4642

After seeing the randomization-based logic of the construction of
confidence intervals, it’s easy to shift to the normal-theory results:

summary(tmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 277.722 48.0877 5.775 1.265e-06

projectileWt -8.509 0.7353 -11.573 7.391e-14

counterWt 365.266 17.3241 21.084 3.268e-22

Indeed, one might as well introduce the confidence interval itself,
rather than the standard error,

confint(tmod)

2.5 % 97.5 %

(Intercept) 180.287 375.16

projectileWt -9.999 -7.02

counterWt 330.164 400.37

Of course, the confidence intervals depend on the structure of the
model. Add in more covariates, add in interaction or transforma-
tion terms, and the confidence intervals may get smaller or larger.
Explaining how this happens (see, e.g., Chapter 12 in Statistical Mod-
eling: A Fresh Approach) is arguably more important that working
students through the algebraic details of a calculation that does not
apply in the situation that’s appropriate for answering the question
at hand. Use resampling to establish the logic of confidence intervals,
then have students explore the interpretation of confidence intervals
and the factors on which they depend.
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Keeping Models in Proportion

Remember to load the mosaic package:

require(mosaic)

A conventional introduction to statistics has methods relating to
means (t-tests, one-way and two-way ANOVA) and to proportions
(p-tests) and to counts (χ2 tests). Quantities such as

√
p(1 − p)/N

and ∑ (obs−exp)2

exp are almost iconic. The modeling approach might at
first seem to have nothing to do with proportions and counts, but
that’s not true. Indeed, proportions and counts fit in well with the
modeling framework. Modeling unifies seemingly disparate methods
under one roof.

To illustrate, consider a simple set of data about the health ef-
fects of smoking: Whickham. The data are from a survey of women
in Whickhamshire, UK. The women were surveyed to find (among
other things) their ages and whether they smoke. A follow-up was
conducted 20 years later, at which time it was recorded whether the
woman was still alive.

Here’s the count of women, broken down by the alive/dead out-
come:

tally(~outcome, data = Whickham)

Alive Dead

945 369

And the proportion in each group:

tally(~outcome, data = Whickham, format = "proportion")

Alive Dead

0.7192 0.2808

It’s a conventional problem in intro stats to give a standard er-
ror on the proportion, typically using the Wald formula. For the
fraction who have died, the standard error is:

√
p(1 − p)/N =√

0.2808(1 − 0.2808)/1314 = 0.012. This gives a 95% margin of error
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of 0.024 and therefore a Wald confidence interval of 0.2808 ± 0.0235 =

[0.257, 0.305].
Another way to get the same proportions is to take the mean of the

Yes/No variable that indicates whether the person has died:

mean(~outcome == "Dead", data = Whickham)

[1] 0.2808

Now remember that the model with just an intercept produces
model values that are the same as means, so the proportion can also
be calculated as:

mod0 = lm(outcome == "Dead" ~ 1, data = Whickham)

coef(mod0)

(Intercept)

0.2808

Now the apparatus of modeling can be applied, for instance to gen-
erate the 95% confidence interval:

confint(mod0)

2.5 % 97.5 %

(Intercept) 0.2565 0.3052
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A more typical application involves the difference between two
proportions, say the fraction of the smokers who died versus the
fraction of non-smokers.

tally(~outcome | smoker, data = Whickham, format = "proportion")

smoker

outcome No Yes

Alive 0.6858 0.7612

Dead 0.3142 0.2388

It looks like the smokers are a little less likely to have died.
In modeling language, we’re interested in whether the outcome

depends on the explanatory variable smoker:

mod1 = lm(outcome == "Dead" ~ smoker, data = Whickham)

summary(mod1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.31421 0.01657 18.968 4.304e-71

smokerYes -0.07538 0.02489 -3.028 2.507e-03

The smokers have a lower death rate. The difference is significant.
In a non-modeling course, this question might be addressed by a

p-test, or by a χ2 test. For example:

counts = tally(~outcome & smoker, data = Whickham, margins = FALSE)

counts

smoker

outcome No Yes

Alive 502 443

Dead 230 139

chisq.test(counts)

Pearson's Chi-squared test with Yates' continuity correction

data: counts

X-squared = 8.752, df = 1, p-value = 0.003093

The p-value is similar to that from regression. This is not to say
that the χ2 p-value is right, even though the counts are large. The
Fisher exact test gives yet another p-value:

fisher.test(counts)

Fisher's Exact Test for Count Data
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data: counts

p-value = 0.002989

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.5307 0.8822

sample estimates:

odds ratio

0.685

Should you be concerned about the differences between 0.0025

and 0.0030? There’s no practical meaning to the difference. However,
there is a very large practical importance to the covariate age, which
has not been included in the analysis to this point.

It’s easy enough to build a model that incorporates age:

mod2 = lm(outcome == "Dead" ~ smoker + age, data = Whickham)

summary(mod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.47255 0.0301019 -15.698 5.060e-51

smokerYes -0.01047 0.0195768 -0.535 5.927e-01

age 0.01616 0.0005581 28.949 7.015e-143

This model suggests that the null hypothesis cannot be rejected.
The p-value on smoker is about 0.6. There is little point in worrying
about the second significant digit of a p-value on the difference of
counts or proportions when the first digit of the p-value depends on
a covariate.

It’s worth mentioning that a linear model, while reasonable, is
not the right sort of model to build to model proportions. Better to
use a logistic regression model. This involves a few new concepts
(odds, log-odds) and a new R command, but the similarities of logis-
tic regression to linear modeling are larger than the differences. For
reference, here’s the logistic regression version of just-smoker model
and the age-adjusted model:

mod3 = glm(outcome=="Dead"~smoker,

data=Whickham, family="binomial")

summary(mod3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7805 0.07962 -9.803 1.096e-22

smokerYes -0.3786 0.12566 -3.013 2.590e-03

mod4 = glm(outcome=="Dead"~smoker+age,

data=Whickham,family="binomial")

summary(mod4)

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -7.5992 0.441231 -17.223 1.792e-66

smokerYes 0.2047 0.168422 1.215 2.242e-01

age 0.1237 0.007177 17.233 1.490e-66
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