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Abstract

Effective memory structures for relational data within R must be capable of represent-
ing a wide range of data while keeping overhead to a minimum. The network package
provides an class which may be used for encoding complex relational structures composed
a vertex set together with any combination of undirected/directed, valued/unvalued,
dyadic/hyper, and single/multiple edges; storage requirements are on the order of the
number of edges involved. Some simple constructor, interface, and visualization functions
are provided, as well as a set of operators to facilitate employment by end users. The
package also supports a C-language API, which allows developers to work directly with
network objects within backend code.
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PLEASE NOTE: This document has been modified from the original paper to form a package
vignette. It has been compiled with the version of the network package it is bundled with,
and has been partially updated to reflect some changes in the package. The original paper is:
network: A Package for Managing Relational Data in R. Journal of Statistical Software 24:2,
2008. http://www.jstatsoft.org/v24/i02/paper

1. Background and introduction

In early 2002, the author and several other members of what would ultimately become the
statnet project (Handcock, et al. 2003) came to the conclusion that the simple, matrix-based
approach to representation of relational data utilized by early versions of packages such as
sna were inadequate for the next generation of relational analysis tools in R. Rather, what
was required was a customized class structure to support relational data. This class structure
would be used for all statnet packages, thus insuring interoperability; ideally, it would also be
possible to port this structure to other languages, thereby further enhancing compatibility.

The requirements which were posed for a network data class were as follows, in descending
order of priority:

1. The class had to be sufficiently general to encode all major types of network data
collected presently or in the foreseeable future;

2. Class storage needed to be of sufficient efficiency to permit representation of large net-
works (in particular, storage which was sub-quadratic in graph order for sparse net-
works); and

http://www.jstatsoft.org/v24/i02/paper
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3. It had to be possible to develop interface methods to the class which were of reasonable
computational efficiency.

Clearly, there are multiple approaches which could be taken to construct such a class structure.
Here we describe the result of one particular effort, specifically the network package (Butts,
et al. 2007) for the R system for statistical computing (R Development Core Team 2007).

1.1. Historical note

The network package as described here evolved from a specification originally written as
an unpublished working paper, “Memory Structures for Relational Data in R: Classes and
Interfaces” (Butts 2002). At this time, the class in question was tentatively entitled “graph.”
It subsequently emerged that a similar package was being developed by Robert Gentleman
under the graph title (as part of the BioConductor project) (Gentleman, et al. 2007), and the
name of the present project was hence changed to “network” in early 2005. A somewhat later
version of the above relational data specification was also shared with Gabor Csardi in mid-
2004, portions of which were incorporated in the development by Gabor of the igraph package
(Csardi & Nepusz 2006). As a result, there are currently three commonly available class
systems for relational data in R, two of which (network and igraph) share some common syntax
and interface concepts. It should also be noted that (as mentioned above) both standard and
sparse matrix (e.g., sparseM Koenker & Ng 2007) classes have been and continue to be used
to represent relational data in R. This article does not attempt to address the relative benefits
and drawbacks of these different tools, but readers should be aware that multiple alternatives
are available.

1.2. A very quick note on notation

Throughout this paper we will use “graph” or “network” (G) generically to refer to any rela-
tional structure on a given vertex set (V ), and “edge” to refer to a generalized edge (i.e., an
ordered pair (T,H) where T is the“tail set”of the edge and H is the corresponding“head set,”
and where T,H ⊆ V (G)). The cardinality of the vertex set we denote |V (G)| = n, and the
cardinality of the corresponding edge set we likewise denote |E(G)| = m. When discussing
storage/computational complexity we will often use a loose order notation, where O

(

f (x)
)

is
intended to indicate that the quantity in question grows more slowly than f(x) as x → ∞. A
general familiarity with the R statistical computing system (and related syntax/terminology)
is assumed. Those unfamiliar with R may wish to peruse a text such as those of Venables &
Ripley (2000, 2002) or Chambers (1998).

2. The network class

The network class is a (reasonably) simple object structure designed to store a single relation
on a vertex set of arbitrary size. The relation stored by a network class object is based on a
generalized edge model; thus, edges may be directed, arbitrarily valued (with multiple values
per edge), multiplex (i.e., multiple edges per directed dyad), hyper (i.e., multiple head/tail
vertices per edge), etc. Storage requirements for the network class are on the order of the
number of nodes plus the total number of edges (which is substantially sub-n2 for sparse
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graphs), and retrieval of edge values has a time complexity which is no worse than O(n).1 For
example, a network with 100,000 vertices and 100,000 edges currently consumes approximately
74MB of RAM (R 2.6.1), versus approximately 40GB for a full sociomatrix (a savings of
approximately 99.8%). When dealing with extremely large, sparse graphs it therefore follows
that network objects are substantially more efficient than simpler representations such as
adjacency matrices. The class also provides for the storage of arbitrary metadata at the edge,
vertex, and network level. Thus, network objects may be preferred to matrix representations
for reasons of generality, performance, or integrative capability; while alternative means exist
of obtaining these goals separately, network provides a single toolkit which is designed to be
effective across a wide range of applications.

In this section, we provide a basic introduction to the network class, from a user’s point
of view. We describe the conditions which are necessary for network to be employed, and
the properties of network objects (and their components). This serves as background for a
discussion of the use of network methods in practical settings, which is given in the section
which follows.

2.1. Identification of vertices and edges

For purposes of storage, we presume that each vertex and each edge can be uniquely identified.
(For partially labeled or unlabeled graphs, observe that this internal labeling is essentially
arbitrary. See Butts & Carley 2005, for a discussion.) Vertices are labeled by positive integers
in the order of entry, with edges likewise; it is further assumed that this is maintained for
vertices (e.g., removing a vertex requires relabeling) but not for edges. (This last has to do
with how edges are handled internally, but has the desirable side effect of making edge changes
less expensive.) Vertices and edges are always stored by label. In the text that follows, any
reference to a vertex or edge “ID” refers to these labeling numbers, and not to any other
(external) identification that a vertex or edge may have.

2.2. Basic class structure

Functionally, a network object can be thought as a collection of vertices and edges, together
with metadata regarding those vertices and edges (as well as the network itself). As noted
above, each vertex is assumed to be identifiable, and the number of vertices is fixed. Here, we
discuss the way in which edges are defined within network, as well as the manner in which
associated metadata is stored.

Edge structure

Edges within a network object consist of three essential components. First, each edge contains
two vectors of vertex IDs, known respectively as the head and tail lists of the edge. In addition
to these lists, each edge also contains a list of attribute information. This is discussed in more
detail below. The content and interpretation of the head and tail lists are dependent on the
type of network in which they reside. In a directed network, an edge connects the elements
of its tail list with those of its head list, but not vice versa: i is adjacent to j iff there exists

1Edge retrieval actually scales with degree, and average retrieval time is hence approximately constant for
many data sources. For an argument regarding constraints on the growth of mean degree in interpersonal
networks, see e.g., Mayhew & Levinger (1976).



4 network: Managing Relational Data in R

some edge, e = (T,H), such that i ∈ T, j ∈ H. In an undirected network, by contrast, the
head and tail sets of an edge are regarded as exchangeable. Thus, i is adjacent to j in an
undirected network iff there exists an edge such that i ∈ T, j ∈ H or i ∈ H, j ∈ T . network

methods which deal with adjacency and incidence make this distinction transparently, based
on the network object’s directedness attribute (see below).

Note that in the familiar case of dyadic networks (the focus of packages such as sna (Butts
2007)), the head and tail lists of any given edge must have exactly one element. This need
not be true in general, however. An edge with a head or tail list containing more than one
element is said to be hypergraphic, reflecting a one-to-many, many-to-one, or many-to-many
relationship. Hyperedges are permitted natively within network, although some methods
may not support them – a corresponding network attribute is used by network methods to
determine whether these edges are present, as explained below. Finally, another fundamental
distinction is made between edges in which H and T are disjoint, versus those in which these
endpoint lists have one or more elements in common. Edges of the latter type are said to be
loop-like, generalizing the familiar notion of “loop” (self-tie) from the theory of dyadic graphs.
Loop-like edges allow vertices to relate to themselves, and are disallowed in many applications.
Applicable methods are expected to interpret such edges intelligently, where present.

network attributes

As we have already seen, each network object contains a range of metadata in addition to
relational information. This metadata – in the form of attributes – is divided into information
stored at the network, vertex, and edge levels. In all three cases, attributes are stored in
lists, and are expected to be named. While there is no limit to the user-defined attributes
which may be stored in this manner, certain attributes are required of all network objects.
At the network level, such attributes describe general properties of the network as a whole;
specifically, they may be enumerated as follows:

bipartite This is a logical or numeric attribute, which is used to indicate the presence of
an intrinsic bipartition in the network object. Formally, a bipartition is a partition of a
network’s vertices into two classes, such that no vertex in either class is adjacent to any
vertex in the same class. While such partitions occur naturally, they may also be specif-
ically enforced by the nature of the data in question. (This is the case, for instance, with
two-mode networks (Wasserman & Faust 1994), in which edges represent connections
between two distinct classes of entities.) In order to allow for bipartite networks with a
partition size of zero, non-bipartite networks are marked as bipartite=FALSE. Where
the value of bipartite is numeric, network methods will automatically assume that
vertices with IDs less than or equal to bipartite belong to one such class, with those
with IDs greater than bipartite belonging to the other. This information may be
used in selecting default modes for data display, calculating numbers of possible edges,
etc. When bipartite == FALSE or NULL, by contrast, no such bipartition is assumed.
Because of the dual logical/numeric nature of the attribute, it is safest to check it
using the is.bipartite method. It should be emphasized that bipartite is intended
to reflect bipartitions which are required ex ante, rather than those which happen to
arise empirically. There is also no performance advantage to the use of bipartite,
since network only stores edges which are defined; it can make data processing more
convenient, however, when working with intrinsically bipartite structures.
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directed This is a logical attribute, which should be set to TRUE iff edges are to be in-
terpreted as directed. As explained earlier, network methods will regard edge endpoint
lists as exchangeable when directed is FALSE, allowing for automatic handling of both
directed and undirected networks. For obvious reasons, misspecification of this attribute
may lead to surprising results; it is generally set when a network object is created, and
considered fixed thereafter.

hyper This attribute is a logical variable which is set to TRUE iff the network is allowed to
contain hyperedges. Since the vast majority of network data is dyadic, this attribute
defaults to FALSE for must construction methods. The setting of hyper to TRUE has
potentially serious implications for edge retrieval, and so methods should not activate
this option unless hypergraphic edges are explicitly to be permitted.

loops As noted, loop-like edges are frequently undefined in practical settings. The loops

attribute is a logical which should be set to TRUE iff such edges are permitted within
the network.

multiple In most settings, an edge is uniquely defined by its head and tail lists. In other
cases, however, one must represent data in which multiple edges are permitted between
the same endpoints. (“Same” here includes the effect of directedness; an edge from set
H to set T is not the same as an edge from set T to set H, unless the network is
undirected.) The multiple attribute is a logical variable which is set to TRUE iff such
multiplex edges are permitted within the network. Where multiple is FALSE, network
methods will assume all edges to be unique – like directed, the possibility of multiplex
edges thus can substantially impact both behavior and performance. For this reason,
multiple is generally set to FALSE by default, and should not be set to TRUE unless it
is specifically necessary to permit multiple edges between the same endpoint sets.

n Finally, n is a numeric attribute containing the number of elements in the vertex set.
Applicable methods are expected to adjust this attribute up or down, should vertices
be added or deleted from the network. Note that as of network v1.8, networks of size
zero are permitted.

While these attributes are clearly reserved, any number of others may be added. Attributes
specifically pertaining to edges and/or vertices can be stored at the network level, but this is
generally non-optimal – such attributes would have to be manually updated to reflect edge
or vertex changes, and would require the creation of custom access methods. The preferred
approach is to store such information directly at the edge or vertex level, as we discuss below.

Vertex attributes

As with the network as a whole, it is often useful to be able to supply attribute data for
individual vertices (e.g., names, attributes, etc.). Each vertex thus has a list of named
attributes, which can be used to store arbitrary information on a per-vertex basis; there is no
restriction on the type of information which may be stored in this fashion, nor are all vertices
constrained to carry information regarding the same attributes. Each vertex does carry two
special attributes, however, which are assumed to be available to all class methods. These
are vertex.names, which must be a character containing the name of the vertex, and the
logical attribute na. Where TRUE, na indicates that the associated vertex is unobserved;
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this is useful in cases for which individual entities are known to belong to a given network,
but where data regarding those entities is unavailable. By default, na is set to FALSE and
vertex.names is set equal to the corresponding vertex ID.

Edge attributes

Just as vertices can carry attributes, so too can edges. Each edge is endowed with a list

of named attributes, which can be used to carry arbitrary information (e.g., tie strength,
onset and termination times, etc.). As with vertex attributes, any information type may
be employed and there is no requirement that all edges carry the same attributes. The one
attribute required to be carried by each edge is na, a logical which (like the vertex case) is
used to indicate the missingness of a given edge. Many network methods provide the option
of filtering out missing edges when retrieving information, and/or returning the associated
information (e.g., adjacency) as missing.

3. Using the network class

In addition to the class itself, network provides a range of tools for creating, manipulating,
and visualizing network objects.2 Here, we provide an overview of some of these tools, with
a focus on the basic tasks most frequently encountered by end users. Additional information
on these functions is also provided within the package manual. For the examples below, we
begin by loading the network package into memory; we also set the random seed, to ensure
that examples using random data match the output shown here. Within R, this may be
accomplished via the following:

> library(network)

> set.seed(1702)

Throughout, we will represent R code in the above format. Readers may wish to try the
demonstrations listed here for themselves, to get a better feel for how the package operates.

3.1. Importing data

It almost goes without saying that an important aspect of network functionality is the ability
to import data from external sources. network includes functionality for the importation
of Pajek project files (Batagelj 2007), a popular and versatile network data format, via the
read.paj routine. Other formats supported by sna can be used as well, by importing to
adjacency matrix form (using the relevant sna routines) and then coercing the result into a
network object as described below. The foreign package can be used to import adjacency,
edgelist, or incidence matrices from other computing environments in much the same way.
Future package versions may include support for converting to and from other related classes,
e.g., those of RBGL (Carey, et al. 2007) and Rgraphviz (Gentry, et al. 2007).

In addition to these methods, network objects can be loaded into R using native tools such
as load (for saved objects) or data (for packaged data sets). With respect to the latter,
network contains two sample data sets: flo, John Padgett’s Florentine wedding data (from

2These tools are currently implemented via S3 methods.
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Wasserman & Faust 1994); and emon, a set of interorganizational networks from search and
rescue operations collected by Drabek, et al. (1981). flo consists of a single adjacency matrix,
and is useful for illustrating the process of converting data from adjacency matrix to network

form. emon, on the other hand, consists of a list of seven network objects with vertex and
edge metadata. emon is thus especially useful for illustrating the use of network objects for
rich data storage (in addition to being an interesting data set in its own right). Loading these
data sets is as simple as invoking the data command, like so:

> data("flo")

> data("emon")

Further information on each of these data sets is given in the network manual. We shall also
use these data sets as illustrative examples at various points within this paper.

3.2. Creating and viewing network objects

While importation is sometimes possible, in other cases we must create our own network

objects. network supports two basic approaches to this task: create the object from scratch,
or build it from existing relational data via coercion. Both methods are useful, and we
illustrate each here.

In the most minimal case, we begin by creating an empty network to which edges may
be added. This task is performed by the network.initialize routine, which serves as a
constructor for the network class. network.initialize takes the order of the desired graph
(i.e., n) as a required argument, and the required network attributes discussed in Section˜2.2.2
may be passed as well. In the event that these are unspecified, it is assumed that a simple
digraph (directed, no loops, hyperedges, multiplexity, or bipartitions) is desired. For example,
one may create and print an empty digraph like so:

> net <- network.initialize(5)

> net

Network attributes:

vertices = 5

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 0

missing edges= 0

non-missing edges= 0

Vertex attribute names:

vertex.names

No edge attributes
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network has default print and summarymethods, as well as low-level operators for assignment
and related operations. These do not show much in the above case, since the network in
question caries little information. To create a network along with a specified set of edges,
the preferred high-level constructor is the eponymous network. Like network.initialize,
this function returns a newly allocated network object having specified properties. Unlike
the former, however, network may be called with adjacency and/or attribute information.
Adjacency information may be passed by using a full or bipartite adjacency matrix, incidence
matrix, or edgelist as the function’s first argument. These input types are defined as follows:

Adjacency matrix: This must consist of a square matrix or two-dimensional array, whose
i, jth cell contains the value of the edge from i to j; as such, adjacency matrices
may only be used to specify dyadic networks. By default, edges are assumed to ex-
ist for all non-zero matrix values, and are constructed accordingly. Edge values may
be retained by passing ignore.eval = FALSE, as described in the manual page for
the network.adjacency constructor. The matrix.type for an adjacency matrix is
"adjacency".

Bipartite adjacency matrix: This must consist of a rectangular matrix or two-dimensional
array whose row and column elements reflect vertices belonging to the lower and up-
per sets of a bipartition (respectively). Otherwise, the matrix is interpreted as per a
standard adjacency matrix. (Thus, a bipartite adjacency matrix is simply the upper
off-diagonal block of the full adjacency matrix for a bipartite graph, where vertices
have been ordered by partition membership. See also Doreian, et al. (2005).) The
matrix.type for a bipartite adjacency matrix is "bipartite".

Incidence matrix: This must consist of a rectangular matrix or two-dimensional array
whose row elements represent vertices, and whose column elements represent edges. A
non-zero value is placed in the i, jth cell if vertex i is an endpoint of edge j. In the
directed case, negative values signify membership in the tail set of the corresponding
edge, while positive values signify membership in the edge’s head set. Unlike adjacency
matrices, incidence matrices can thus be used to describe hypergraphic edges (directed
or otherwise). Note, however, that an undirected hypergraph composed of two-endpoint
edges is not the same as a simple graph, since the edges of the former are necessarily
loop-like. When loops, hyper, and directed are all FALSE, therefore, the two positive
row-elements of an incidence matrix for each column are taken to signify the head and
tail elements of a dyadic edge. (This is without loss of generality, since such an incidence
matrix would otherwise be inadmissible.) When specifying that an incidence matrix is
to be used, matrix.type should be set to "incidence".

Edge list: This must consist of a rectangular matrix or two-dimensional array whose row
elements represent edges. The i, 1st cell of this structure is taken to be the ID of the
tail vertex for the edge with ID i, with the i, 2st cell containing the ID of the edge’s
head vertex. (Only dyadic networks may be input in this fashion.) Additional columns,
if present, are taken to contain edge attribute values. The matrix.type for an edge list
is "edgelist".

As one might suspect, the network function actually operates by first calling
network.initialize to create the required object, and then calling an appropriate edge
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set constructor based on the input type. This fairly modular design allows for the eventual
inclusion of a wider range of input formats (although the above covers the formats currently
in widest use within the social network community). Although network attempts to infer the
matrix type from context, is wise to fix the function’s behavior via the matrix.type argument
when passing information which is not in the default, adjacency matrix form. As a simple
example of the network constructor in action, consider the following:

> nmat <- matrix(rbinom(25, 1, 0.5), nr = 5, nc = 5)

> net <- network(nmat, loops = TRUE)

> net

Network attributes:

vertices = 5

directed = TRUE

hyper = FALSE

loops = TRUE

multiple = FALSE

bipartite = FALSE

total edges= 9

missing edges= 0

non-missing edges= 9

Vertex attribute names:

vertex.names

No edge attributes

> summary(net)

Network attributes:

vertices = 5

directed = TRUE

hyper = FALSE

loops = TRUE

multiple = FALSE

bipartite = FALSE

total edges = 9

missing edges = 0

non-missing edges = 9

density = 0.36

Vertex attributes:

vertex.names:

character valued attribute
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5 valid vertex names

No edge attributes

Network adjacency matrix:

1 2 3 4 5

1 1 0 1 0 1

2 1 0 0 1 0

3 1 0 1 1 0

4 0 0 1 0 0

5 0 0 0 0 0

> all(nmat == net[,])

[1] TRUE

Here, we have generated a random adjacency matrix (permitting diagonal elements) and used
this to construct a digraph (with loops) in network object form. Since we employed an
adjacency matrix, there was no need to set the matrix type explicitly; had we failed to set
loops = TRUE, however, the diagonal entries of nmat would have been ignored. The above
example also demonstrates the use of an important form of operator overloading which can be
used with dyadic network objects: specifically, dyadic network objects respond to the use of
the subset and subset assignment operators [ and [<- as if they were conventional adjacency
matrices. Thus, in the above case, net[,] returns net’s adjacency matrix (a fact we verify
by comparing it with nmat). This is an extremely useful “shorthand” which can be used to
simplify otherwise cumbersome network operations, especially on small networks.

The use of network function to create objects from input matrices has a functional parallel
in the use of coercion methods to transform other objects into network form. These operate
in the same manner as the above, but follow the standard R syntax for coercion, e.g.:

> net <- as.network(nmat, loops = TRUE)

> all(nmat == net[,])

[1] TRUE

By default, as.network assumes that square input matrices should be treated as adjacency
matrices, and that diagonal entries should be ignored; here we have overridden the latter
behavior by invoking the additional argument loops = TRUE. Matrix-based input can also be
given in edgelist or incidence matrix form, as selected by the matrix.type argument. This
and other options are described in greater detail within the package documentation.

The above methods can be used in conjunction with data, load, or read functions to convert
imported relational data into network form. For example, we may apply this to the Florentine
data mentioned in the previous section:
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> nflo <- network(flo, directed = FALSE)

> nflo

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 20

missing edges= 0

non-missing edges= 20

Vertex attribute names:

vertex.names

No edge attributes

Although the network’s adjacency structure is summarized here in edgelist form, it may be
queried in other ways. For instance, the following example demonstrates three simple methods
for examining the neighborhood of a particular vertex:

> nflo[9,]

[1] 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1

> nflo[9,1]

[1] 1

> nflo[9,4]

[1] 0

> is.adjacent(nflo, 9, 1)

[1] TRUE
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> is.adjacent(nflo, 9, 4)

[1] FALSE

As the example shows, overloading can be used to extract partial as well as complete adjacency
information from a network object. A more cumbersome (but slightly faster) method is to
use a direct call to is.adjacent, the general indicator method for network adjacency. Calling
the indicator method avoids the call parsing required by the extraction operator, which is the
source of the performance difference. In practice, however, the impact of call parsing is quite
minimal, and users are unlikely to detect a difference between the two approaches. (Where
such overhead is an issue, it will generally be more efficacious to conduct adjacency queries
directly from the backend code; this will be discussed below, in the context of the C-language
API.)

In addition to adjacency, network supplies methods to query many basic properties of network
objects. Although complex structural descriptives (e.g., centrality scores Wasserman & Faust
1994) are the province of other packages, network’s built-in functionality is sufficient to de-
termine the types of edges allowed within a network object and constraints such as enforced
bipartitions, as well as essential quantities such as size (number of vertices), edge count,
and density (the ratio of observed to potential edges). Use of these indicator methods is
straightforward, as illustrated by the following examples.

> network.size(nflo) #Number of vertices

[1] 16

> network.edgecount(nflo) #Number of edges

[1] 20

> network.density(nflo) #Network density

[1] 0.1666667

> has.loops(nflo) #Can nflo have loops?

[1] FALSE

> is.bipartite(nflo) #Is nflo coded as bipartite?
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[1] FALSE

> is.directed(nflo) #Is nflo directed?

[1] FALSE

> is.hyper(nflo) #Is nflo hypergraphic?

[1] FALSE

> is.multiplex(nflo) #Are multiplex edges allowed?

[1] FALSE

3.3. Coercing network objects to other forms

Just as one may often seek to coerce data from other forms into network object, so to does one
sometimes need to coerce network objects into other data types. network currently supports
several such coercion functions, all of which take network objects as input and produce ma-
trices of one type or another. The class method for as.matrix performs this task, converting
network objects to adjacency, incidence, or edgelist matrices as desired (adjacency being the
default). Scalar-valued edge attributes, where present, may be used to set edge values using
the appropriate functional arguments. Similar functionality is provided by as.sociomatrix

and the extraction operator, although these are constrained to produce adjacency matrices.
These equivalent approaches may be illustrated with application to the Florentine data as
follows:

> as.sociomatrix(nflo)

Acciaiuoli Albizzi Barbadori Bischeri Castellani Ginori Guadagni

Acciaiuoli 0 0 0 0 0 0 0

Albizzi 0 0 0 0 0 1 1

Barbadori 0 0 0 0 1 0 0

Bischeri 0 0 0 0 0 0 1

Castellani 0 0 1 0 0 0 0

Ginori 0 1 0 0 0 0 0

Guadagni 0 1 0 1 0 0 0

Lamberteschi 0 0 0 0 0 0 1

Medici 1 1 1 0 0 0 0

Pazzi 0 0 0 0 0 0 0
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Peruzzi 0 0 0 1 1 0 0

Pucci 0 0 0 0 0 0 0

Ridolfi 0 0 0 0 0 0 0

Salviati 0 0 0 0 0 0 0

Strozzi 0 0 0 1 1 0 0

Tornabuoni 0 0 0 0 0 0 1

Lamberteschi Medici Pazzi Peruzzi Pucci Ridolfi Salviati Strozzi

Acciaiuoli 0 1 0 0 0 0 0 0

Albizzi 0 1 0 0 0 0 0 0

Barbadori 0 1 0 0 0 0 0 0

Bischeri 0 0 0 1 0 0 0 1

Castellani 0 0 0 1 0 0 0 1

Ginori 0 0 0 0 0 0 0 0

Guadagni 1 0 0 0 0 0 0 0

Lamberteschi 0 0 0 0 0 0 0 0

Medici 0 0 0 0 0 1 1 0

Pazzi 0 0 0 0 0 0 1 0

Peruzzi 0 0 0 0 0 0 0 1

Pucci 0 0 0 0 0 0 0 0

Ridolfi 0 1 0 0 0 0 0 1

Salviati 0 1 1 0 0 0 0 0

Strozzi 0 0 0 1 0 1 0 0

Tornabuoni 0 1 0 0 0 1 0 0

Tornabuoni

Acciaiuoli 0

Albizzi 0

Barbadori 0

Bischeri 0

Castellani 0

Ginori 0

Guadagni 1

Lamberteschi 0

Medici 1

Pazzi 0

Peruzzi 0

Pucci 0

Ridolfi 1

Salviati 0

Strozzi 0

Tornabuoni 0

> all(nflo[,]==as.sociomatrix(nflo))

[1] TRUE
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> all(as.matrix(nflo)==as.sociomatrix(nflo))

[1] TRUE

> as.matrix(nflo,matrix.type="edgelist")

[,1] [,2]

[1,] 9 1

[2,] 6 2

[3,] 7 2

[4,] 9 2

[5,] 5 3

[6,] 9 3

[7,] 7 4

[8,] 11 4

[9,] 15 4

[10,] 11 5

[11,] 15 5

[12,] 8 7

[13,] 16 7

[14,] 13 9

[15,] 14 9

[16,] 16 9

[17,] 14 10

[18,] 15 11

[19,] 15 13

[20,] 16 13

attr(,"n")

[1] 16

attr(,"vnames")

[1] "Acciaiuoli" "Albizzi" "Barbadori" "Bischeri" "Castellani"

[6] "Ginori" "Guadagni" "Lamberteschi" "Medici" "Pazzi"

[11] "Peruzzi" "Pucci" "Ridolfi" "Salviati" "Strozzi"

[16] "Tornabuoni"

Note that vertex names (per the vertex.names attribute) are used by as.sociomatrix to
set adjacency matrix row/column names where present.

The less-flexible as.sociomatrix function also plays an important role with respect to coer-
cion in the sna package; the latter’s as.sociomatrix.sna dispatches to network’s as.sociomatrix
routine when network is loaded and a network object is given. The intent in both packages is
to maintain an interoperable and uniform mechanism for guaranteeing adjacency matrix rep-
resentations of input data (which are necessary for backward compatibility with some legacy
functions).
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3.4. Creating and modifying edges and vertices

In addition to coercion of data to network form, the network package contains many mech-
anisms for creating, modifying, and removing edges and vertices from network objects. The
simplest means of manipulating edges for most users is the use of the overloaded extraction
and assignment operators, which (as noted previously) simulate the effects of working with
an adjacency matrix. Thus, a statement such as g[i,j] <- 1 adds an edge between i and j

(if one is not already present), g[i,j] <- 0 removes an existing edge, and g[i,j] itself is a
dichotomous indicator of adjacency. Subset selection and assignment otherwise works in the
same fashion as for R matrices, including the role of logicals and element lists. (One minor
exception involves the effects of assignment on undirected and/or loopless graphs: network

will enforce symmetry and/or empty diagonal entries, and will ignore any assignments which
are contrary to this.) The uses of assignment by overloading are hence legion, as partially
illustrated by the following:

> #Add edges to an empty network

> net <- network.initialize(5,loops=TRUE)

> net[nmat>0] <- 1 #One way to add edges

> all(nmat==net[,]) #Should be TRUE

[1] TRUE

> net[,] <- 0 #Remove the edges

> net[,] <- nmat #Not quite kosher, but _will_ work....

> all(nmat==net[,]) #Should still be TRUE

[1] TRUE

> net[,] <- 0 #Remove the edges

> for(i in 1:5) #Add the hard way!

+ for(j in 1:5)

+ if(nmat[i,j])

+ net[i,j] <- 1

> all(nmat==net[,]) #Should STILL be TRUE

[1] TRUE

> net[,] <- 0 #Remove the edges

> add.edges(net,row(nmat)[nmat>0],col(nmat)[nmat>0])

> all(nmat==net[,]) #When will it all end??

[1] TRUE
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> net[,] <- as.numeric(nmat[,])

> all(nmat==net[,]) #When will it all end??

[1] TRUE

The above example also introduces add.edges, to which the overloaded assignment operator
is a front end. add.edges is more cumbersome to employ than the assignment operators, but
is substantially more powerful. In particular, it can be used to add edges of arbitrary type,
with arbitrary attribute data. A comparison of usage is instructive; we begin by creating an
empty digraph, and adding a single edge:

> #Add edges (redux)

> net<-network.initialize(5) #Create empty graph

> add.edge(net,2,3) #Create 2->3 edge

> net[,] #Trust, but verify

1 2 3 4 5

1 0 0 0 0 0

2 0 0 1 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

> add.edges(net,c(3,5),c(4,4)) #3 and 5 send ties to 4

> net[,] #Again, verify edges

1 2 3 4 5

1 0 0 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

4 0 0 0 0 0

5 0 0 0 1 0

> net[,2]<-1 #Everyone sends ties to 2

> net[,] #Note that loops are not created!

1 2 3 4 5

1 0 1 0 0 0

2 0 0 1 0 0

3 0 1 0 1 0

4 0 1 0 0 0

5 0 1 0 1 0
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Observe that the (2,2) loop is not created, since loops is FALSE for this network. This
automatic behavior is not true of add.edges, unless optional edge checking is turned on (by
means of the edge.check argument). For this reason, explicit use of add.edges is discouraged
for novice users.

In addition to edge addition/removal, vertices can be added or removed via add.vertices

and delete.vertices. The former adds the specified number of vertices to a network object
(along with any supplied attribute information), while the latter deletes a specified list of
vertices from its argument. Usage is straightforward:

> #Deleting vertices

> delete.vertices(net,4) #Remove vertex 4

> net[,] #It's gone!

1 2 3 5

1 0 1 0 0

2 0 0 1 0

3 0 1 0 0

5 0 1 0 0

> add.vertices(net,2) #Add two new vertices

> net[,] #Both are isolates

1 2 3 5 <NA> <NA>

1 0 1 0 0 0 0

2 0 0 1 0 0 0

3 0 1 0 0 0 0

5 0 1 0 0 0 0

<NA> 0 0 0 0 0 0

<NA> 0 0 0 0 0 0

As the above illustrates, vertex names are not automatically created for newly added vertices3

(but can be subsequently assigned). New vertices are always added as isolates (i.e., without
existing ties), and any edges having a deleted vertex as an endpoint are removed along with
the deleted vertex.

The use of is.adjacent (and friends) to perform adjacency testing has been shown above.
While this is adequate for many purposes, it is sometimes necessary to examine an edge’s
contents in detail. As we have seen, each edge can be thought of as a list made up of a vector
of tail vertex IDs, a vector of head vertex IDs, and a vector of attributes. The utility function
get.edges retrieves edges in this form, returning them as lists with elements inl (tail), outl
(head), and atl (attributes). get.edges allows for edges to be retrieved by endpoint(s), and
is usable even on multiplex networks. Incoming or outgoing edges (or both) can be selected,
as per the following example:

3See the “Persistent ID” functionality in the the networkDynamic package for maintainable ids



Carter T. Butts 19

> #Retrieving edges

> get.edges(net,1) #Out-edges sent by vertex 1

[[1]]

[[1]]$inl

[1] 2

[[1]]$outl

[1] 1

[[1]]$atl

[[1]]$atl$na

[1] FALSE

> get.edges(net,2,neighborhood="in") #In-edges to vertex 2

[[1]]

[[1]]$inl

[1] 2

[[1]]$outl

[1] 4

[[1]]$atl

[[1]]$atl$na

[1] FALSE

[[2]]

[[2]]$inl

[1] 2

[[2]]$outl

[1] 3

[[2]]$atl

[[2]]$atl$na

[1] FALSE

[[3]]

[[3]]$inl
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[1] 2

[[3]]$outl

[1] 1

[[3]]$atl

[[3]]$atl$na

[1] FALSE

> get.edges(net,1,alter=2) #Out-edges from 1 to 2

[[1]]

[[1]]$inl

[1] 2

[[1]]$outl

[1] 1

[[1]]$atl

[[1]]$atl$na

[1] FALSE

The alter argument in the last case tells get.edges to supply only edges from vertex 1 to
vertex 2. As with other applications of get.edges, this will return all applicable edges in the
multiplex case.

Retrieving edges themselves is useful, but does not provide the edges’ ID information – par-
ticularly in multiplex networks, such information is needed to delete or modify edges. For
that purpose, we employ a parallel routine called get.edgeIDs:

> #Retrieving edge IDs

> get.edgeIDs(net,1) #Same as above, but gets ID numbers

[1] 4

> get.edgeIDs(net,2,neighborhood="in")

[1] 7 5 4

> get.edgeIDs(net,1,alter=2)

[1] 4
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By the same token, it is sometimes the vertex neighborhood (rather than edge neighborhood)
which is of interest. The get.neighborhood function can be used in these cases to obtain
vertex neighborhoods directly, without having to first query edges. (Since this operation is
implemented in the underlying compiled code, it is considerably faster than an R-level front
end would be.)

> #Vertex neighborhoods

> get.neighborhood(net,1) #1's out-neighbors

[1] 2

> get.neighborhood(net,2,type="in") #2's in-neighbors

[1] 4 3 1

Finally, we note that edge deletion can be performed either by assignment operators (as noted
above) or by the delete.edges function. delete.edges removes edges by ID, and hence is
not primarily employed by end users. In conjunction with tools such as get.edgeIDs, however,
it can be seen to be quite versatile. A typical example is as follows:

> #Deleting edges

> net[2,3]<-0 #This deletes the 2->3

> #edge

> net[2,3]==0 #Should be TRUE

[1] TRUE

> delete.edges(net,get.edgeIDs(net,2,neighborhood="in")) #Remove all->2

> net[,]

1 2 3 5 <NA> <NA>

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

5 0 0 0 0 0 0

<NA> 0 0 0 0 0 0

<NA> 0 0 0 0 0 0

Since it works by IDs, it should be noted that delete.edges can be used to selectively remove
edges from multiplex networks. The operator-based approach automatically removes any
edges connecting the selected pair, and is not recommended for use with multiplex networks.
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3.5. Working with attributes

A major advantage of network objects over simple matrix or list based data representations
is the ability to store meta-information regarding vertices, edges, or the network as a whole.
For each such attribute type, network contains access functions to manage the creation,
modification, and extraction of such information. Here, we briefly introduce the primary
functions used for these tasks, by attribute type.

Network attributes

As indicated previously, network-level attributes are those attached to the network object as
a whole. Such attributes are created via the set.network.attribute function, which takes
as arguments the object to which the attribute should be attached, the name of the attribute,
and the value of the attribute in question. Network attributes may contain arbitrary data, as
they are stored internally via generalized vectors (lists). To streamline the creation of such
attributes, the network attribute operator, %n%, has also been provided. Assignment using the
operator is performed via the syntax network %n% "attrname" <- value, as in the second
portion of the example below (which assigns the first seven lowercase letters to an attribute
called “hoo” in net).

> net <- network.initialize(5)

> set.network.attribute(net, "boo", 1:10)

> net %n% "hoo" <- letters[1:7]

After network attributes have been created, they may be listed using the
list.network.attributes command. Attribute extraction may then be performed by a
call to get.network.attribute, or via the network attribute operator. In the latter case, a
call of the form network %n% "attrname" returns the value of attribute “attrname” in the
object “network.” In our current example, for instance, we have created the attributes “boo”
and “hoo,” each of which may be accessed using either method:

> #List attributes

> list.network.attributes(net)

[1] "bipartite" "boo" "directed" "hoo" "hyper" "loops"

[7] "mnext" "multiple" "n"

> #Retrieve attributes

> get.network.attribute(net,"boo")

[1] 1 2 3 4 5 6 7 8 9 10

> net %n% "hoo"
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[1] "a" "b" "c" "d" "e" "f" "g"

Finally, it is sometimes desirable to remove network attributes which have been created. This
is accomplished using delete.network.attributes, which removes the indicated attribute
from the network object (freeing the associated memory). One can verify that the attribute
has been removed by checking the list of network attributes, e.g:

> #Delete attributes

> delete.network.attribute(net,"boo")

> list.network.attributes(net)

[1] "bipartite" "directed" "hoo" "hyper" "loops" "mnext"

[7] "multiple" "n"

Vertex attributes

Vertex attributes are manipulated in the same general manner as network attributes, with
the caveat that each vertex can have its own attributes. There is no requirement that
all vertices have the same attributes, or that all attributes of a given name contain the
same data type; however, not all extraction methods work well in the latter case. Com-
plete functionality for arbitrary vertex creation, listing, retrieval, and deletion is provided
by the set.vertex.attribute, list.vertex.attributes, get.vertex.attribute, and
delete.vertex.attribute methods (respectively). These allow attribute data to be passed
in list form (permitting arbitrary contents) and to be assigned to specific vertices. While the
generality of these functions is helpful, they are cumbersome to use for simple tasks such as
assigning scalar or character values to each vertex (or retrieving the same). To facilitate such
routine tasks, network provides a vertex attribute operator, %v%. The operator may be used
either for extraction or assignment, treating the right-hand value as a vector of attribute values
(with the ith element corresponding to the ith vertex). By passing a list with a list for each
element, one may assign arbitrary vertex values in this manner; however, the vertex operator
will vectorize these values upon retrieval (and hence one must use get.vertex.attribute

with unlist = FALSE to recover the full list structure). If a requested attribute is unavailable
for a particular vertex, an NA is returned.

Typical use of the vertex attribute methods is illustrated via the following example. Note
that more complex usage is also possible, as detailed in the package manual.

> #Add vertex attributes

> set.vertex.attribute(net,"boo",1:5) #Create a numeric attribute

> net %v% "hoo" <- letters[1:5] #Now, a character attribute

> #Listing attributes

> list.vertex.attributes(net) #List all vertex attributes

[1] "boo" "hoo" "na" "vertex.names"



24 network: Managing Relational Data in R

> #Retrieving attributes

> get.vertex.attribute(net,"boo") #Retrieve 'em

[1] 1 2 3 4 5

> net %v% "hoo"

[1] "a" "b" "c" "d" "e"

> #Deleting attributes

> delete.vertex.attribute(net,"boo") #Remove one

> list.vertex.attributes(net) #Check to see that it's gone

[1] "hoo" "na" "vertex.names"

Edge attributes

Finally, we come to edge attributes. The operations involved here are much like those for
the network and vertex cases. List, set, get, and delete methods exist for edge attributes
(list.edge.attributes, set.edge.attribute, get.edge.attribute, and
delete.edge.attribute), as does an edge attribute operator (%e%). Operations with edges
are rendered somewhat more complex, however, because of the need to employ edge IDs in
referencing the edges themselves. These can be obtained via the get.edgeIDs function (as
described above), but this adds complexity which is unnecessary in the case of simple attribute
assignment on non-multiplex, dyadic graphs (where edges are uniquely identifiable by a pair
of endpoints). For such cases, the convenience function set.edge.value allows edge values
to be specified in adjacency matrix form. Also useful is the bracket operator, which can be
used to assign values as well as to create edges. For network net, net[sel, names.eval =

"attrname"] <- value will set the attribute named by “attrname” on the edges selected by
sel (which follows standard R syntax for selection of cells from square matrices) to the values
in value. By default, values for non-existent edges are ignored (although new edges can be
created by adding add.edges = TRUE to the included arguments). Reasonable behavior for
non-scalar values using this method is not guaranteed.

In addition to the above, methods such as as.sociomatrix allow for edge attributes to be
employed in some settings. These provide a more convenient (if less flexible) interface for
the common case of scalar attributes on the edges of non-multiplex, dyadic networks. The
following is a typical example of these routines in action, although much more exotic scenarios
are certainly possible.

> #Create a network with some edges

> net <- network(nmat)

> #Add attributes
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> set.edge.attribute(net,"boo",sum(nmat):1)

> set.edge.value(net,"hoo",matrix(1:25,5,5)) #Note: only sets for extant edges!

> net %e% "woo" <- matrix(rnorm(25),5,5) #Ditto

> net[,,names.eval="zoo"] <- nmat*6 #Ditto if add.edges!=TRUE

> #List attributes

> list.edge.attributes(net)

[1] "boo" "hoo" "na" "woo" "zoo"

> #Retrieving attributes

> get.edge.attribute(get.edges(net,1),"boo") #Get the attribute for 1's out-edges

[1] 3 7

> get.edge.value(net,"hoo")

[1] 2 3 11 14 17 18 21

> net %e% "woo"

[1] 0.8984226 0.4793125 3.7056453 0.7033602 -0.6100306 -0.4825138 -1.2331196

> as.sociomatrix(net,"zoo")

1 2 3 4 5

1 0 0 6 0 6

2 6 0 0 6 0

3 6 0 0 6 0

4 0 0 6 0 0

5 0 0 0 0 0

> #Deleting attributes

> delete.edge.attribute(net,"boo")

> list.edge.attributes(net)

[1] "hoo" "na" "woo" "zoo"



26 network: Managing Relational Data in R

As this example illustrates, edge attributes are only set for actually existing edges (although
the optional add.edges argument to the network assignment operator can be used to force
addition of edges with non-zero attribute values). Also illustrated is the difference between
attribute setting using set.edge.attribute (which is edge ID based) and function such as
the assignment operator. The relative ease of the latter recommends itself for everyday use,
although more complex settings may call for the former approach.

From attributes to networks

In addition to simply storing covariate information, it should be noted that one can actively
use attributes to construct new networks. For instance, consider the emon data set used above.
Among other variables, each vertex carries an attribute called "Location" which contains
information on whether the corresponding organization had headquarters or command post
installations which were local, non-local, or both with respect to the operation from which the
network was drawn. We may thus use this information to construct a very simple hypergraph,
in which locations constitute edges and edge membership is defined as having an installation
at the respective location. For the Mt. St. Helens network, such a network may be constructed
as follows. First, we extract the location information from the relevant network object, and
use this to build an incidence matrix based on location. Then we convert this incidence matrix
to a hypergraphic network object (setting vertex names from the original network object for
convenience).

> #Extract location information

> MtSHloc<-emon$MtStHelens%v%"Location"

> #Build an incidence matrix based on Local/Non-local/Both placement

> MtSHimat<-cbind(MtSHloc%in%c("L","B"),MtSHloc%in%c("NL","B"))

> #Convert incidence matrix to a hypergraph

> MtSHbyloc<-network(MtSHimat,matrix="incidence",hyper=TRUE,directed=FALSE,

+ loops=TRUE)

> #Set vertex names, for convenience

> MtSHbyloc%v%"vertex.names"<-emon$MtStHelens%v%"vertex.names"

> #Examine the result

> MtSHbyloc

Network attributes:

vertices = 27

directed = FALSE

hyper = TRUE

loops = TRUE

multiple = FALSE

bipartite = FALSE

total edges= 2

missing edges= 0

non-missing edges= 2

Vertex attribute names:
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vertex.names

No edge attributes

Obviously, the simple location coding used here cannot lead to a very complex structure.
Nevertheless, this case serves to illustrate the flexibility of the network tools in allowing
attribute information to be used in creative ways. In addition to constructing networks from
attributes, one can use attributes to store networks (useful for joint representation of cognitive
and behavioral structures such as those of Krackhardt 1988; Killworth & Bernard 1976), edge
timing information (for dynamic structures, as in the package networkDynamic (Butts, et all.
2014)), etc. Appropriate use of network, edge, and vertex attributes allows a wide range of
complex relational data structures to be supported without the need for a cumbersome array
of of custom data classes.

3.6. Visualizing network objects

In addition to manipulating network objects, the network package provides built-in support
for network visualization. This capability is supplied by the package plot method (ported
from sna’s gplot), which is dispatched transparently when plot is called with a network

object. The plot method supports a range of layout and display options, which are specified
through additional arguments. For instance, to visualize the Florentine marriage data we
might use commands such as the following:

> plot(nflo, displaylabels = TRUE, boxed.labels = FALSE)

> plot(nflo, displaylabels = TRUE, mode = "circle")

Typical results of these commands are shown in Figure˜1. Note that the plot method auto-
matically determines whether the network being visualized is directed, and adds or suppresses
arrowheads accordingly. For instance, compare the above with the Mt. Si communication net-
work (Figure˜2):

> plot(emon$MtSi)

The default layout algorithm for the plot method is that of Fruchterman & Reingold (1991),
a force-directed display with good overall performance. Other layout methods are available
(including the well-known energy-minimization algorithm of Kamada& Kawai 1989), and
support is included for user-added functions. To create a custom layout method, one need
only create a function with the prefix network.layout which supplies the appropriate formal
arguments (see the network manual for details). The plot method can then be directed to
utilize the custom layout function, as in this simple example (shown in Figure˜3):

> library(sna)

> network.layout.degree <- function(d, layout.par){

+ id <- degree(d, cmode = "indegree")

+ od <- degree(d, cmode = "outdegree")

+ cbind(id, od)

+ }
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Figure 1: Sample displays of the Florentine marriage data; the left panel depicts the default
Fruchterman-Reingold layout, while the right panel depicts a circular layout.
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Figure 2: Sample display of the Mt. Si EMON data, using the default Fruchterman-Reingold
layout.
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Figure 3: Sample display of the Mt. St. Helens EMON data, using a custom inde-
gree/outdegree layout.

> plot(emon$MtStHelens, mode = "degree", displaylabels = TRUE,

+ boxed.labels = FALSE, suppress.axes = FALSE, label.cex = 0.5,

+ xlab = "Indegree", ylab = "Outdegree", label.col = 3)

As this example illustrates, most properties of the visualization can be adjusted where neces-
sary. This is especially helpful when visualizing structures such as hypergraphs:

> plot(MtSHbyloc, displaylabels = TRUE, label =

+ c(network.vertex.names(MtSHbyloc), "Local", "Non-Local"),

+ boxed.labels = FALSE, label.cex = rep(c(0.5, 1), each = c(27, 2)),

+ label.col = rep(c(3, 4), each = c(27, 2)), vertex.col = rep(c(2, 5),

+ each = c(27, 2)))

Note that the plot method automatically recognizes that the network being passed is hy-
pergraphic, an employs a two-mode representation for visualization purposes (see Figure˜4).
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Figure 4: Sample display of the Mt. St. Helens location hypergraph, showing division between
locally, non-locally, and dual headquartered organizations.

Supplying custom labeling and vertex coloring helps clarify the interpretation. For instance,
here we can immediately see the division between organizations who maintained headquarters
exclusively at local or remote locations during the Mount St. Helens search and rescue oper-
ation, as well as those organizations (e.g. the Salvation Army and Red Cross) which bridged
the two. Though simple, examples such as this demonstrate how the default plot settings can
be adjusted to produce effective visualizations of even complex relational data.

4. C-language API

While the functionality described thus far has been aimed at users working within an in-
terpreted R environment, many network package features can also be accessed through a
C-language application programming interface (API). Although this API still makes use of
R data structures, it provides mechanisms for direct manipulation of those structures via
compiled code. While invisible to most end users, the API has a number of attractions
for developers. Chief among these is performance: in the author’s experience, a reasonably
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well-designed C function can run as much as one to two orders of magnitude faster than
an equivalent R implementation. For many day-to-day applications, such gains are unlikely
to be worth the considerable increase in implementation and maintenance costs associated
with choosing C over R; however, they may prove vital when performing computationally de-
manding tasks such as Markov chain Monte Carlo simulation, large-graph computations, and
small-N solutions for non-polynomial time problems (e.g., cycle counting). Another useful
feature of the C API is its ability to make the complex data storage capabilities of network
objects accessible to developers whose projects involve existing backend code, or develop-
ing packages such as networkDynamic which extend network’s functionality at the C level.
Instead of performing data extraction on a network object and passing the result to the com-
piled routine, the network API allows for such routines to work with such objects directly.
Finally, a third useful asset of the network API is the capacity it provides for generating user-
transparent functionality which transcends what is feasible with R’s pass-by-value semantics.
The use of compiled code to directly modify objects without copying has been fundamental
to the functionality of the package since version 1.0, as can be gleaned from an examination
of the package source code4.

The mechanism by which the API is currently implemented is fairly simple. A shared header
file (which must be included in the user’s application) defines a series of macros which point
to the package’s internal routines. During program execution, a global registration function
is used to map these macros to their internal symbols; following this, the macros may be
called normally. Other then ensuring that the network library is loaded prior to invoking
the registration function, no other measures are necessary. In particular, the calling rou-
tine does not have to be linked against the network library, although the aforementioned
header/registration routines must be included at compile time.5

In addition, network versions 1.11.1 and higher implement R’s template for registering native
C routines 6 so that packages may compile against network’s code by declaring a LinkingTo:

network in the DESCRIPTION file. The listing of exported functions are in the file src/Rinit.c.

4.1. Using the network API

To use the network API within one’s own code, the following steps are necessary:

1. The required network header and function registration files must be added to the de-
veloper’s source tree.

2. The network header file must be included during compilation.

3. The netRegisterFunctions function must be invoked at the entry point to any C

program using the API.

4. The network API functions must be used as required.

4The pass-by-value semantics are somewhat contrary to R’s design philosophy and have been somewhat
blocked in recent R versions. While the pass-by-value semantics functionality described is still operational, it
must be implemented in less than optimal ways and my not offer the original speed gains.

5Required files for the network API are available from http://www.statnetproject.org/.
6See the ‘Registering-native-routines’ section of http://cran.r-project.org/doc/manuals/r-release/

R-exts.html

http://www.statnetproject.org/
http://cran.r-project.org/doc/manuals/r-release/R-exts.html 
http://cran.r-project.org/doc/manuals/r-release/R-exts.html 
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The command netRegisterFunctions takes and returns no arguments, being invoked solely
for its side effect. Although it must be called at each entry to the C backend (i.e., each
invocation of .Call or .External from R), its effects persist until the calling routine exits.
The API is designed for use with the .Call interface, although wrappers for conversion to
.External are in principle possible. Object references are maintained through SEXP pointers,
as is standard for R’s C language interface. Because references (rather than copies of the
objects themselves) are passed to C via the interface, C routines may directly alter the objects
with which they are called. network has many routines for creating and modifying networks,
as well as for accessing object contents within compiled code. To illustrate the use of the
network API in practical settings, we here provide a walk-through for a relatively simple (but
non-trivial) example. Consider a C function which generates an undirected network from
a homogeneous Bernoulli graph distribution, tagging each edge with random “onset” and
“termination” times based on a piecewise-exponential process with fixed onset/termination
hazards. Such a function might also keep track of the first and last edge times for each vertex
(and for the network as a whole), storing these within the network object via appropriately
named attributes.

To implement our sample function, we begin with the standard header for a .Call function,
which both takes and receives arguments of type SEXP (S-expression pointers). In this case,
the parameters to be passed consist of an initialized network object, the probability of an
edge between any two vertices, and the hazards for edge onset and termination (respectively).
Note that we do not need to tell the function about properties such as network size, since it
can determine these itself using the API’s interface methods.

SEXP rnbernexp_R(SEXP g, SEXP ep, SEXP oh, SEXP th)

/*

C-Language code for a simple random dynamic network generator. Arguments are

as follows:

g - a pre-initialized network object

ep - the edge probability parameter

oh - the edge onset hazard parameter

th - the edge termination hazard parameter

*/

{

int n, i, w;

double u, fet, let, *vfet, *vlet, ot, tt;

SEXP tail, head, atl, atlnam, sot, stt, ec;

/*Verify that we were called properly, and set things up*/

netRegisterFunctions();

if(!netIsNetwork(g))

error("rnbernexp_R must be called with a network object.\n");

if(netIsDir(g))

error("Network passed to rnbernexp_R should be undirected.\n");

n = netNetSize(g);

PROTECT(ep = coerceVector(ep, REALSXP));

PROTECT(oh = coerceVector(oh, REALSXP));

PROTECT(th = coerceVector(th, REALSXP));
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PROTECT(ec = allocVector(LGLSXP, 1));

LOGICAL(ec)[0] = 0;

GetRNGstate();

/*Allocate memory for first/last edge time trackers*/

vfet = (double *)R_alloc(n, sizeof(double));

vlet = (double *)R_alloc(n, sizeof(double));

for(i = 0; i < n; i++)

vfet[i] = vlet[i] = NA_REAL;

fet = let = NA_REAL;

In order to assure that all arguments are of the appropriate type, we employ a combination of
verification and coercion. After registering the networkAPI functions using netRegisterFunctions,
we use the indicators netIsNetwork and netIsDir to verify that the g argument is indeed
a network object, and that it is undirected. After verifying these conditions, we can use
netNetSize to obtain the number of vertices in the network. This quantity is saved for
further use.

With the preliminaries out of the way, we are now in a position to draw edges. The algo-
rithm used to generate the underlying graph is that of Batagelj & Brandes (2005), which
scales well for sparse graphs (complexity is O(n +m)). Edges themselves are added via the
netAddEdge API function, which is analogous to add.edge in the R interface. Because we
are operating directly on the network object, we must handle memory allocation ourselves:
the allocVector calls in the following section are used to allocate memory for the head, tail,
and attribute lists, and for the vector of attribute names. These are set accordingly, with
the “OnsetTime” and “TerminationTime” attributes being created to store edge onsets and
terminations, respectively. Once the edge elements are created, netAddEdge assures that they
are placed within the network object; since R’s garbage collection mechanism protects these
elements once they are linked to g (which is a protected object), we can subsequently remove
them from the memory protection stack using UNPROTECT.

/*Draw the network information*/

w = -1;

i = 1;

while(i < n){

u = runif(0.0, 1.0);

w += 1+ (int)floor(log(1.0 - u) / log(1.0 - REAL(ep)[0]));

while((w >= i) && (i < n)){

w -= i;

i++;

}

if(i < n){ /*Generate an edge*/

/*Draw and track timing information*/

ot = rexp(REAL(oh)[0]);

tt = ot + rexp(REAL(th)[0]);

fet = ((ISNA(fet)) || (ot < fet)) ? ot : fet;

let = ((ISNA(let)) || (tt > let)) ? tt : let;

vfet[i] = ((ISNA(vfet[i])) || (ot < vfet[i])) ? ot : vfet[i];
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vlet[i] = ((ISNA(vlet[i])) || (tt > vlet[i])) ? tt : vlet[i];

/*Allocate memory for the new edge*/

PROTECT(tail = allocVector(INTSXP, 1)); /*Allocate head/tail*/

PROTECT(head = allocVector(INTSXP, 1));

INTEGER(tail)[0] = i + 1;

INTEGER(head)[0] = w + 1;

PROTECT(atl = allocVector(VECSXP, 2)); /*Allocate attributes*/

PROTECT(sot = allocVector(REALSXP, 1));

PROTECT(stt = allocVector(REALSXP, 1));

PROTECT(atlnam = allocVector(STRSXP, 2));

SET_STRING_ELT(atlnam, 0, mkChar("OnsetTime"));

SET_STRING_ELT(atlnam, 1, mkChar("TerminationTime"));

REAL(sot)[0] = ot;

REAL(stt)[0] = tt;

SET_VECTOR_ELT(atl, 0, sot);

SET_VECTOR_ELT(atl, 1, stt);

g = netAddEdge(g, tail, head, atlnam, atl, ec); /*Add the edge*/

UNPROTECT(6);

}

}

At this point, all edges have been placed within the network. While we could stop here, it
seems useful to first tabulate some basic meta-data regarding the network being produced.
In particular, a function to analyze a network of this type would doubtless need to know the
total time interval over which each vertex (and the network as a whole) is active. Via the
network API, we can easily store this information in g’s network and vertex attribute lists
before returning. To do this, we employ netSetVertexAttrib and netSetNetAttrib, API
functions which are analogous to set.vertex.attribute and set.network.attribute. As
with the case of edge addition, we must allocate memory for the attribute entry prior to
installing it – the netSet* routines pass references to their arguments, rather than copying
them – but these functions do handle the creation of attribute names from raw strings. After
writing our metadata into the graph, we clear the protection stack and return the R object
pointer.

/*Add network and vertex attributes*/

for(i = 0; i < n; i++){

PROTECT(sot = allocVector(REALSXP, 1));

PROTECT(stt = allocVector(REALSXP, 1));

REAL(sot)[0] = vfet[i];

REAL(stt)[0] = vlet[i];

g = netSetVertexAttrib(g, "FirstOnsetTime", sot, i + 1);

g = netSetVertexAttrib(g, "LastTerminationTime", stt, i + 1);

UNPROTECT(2);

}

PROTECT(sot = allocVector(REALSXP, 1));

PROTECT(stt = allocVector(REALSXP, 1));

REAL(sot)[0] = fet;
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REAL(stt)[0] = let;

g = netSetNetAttrib(g, "FirstOnsetTime", sot);

g = netSetNetAttrib(g, "LastTerminationTime", stt);

/*Clear protection stack and return*/

PutRNGstate();

UNPROTECT(6);

return g;

}

To use the rnbernexp_R function, it must be invoked from R using the .Call interface. A
simple wrapper function (whose behavior is similar to R’s built-in random number generation
routines) might look like the following:

> rnbernexp <- function(n, nv, p = 0.5, onset.hazard = 1,

+ termination.hazard = 1){

+ nets <- list()

+ for(i in 1:n)

+ nets[[i]] <- .Call("rnbernexp_R", network.initialize(nv,

+ directed = FALSE), p, onset.hazard, termination.hazard,

+ PACKAGE = "networkapi.example")

+ if(i > 1)

+ nets

+ else

+ nets[[1]]

+ }

In actual use, the PACKAGE setting would be changed to the name of the shared object file
in which the rnbernexp_R symbol resides. (This file would need to be linked against the
networkapi file, and dynamically loaded after network is in memory. Linking against the
entire network library is not required, however.) Although the specific distribution simulated
is too simplistic to serve as a very good model of social dynamics, it nevertheless illustrates
how the network API can be used to efficiently simulate and store the results of non-trivial
processes within compiled code.

5. Final comments

For several decades, tools for social network analysis were essentially isolated from those sup-
porting conventional statistical analyses. A major reason for this isolation was the difficulty
in manipulating – or even representing – relational data within standard statistical packages.
In recent years, the emergence of flexible statistical computing environments such as R have
helped to change this situation. Platforms like R allow for the creation of the complex data
structures needed to represent rich relational data, while also facilitating the development of
tools to make such structures accessible to the end user. The network package represents
one attempt to leverage these capabilities in order to create a low-level infrastructure for the
analysis of relational data. Together with packages like sna, ergm, and the rest of the statnet
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suite, it is hoped that network will provide a useful resource for scientists both inside and
outside of the social network community.
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