pathClass: SVM-based classification with prior
knowledge on feature connectivity

(Version 0.8.0)

User‘s Guide

Marc Johannes
German Cancer Research Center
Heidelberg, Germany

April 29, 2012

Contents

1 Introduction 1

2 What data do we need 2
2.1 The class labels 2
2.2 The data matrix 2
2.3 Thegraph 2
24 The mapping 3

3 Which classification methods are available 4
3.1 Reweighted Recursive Feature Elimination 4
3.2 network-based SVM 5
3.3 graph SVM L 6

4 Showing the results 6

1 Introduction

The package pathClass was developed for classification tasks with the usage of prior
knowledge about the feature connectivity. At the German Cancer Research Center we
are dealing mostly with biological data. Thus, in this vignette we demonstrate the usage
of the package and its functions using biologically data.

The package can be loaded by typing:

> library(pathClass)

2 What data do we need

For a standard classification task one needs a data matrix to train on as well as class
labels which tell the algorithm to what class a sample belongs to. However, we now
have an additional source of knowledge, i.e. a graph structure. For the algorithm to
know which feature in the data matrix corresponds to which node in the graph we need
a mapping as well. In the follwing sections we will describe the structure of these data
objects and give examples how to create and use them.

2.1 The class labels

In this vignette we are going to use the combined test and training sets from the Golub
paper which is part of the R package golubEsets available on Bioconductor:

> library(golubEsets)
> data(Golub_Merge)

We are going to predict whether the patient had AML or ALL. Hence, we create the
class labels as:

> y <- pData(Golub_Merge)$ALL
From this output we can see that y contains 72 entries. That is, 72 patients are used for

the analysis.

2.2 The data matrix

Next, we need the corresponding expression data as data matrix D"*P with n samples
of p measurements.

> x <- exprs(Golub_Merge)

This data set contains 7129 features measured in 72 samples. However, we need the
transposed version of it:

> x <- t(x)
> dim(x)

[1] 72 7129

2.3 The graph

As a next step we have to create a adjacency matrix that represents the connectivity of
the features in x. Therefore, we download from http://www.hprd.org/download the
file of binary protein-protein interactions in tab delimited format. After extracting the
archive we use pathClass to read the tab-delimited file:

> hprd <- read.hprd('BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt')

http://www.hprd.org/download

Since most classification algorithm can “only” use those features that are present in both,
the data matrix x and the hprd adjacency matrix, we have to match both objects to
each other. Therefore, we need a mapping containing the information which protein of
hprd matches to which probe set in x.

As an alternative, the user can load a small fake network using the command:

> data(adjacency.matrix)
> hprd <- adjacency.matrix

2.4 The mapping

For most microarrays there is a annotation package available. Since we are dealing with
expression data from chip hu6800 we load the corresponding annotation package and
create a mapping from probe set ID to protein ID:

ann <- annotation(Golub_Merge)

library(paste(ann, 'db',sep='."'), character.only=TRUE)

graphIDs <- "REFSEQ"

rs <- get(paste(ann, graphIDs, sep='"'))

refseq <- mget(featureNames(Golub_Merge), rs)

times <- sapply(refseq, length)

mapping <- data.frame(probesetID=rep (names(refseq), times=times),
graphID=unlist (refseq),
row.names=NULL,
stringsAsFactors=FALSE)

nas <- which(is.na(mappingl[, 'graphID']))

mapping <- mapping[-nas,]

mapping <- unique (mapping)

head (mapping)

VVVV+ + +VVVVVVYV

probesetID graphID
35 AFFX-HUMISGF3A/M97935_5_at NM_007315
36 AFFX-HUMISGF3A/M97935_5_at NM_139266
37 AFFX-HUMISGF3A/M97935_5_at NP_009330
38 AFFX-HUMISGF3A/M97935_5_at NP_644671
39 AFFX-HUMISGF3A/M97935_MA_at NM_007315
40 AFFX-HUMISGF3A/M97935_MA_at NM_139266

The first line in the above code-chunk identifies the annotation of the expression set. The

second line load the corresponding annotation package. Line three defines the kind of IDs

that are present in the graph structure, must be one of 1s(paste(’package:’,ann,’.db’,sep=m)).
Lines four and five extract the graph IDs, in this case REFSEQ), that match to the fea-
tureNames of our expression set. The remaing code puts everything into the order

needed by pathClass. Now we have a mapping with 25148 rows. It is important that

this mapping has at least two columns named graphID and probesetID since those

names are needed internally when pathClass makes use of the mapping.

In a next step we can make use of the function matchMatrices() to match the data
matrix x to the hprd:

> matched <- matchMatrices(x=x, adjacency=hprd, mapping=mapping)

The list matched contains copies of x, hprd and mapping however with matching dimen-
sions. Thus, these objects can now be used for classification.

3 Which classification methods are available

That far, all classification algorithms we implemented are based on the support vector
machine (SVM, Vapnik and Cortes 1995). As a standard tool we provide the recur-
sive feature elimination (SVM-RFE, Guyon et™al. 2002) algorithm for the SVM. This
algorithm performs a feature selection, however it makes no use of prior knowledge. In
addition to SVM-RFE we implemented three other SVM-based algorithm that use prior
knowledge:

1. Reweighted Recursive Feature Elimination (RRFE, Johannes et”al. 2010)
2. Network-based SVM (Zhu et~ al., 2009)
3. Graph SVM (Rapaport et~ al., 2007)

The functions to train these methods are called: fit.rfe, fit.rrfe, fit.networkBasedSVM
and fit.graph.svm, respectively. The user can use these functions directly to obtain
a fit object of the corresponding algorithm or use the wrapper-function crossval() to
perform a z times repeated y-fold cross-validation. Additionally the crossval() func-
tion is able to make use of the multicore architecture of modern PCs or a computing
cluster. To use the parallel version of the method the user has to load the library mul-
ticore prior to calling crossval() and to set the parameter parallel to TRUE. It is,
however, worth mentioning that for parallel use all data objects a copied for each of the
CPU processes. Therefore, one has to ensure that the object fit into the memory of the
server.

For the purpose of reproducibility we initialize the random number generator prior to
calling the individual algorithms. This also ensures that each algorithm uses the same
splits within the cross-validation.

3.1 Reweighted Recursive Feature Elimination

The RRFE method can be run without using the mapping created above. The reason for
this is, that the method can use all features if the user sets the paramter useAl11Features
to TRUE. Therefore, this method has its own, internal mapping routine. RRFE has an
tuning parameter d € (0,1) that controls the influence of the graph structure on the
ranking of the genes. A value of d — 1 puts more weight on the connectivity infromation
whereas d — 0 relies more on the expression data. To use the RRFE method one can
use:

> set.seed(12345)

> res.rrfe <- crossval(x,

+ ¥y

DEBUG=TRUE,
theta.fit=fit.rrfe,
folds=10,
repeats=5,
parallel=TRUE,
Cs=10"(-3:3),
mapping=mapping,
Gsub=hprd,
d=1/2)

+ + + + + + + + 4+

or, to use all features:

> res.rrfe <- crossval(x,

+ ¥y

+ DEBUG=TRUE,

+ theta.fit=fit.rrfe,
+ folds=10,

+ repeats=5,

+ parallel=TRUE,

+ Cs=10"(-3:3),

+ useAllFeatures=TRUE,
+ mapping=mapping,

+ Gsub=hprd,

+ d=1/2)

Please, have a look into the help files or the paper (Johannes et al., 2010) for more
information on the useAllFeatures option.

3.2 network-based SVM

The network-based support vector machine (Zhu et~ al., 2009) needs the mapping from
above, since the dimensions of the data objects have to match exactely. However, instead
of an adjacency matrix it needs an adjacency list which we have to create before:

> ad.list <- as.adjacencyList(matched$adjacency)

> set.seed(12345)

> res.nBSVM <- crossval (matched$x,

+ ¥y,
theta.fit=fit.networkBasedSVM,
folds=10,

repeats=5,

DEBUG=TRUE,

parallel=FALSE,

+ + + + +

+ adjacencylList=ad.list,
+ lambdas=10"(-1:2),
+ sd.cutoff=150)

Since, the algorithm internally uses 1pSolve, it has to calculate a constraints-matrix.
Thus, when having lots of features this matrix can become very big. Therefore, we added
the parameter sd.cutoff which only keeps genes with standard deviation > sd.cutoff.
Further, we recommend not to run this algorithm in parallel, since the contraints matrix
is created by each process, which might result in memory overflow.

3.3 graph SVM

Rapaport et”al. (2007) developed a supervised classification framework which we refer
to as “graph SVM”. This methods makes use of a so-called diffusion kernel, which has
to be calculated before using this method:

dk <- calc.diffusionKernel (L=matched$adjacency,
is.adjacency=TRUE,
beta=0)
set.seed(12345)
res.gSVM <- crossval (matched$x,
Vs
theta.fit=fit.graph.svm,
folds=10,

repeats=5,

DEBUG=TRUE,
parallel=FALSE,
Cs=10"(-3:3),
mapping=matched$mapping,
diffusionKernel=dk)

+ + + ++++++VV++yV

Were beta is a tuning parameter that controls the extent of diffusion. This parameter
should be optimized.

4 Showing the results

We can have a look on the individual results by typing:
> plot(res.rrfe, toFile=F)

We get a boxplot for each repeat of the cross-validation showing the distribution of
AUC’s obtained by the classifiers trained in the repeat as well as a receiver operator
characteristic (ROC) curve showing the overall performance.

We can, however, also combine all results into one ROC curve by using the ROCR
package:

cv.labels <- matrix(rep(y,5), ncol=5)
pred.rrfe <- prediction(res.rrfe$cv, labels=cv.labels)
auc.rrfe <- round(mean(unlist(performance(pred.rrfe, 'auc')@y.values)),3)
plot(performance (pred.rrfe, measure = "tpr", x.measure = "fpr'"),
col='red’,
main='Benchmark of the algorithms',
avg = "threshold")
pred.nBSVM <- prediction(res.nBSVM$cv, labels=cv.labels)

auc.nBSVM <- round(mean(unlist (performance (pred.nBSVM, 'auc')@y.values)),3)

>

>

>

>

+

+

+

>

>

> plot(performance (pred.nBSVM, measure = "tpr", x.measure = "fpr"),
+ add=TRUE,

+ col='blue',

+ avg = "threshold")

> pred.gSVM <- prediction(res.gSVM$cv, labels=cv.labels)

> auc.gSVM <- round(mean(unlist(performance(pred.gSVM, 'auc')@y.values)),3)
> plot(performance(pred.gSVM, measure = "tpr", x.measure = "fpr"),
+ add=TRUE,

+ col='green',

+ avg = "threshold")

> legend('bottomright’,

+ c(paste('RRFE (AUC=',auc.rrfe,')',sep="'"),

+ paste('network based SVM (AUC=',auc.nBSVM,')',sep="'"),
+ paste('graph SVM (AUC=',auc.gSVM,')',sep="'")),

+ text.col=c('red', 'blue’, 'green’'),

+ col=c('red', 'blue’, 'green'),

+ 1ty=1,

+ bty='n',

+ cex=1.3)

> abline(b=1,a=0,col='gray"')

It is important to note that these results can not be generalized to be true for all data
sets. We provide this package, that the user can easily evaluate all algorithms and based
on these result choose the best one.

These commands produce figure 1. Additionally we can extract the features which have
been chosen by the classifier by using the following function:

> extractFeatures(res.rrfe, toFile=T, fName='OurFeatures.csv')

Benchmark of the algorithms

e

« _|

o
e
e
: s
g
S
g 3-
g
<

N

o

—— RRFE (AUC=0.941)
— network based SVM (AUC=0.839)
g S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Average false positive rate
Figure 1: ROC curves for all three algorithms
References

1.”"Guyon, J.”"Weston, S.”Barnhill, and V.” Vapnik. Gene selection for cancer classification using support
vector machines. Machine Learning, 46(1-3):389-422, 2002. URL http://www.springerlink.com/
index/W68424066825VR3L. pdf.

M. " Johannes, J.”C. Brase, H. Frohlich, S."Gade, M. Gehrmann, M. Falth, H.Siiltmann, and
T."Beiflbarth. Integration of pathway knowledge into a reweighted recursive feature elimination
approach for risk stratification of cancer patients. Bioinformatics, 26(17):2136-2144, Jun 2010. doi:
10.1093 /bioinformatics/btq345. URL http://dx.doi.org/10.1093/bioinformatics/btq345.

F."Rapaport, A."Zinovyev, M. Dutreix, E.”Barillot, and J.-P. Vert. Classification of microarray data
using gene networks. BMC' Bioinformatics, 8:35, 2007. doi: 10.1186/1471-2105-8-35. URL http:
//dx.doi.org/10.1186/1471-2105-8-35.

V."Vapnik and C.”Cortes. Support-vector networks. Machine Learning, Jan 1995. URL http://www.
springerlink.com/index/K238JX04HM87J80G. pdf.

Y. Zhu, X."Shen, and W. Pan. Network-based support vector machine for classification of microarray
samples. BMC Bioinformatics, 10 Suppl 1:521, 2009. doi: 10.1186/1471-2105-10-S1-S21. URL
http://dx.doi.org/10.1186/1471-2105-10-S1-S21.

http://www.springerlink.com/index/W68424066825VR3L.pdf
http://www.springerlink.com/index/W68424066825VR3L.pdf
http://dx.doi.org/10.1093/bioinformatics/btq345
http://dx.doi.org/10.1186/1471-2105-8-35
http://dx.doi.org/10.1186/1471-2105-8-35
http://www.springerlink.com/index/K238JX04HM87J80G.pdf
http://www.springerlink.com/index/K238JX04HM87J80G.pdf
http://dx.doi.org/10.1186/1471-2105-10-S1-S21

	Introduction
	What data do we need
	The class labels
	The data matrix
	The graph
	The mapping

	Which classification methods are available
	Reweighted Recursive Feature Elimination
	network-based SVM
	graph SVM

	Showing the results

