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phaseR Exercise Solutions 
 

These solutions contain by no means the only suitable code for performing phase 
plane analysis upon the example systems. Moreover, again it is obviously not a useful 
exercise for me to provide example hand drawn plots of the nullclines and 
trajectories. A user should simply verify that any plots they have drawn by hand are 
similar to those generated by phaseR. It is also useful to note that whilst phase 
portrait plots are always here produced for specific parameter cases, you should be 
able to plot more general versions of the phase portraits yourself by hand (grouping 
by case where necessary). In this way, the phase portrait method can become as 
general as performing the Taylor approach yourself. 
 
Exercise 1: Here, to produce the plot in Section 2.2, of the flow field and several 
trajectories, we use the following code: 

 

> example1.flowField <- flowField(example1, x.lim = c(0, 4), 

+ y.lim = c(-4, 4), points = 21, system = "one.dim", add =  

+ FALSE, xlab = "t) 

> grid() 

> example1.trajectory <- trajectory(example1, y0 = c(-3, -1, 

+ 0, 1, 3), t.end = 4, system = "one.dim") 

 

To produce the phase portrait plot of Section 2.3, we turn to phasePortrait, 
employing the following code: 
 

> example1.phasePortrait <- phasePortrait(example1, y.lim = 

+ c(-4, 4), points = 7) 

> grid() 

 

Exercise 2: To analyse the exponential model, we begin by plotting the flow field and 
several trajectories for the case 𝛽 = 1. In addition we add a horizontal line at any 
equilibrium points: 
 

> exponential.1.flowField <- flowField(exponential, x.lim = 

+ c(0, 5), y.lim = c(-1, 3), parameters = 1, points = 21, 

+ system = "one.dim", add = FALSE, xlab = "t") 

> grid() 

> exponential.1.nullclines <- nullclines(exponential, 

+ x.lim = c(0, 5), y.lim = c(-1, 3), parameters = 1, 

+ system = "one.dim") 

> exponential.1.trajectory <- trajectory(exponential, y0 = 

+ c(-0.5, 0.5, 1.5, 2.5), t.end = 5, parameters = 1, system 

= "one.dim") 
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Thus one equilibrium point appears to have been found; at 𝑦∗ = 0. We can verify this 

location analytically by setting the derivative to zero: 
 

𝛽𝑦∗ = 0 ⟹ 𝑦∗ = 0. 
 

To assess stability for 𝛽 = 1 we first plot the phase portrait: 

 

> exponential.1.phasePortrait <- phasePortrait(exponential, 

+ y.lim = c(-1, 1), parameters = 1, points = 10) 

> grid() 
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Thus, 𝑦∗ = 0 will be unstable here. In addition, we can use perturbation analysis to 
classify 𝑦∗ = 0 in the general case: 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

= 𝛽. 

 
Thus the equilibrium point will be stable if 𝛽 < 0, but unstable if 𝛽 > 0. We can verify 
that 𝛽 = 1 results in 𝑦∗ = 0 being unstable using stability: 
 

> exponential.1.stability <- stability(exponential, 

+ y.star = 0, parameters = 1, system = "one.dim") 

 

Discriminant: 1   Classification: Unstable 

 

Thus both methods have drawn the same conclusion; for 𝛽 = 1, 𝑦∗ = 0 is unstable. 
Indeed, this is clearly evident from the flow field and trajectories we plotted above 
as well. 
 
We now further focus on the case 𝛽 < 0, taking 𝛽 = −1 as an example to plot the flow 
field and trajectories: 
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> exponential.2.flowField <- flowField(exponential, x.lim = 

+ c(0, 5), y.lim = c(-1, 3), parameters = -1, points = 21,  

+ system = "one.dim", add = FALSE, xlab = "t") 

> grid() 

> exponential.2.nullclines <- nullclines(exponential, 

+ x.lim = c(0, 5), y.lim = c(-1, 3), parameters = -1, 

+ system = "one.dim") 

> exponential.2.trajectory <- trajectory(exponential, y0 = 

+ c(-0.5, 0.5, 1.5, 2.5), t.end = 5, parameters = -1, 

+ system = "one.dim") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, 𝑦∗ = 0 is again the only equilibrium point (as we calculated earlier). Moreover, 
we observed earlier that 𝑦∗ = 0 will, for 𝛽 = −1, be stable. Whilst this is evident from 
the above plot, we can check it by first plotting the phase portrait: 

 

> exponential.2.phasePortrait <- phasePortrait(exponential, 

+ y.lim = c(-1, 1), parameters = -1, points = 10) 

> grid() 
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In addition, we can use stability and the Taylor approach: 

 

> exponential.2.stability <- stability(exponential, 

+ y.star = 0, parameters = -1, system = "one.dim") 

 

Discriminant: -1   Classification: Stable 

 

Thus, in general we have seen that the exponential model has only one equilibrium 
point, and its stability is entirely determined by the sign of 𝛽. Biologically, the sign of 
𝛽 here would reflect whether we expected the species under study to grow or decay. 
So, for example, a rapidly growing population of worms would have 𝛽 > 0, whilst a 
model of radioactive decay would have 𝛽 < 0. 
 
Exercise 3: We begin by plotting the flow field, trajectories and identifying the 
equilibrium point for the suggested case 𝛽 = 1, 𝐾 = 3: 

 

> monomolecular.1.flowField <- flowField(monomolecular, 

+ x.lim = c(0, 5), y.lim = c(0, 5), parameters = c(1, 3),  

+ points = 21, system = "one.dim", add = FALSE, xlab = "t") 

> grid() 

> monomolecular.1.nullclines <- nullclines(monomolecular,  

+ x.lim = c(0, 5), y.lim = c(0, 5), parameters = c(1, 3),  
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+ points = 1000, system = "one.dim") 

> monomolecular.1.trajectory <- trajectory(monomolecular, 

+ y0 = c(0.5, 1, 4, 5), t.end = 5, parameters = c(1, 3),  

+ system = "one.dim") 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, there appears to be one equilibrium point at 𝑦∗ = 3. Setting the derivative to 
zero we can check this analytically: 
 

𝛽(𝐾 − 𝑦∗) = 0 ⟹ 𝑦∗ = 𝐾, 
 
which would indeed translate to 𝑦∗ = 3 in our case. To check the stability of 𝑦∗ = 3 
here we begin by plotting the phase portrait: 
 

> monomolecular.1.phasePortrait <-  

+ phasePortrait(monomolecular, y.lim = c(0, 5), parameters = 

+ c(1, 3), points = 10) 

> grid() 
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Alternatively, we can employ perturbation analysis: 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

= −𝛽. 

 
Thus for this model the equilibrium point will be stable if 𝛽 > 0, but unstable if 𝛽 < 0. 
So for our case 𝛽 = 1, both methods confirm that the equilibrium point 𝑦∗ = 3 is 
stable. We can also verify this using stability: 
 

> monomolecular.1.stability <- stability(monomolecular, 

+ y.star = 3, parameters = c(1, 3), system = "one.dim") 

 

Discriminant: -1   Classification: Stable 

 

Thus, as for the exponential, the monomolecular model has one equilibrium point, 
whose stability is entirely determined by the sign of 𝛽. 
 
Exercise 4: To begin with, we plot the flow field, several trajectories, and identify the 
equilibria for the case 𝛼 = 2, 𝛽 = 1: 

 

> vonBertalanffy.2.flowField <- flowField(vonBertalanffy,  
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+ x.lim = c(0, 5), y.lim = c(-1, 10), parameters = c(2, 1), 

+ points = 21, system = "one.dim", add = FALSE) 

> grid() 

> vonBertalanffy.2.nullclines <- nullclines(vonBertalanffy, 

+ x.lim = c(0, 5), y.lim = c(-1, 10), parameters = c(2, 1), 

+ points = 1000, system = "one.dim") 

> vonBertalanffy.2.trajectory <- trajectory(vonBertalanffy, 

+ y0 = c(1, 4, 7, 10), t.end = 5, parameters = c(2, 1), 

+ system = "one.dim") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It appears there are two equilibria for this model; 𝑦∗ = 0 and 𝑦∗ = 8. We can find the 
equilibrium point’s general location by setting the derivative to zero: 
 

𝛼𝑦∗
2/3

− 𝛽𝑦∗ = 0 ⟹ 𝑦∗
2/3

(𝛼 − 𝛽𝑦∗
1/3

) = 0 ⟹ 𝑦∗ = 0, , (
𝛼

𝛽
)

3

. 

 
Clearly, in our case this would correspond to 𝑦∗ = 0 and 𝑦∗ = 8. 
 
As always, we can check stability using the phase portrait for our specific case: 

 

> vonBertalanffy.2.phasePortrait <- 

+ phasePortrait(vonBertalanffy, y.lim = c(-2, 10), 
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+ parameters = c(2, 1), points = 10) 

> grid() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So it seems 𝑦∗ = 0 will be unstable, but 𝑦∗ = 8 stable. 
 
Alternatively, we can use perturbation analysis: 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

=
2

3
𝛼𝑦∗

−1/3
− 𝛽. 

 
Thus, if 𝑦∗ = (𝛼/𝛽)3 then we have: 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

=
2

3
𝛼 [(

𝛼

𝛽
)

3

]

−1/3

− 𝛽 =
2

3
𝛼 (

𝛽

𝛼
) − 𝛽 = −

1

3
𝛽. 

 
So provided 𝛽 > 0 (which should always be the case) this point will be stable. We face 

a problem however for the case 𝑦∗ = 0 since 𝑦∗
−1/3

 will be undefined. However, we can 
make a somewhat hand waving argument that provided   >   (which, again, it should 
always be): 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

⟶ ∞ as 𝑦∗ ⟶ 0. 
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Thus making 𝑦∗ = 0 unstable. In spite of this, the phase portrait may be a better 
method here. 
 
We can check our results using stability and verify our conclusions above: 

 

> vonBertalanffy.stability.1 <- stability(vonBertalanffy, 

+ y.star = 0, parameters = c(2, 1), system = "one.dim") 

 

Discriminant: 429.8869   Classification: Unstable 

> vonBertalanffy.stability.2 <- stability(vonBertalanffy, 

+ y.star = 8, parameters = c(2, 1), system = "one.dim") 

 

Discriminant: -0.3333333   Classification: Stable 

 

Exercise 5: We first produce a derivative function for this exercise: 

 

exercise5 <- function(t, y, parameters){ 

  dy <- sin(y) 

  list(dy) 

} 

 

From this, we can plot the velocity field, identify the equilbria and add several 
trajectories for the requested range: 
 
> exercise5.flowField <- flowField(exercise5, x.lim = c(0, 

+ 10), y.lim = c(-2*pi, 2*pi), points = 21, system = 

+ "one.dim", add = FALSE, xlab = "t") 

> grid() 

> exercise5.nullclines <- nullclines(exercise5, x.lim = c(0, 

+ 10), y.lim = c(-2*pi - 1, 2*pi + 1), points = 100, 

+ system = "one.dim") 

> exercise5.trajectory <- trajectory(exercise5, y0 = c(-6, 

+ -2, -1, 1, 2, 4, 5), t.end = 10, system = "one.dim") 
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It appears we have located five equilibria; seemingly at the points 𝑦∗ = 𝜋𝑛 for 𝑛 an 
integer. We can verify this by setting the derivative to zero: 
 

sin 𝑦∗ = 0 ⟹ 𝑦∗ = 𝜋𝑛,   𝑛 ∈ ℕ, 
 
as expected. To determine their stability we can first use the phase portrait: 
 
> exercise5.phasePortrait <- phasePortrait(exercise5, 

+ y.lim = c(-2*pi - 1, 2*pi + 1), points = 10) 

> grid() 
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This suggests that the points 𝑦∗ = 2𝜋𝑛 will be unstable, but 𝑦8 = (2𝑛 + 1)𝜋 will be 
stable. We can verify this using the Taylor approach: 
 

(
𝜕𝑓

𝜕𝑦
)|

𝑦=𝑦∗

= cos 𝑦∗ {
1 ∶ 𝑦∗ = 2𝜋𝑛,        

−1 ∶ 𝑦∗ = (2𝑛 + 1)𝜋.
 

 
Finally, we use stability to demonstrate this for the points 𝑦∗ = 0 and 𝑦∗ = 𝜋 as 
examples: 
 
> exercise5.stability.1 <- stability(exercise5, y.star = 0, 

+ system = "one.dim") 

 

Discriminant: 1   Classification: Unstable 

> exercise5.stability.2 <- stability(exercise5, y.star = pi, 

+ system = "one.dim") 

 

Discriminant: -1   Classification: Stable 

 

Exercise 6: To reproduce the velocity field, nullcline and trajectory plot, we can use 
the following code: 
 

> example.2d.flowField <- flowField(lotkaVolterra, x.lim = 
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+ c(-1, 5), y.lim = c(-1, 5), parameters = c(1, 1, 1, 1), 

+ points = 19, add = FALSE) 

> grid() 

> example.2d.nullclines <- nullclines(lotkaVolterra, x.lim = 

+ c(-1, 5), y.lim = c(-1, 5), parameters = c(1, 1, 1, 1)) 

> y0 <- matrix(c(1, 2, 2, 2, 3, 4, -1, 4, -0.5, -1, 0.25, 

+ -1), ncol = 2, nrow = 6, byrow = TRUE) 

> example.2d.trajectory <- trajectory(lotkaVolterra, y0 = 

+ y0, t.end = 10, parameters = c(1, 1, 1, 1)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To perform the classification of the equilibria, we employ stability: 

 

> example.2d.stability.1 <- stability(lotkaVolterra, 

+ y.star = c(0, 0), parameters = c(1, 1, 1, 1)) 

 

T: 0 Delta: -1 Discriminant: 4 Classification: Saddle 

> example.2d.stability.2 <- stability(lotkaVolterra, 

+ y.star = c(1, 1), parameters = c(1, 1, 1, 1)) 

 

T: 0 Delta: 1 Discriminant: -4 Classification: Centre 

focus 
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Finally, we can plot the dependent variables against the independent using 
numericalSolution: 
 

> example.2d.numericalSolution <- 

+ numericalSolution(lotkaVolterra, y0 = c(3, 4), t.end = 25, 

+ parameters = c(1, 1, 1, 1), type = "one", colour = 

+ c("red", "blue")) 

> legend("topright", legend = c("x", "y"), lty = c(1, 1), 

+ col = c("red", "blue")) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Exercise 7: We now proceed through each of these example linear two dimensional 
autonomous ODE systems: 
 
a) Firstly, we identify the nullclines by setting the derivatives to zero: 
 

𝑥 ∶  −𝑥 = 0 ⟹ 𝑥 = 0, 
  𝑦 ∶  −4𝑥 = 0 ⟹ 𝑥 = 0. 

 
Thus the nullclines are here the same. This means we have a line of equilibrium points 
given by 𝑥 = 0. Examining the Jacobian, we see this is because we have a singular case 
where det 𝐉 = 0: 
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𝐉 = (
−1 0
−4 0

). 

 

Here, if we use stability we will be unable to classify the equilibrium points along 
𝑥 = 0 (taking (0,0) as an example): 
 
> example3.stability <- stability(example3, y.star = c(0, 

+ 0)) 

 

T: -1 Delta: 0 Discriminant: 1 Classification: 

Indeterminate 

 
However, if we plot the velocity field and several trajectories, we can identify that the 
equilibrium points are stable: 
 

> example3.flowField <- flowField(example3, x.lim = c(-3, 

+ 3), y.lim = c(-5, 5), points = 19, add = FALSE) 

> grid() 

> example3.nullclines <- nullclines(example3, x.lim = c(-3, 

+ 3), y.lim = c(-5, 5)) 

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 3, -4, -3, -4), 

+ ncol = 2, nrow = 6, byrow = TRUE) 

> example3.trajectory <- trajectory(example3, y0 = y0, 

+ t.end = 10) 
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b) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶  𝑥 + 2𝑦 = 0 ⟹ 𝑦 = −𝑥/2, 
 𝑦 ∶  −2𝑥 + 𝑦 = 0 ⟹ 𝑦 = 2𝑥. , , 

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example6.flowField <- flowField(example6, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 

> grid() 

> example6.nullclines <- nullclines(example6, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 2, -2, -2, -2), 

+ ncol = 2, nrow = 6, byrow = TRUE) 

> example6.trajectory <- trajectory(example6, y0 = y0, t.end 

= 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Now from the equations of the nullclines or from the plot we can see that the (only) 
equilibrium point is at (0,0), and that it appears to be an unstable focus. 
 
To confirm this we use the Jacobian: 
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𝐉 = (
1 2

−2 1
), 

                      ⟹ 𝑇 = 2, Δ = 5, 𝑇2 − 4Δ = −16. 
 

Thus (0,0) is an unstable focus. We can also perform this analysis using stability: 

 

> example6.stability <- stability(example6, y.star = c(0,  

+ 0)) 

T: 2   Delta: 5   Discriminant: -16   Classification: 

Unstable focus 

 

c) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶  −𝑥 − 𝑦 = 0 ⟹ 𝑦 = −𝑥, 
 𝑦 ∶  4𝑥 + 𝑦 = 0 ⟹ 𝑦 = −4𝑥. 

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example7.flowField <- flowField(example7, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 

> grid() 

> example7.nullclines <- nullclines(example7, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, 0, 0.5, 2, -2, -2, -2), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> example7.trajectory <- trajectory(example7, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines or from the plot we can see that the (only) 
equilibrium point is at (0,0), and that it appears to be a centre. To confirm this we use 
the Jacobian: 
 

𝐉 = (
−1 −1
4 1

), 

                  ⟹ 𝑇 = 0, Δ = 3, 𝑇2 − 4Δ = −12. 
 

Thus (0,0) is a centre. We can also perform this analysis using stability: 

 

> example7.stability <- stability(example7, y.star = c(0,  

+ 0)) 

T: 0   Delta: 3   Discriminant: -12   Classification: Centre 

focus 

 

d) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶  −2𝑥 + 3𝑦 = 0 ⟹ 𝑦 = 2𝑥/3, 
  𝑦 ∶  7𝑥 + 6𝑦 = 0 ⟹ 𝑦 = −7𝑥/6.   

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example9.flowField <- flowField(example9, x.lim = c(-3, 
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+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 

> grid() 

> example9.nullclines <- nullclines(example9, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, -3, 2, 2, -2, -2, -2), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> example9.trajectory <- trajectory(example9, y0 = y0, 

+ t.end = 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Now from the equations of the nullclines or from the plot we can see that the (only) 
equilibrium point is at (0,0), and that it appears to be a saddle point. To confirm this 
we use the Jacobian: 
 

𝐉 = (
−2 3
7 6

), 

                      , , , ⟹ 𝑇 = 4, Δ = −33, 𝑇2 − 4Δ = 148. 
 

Thus (0,0) is a saddle. We can also perform this analysis using stability: 

 

> example9.stability <- stability(example9, y.star = c(0,  

+ 0)) 

 

T: 4   Delta: -33   Discriminant: 148   Classification: 
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Saddle 

 

Exercise 8: We now proceed through each of these example non-linear two 
dimensional autonomous ODE systems: 
 
a) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶  −𝑥3 + 𝑥 = 0 ⟹ 𝑥(𝑥 − 1)(𝑥 + 1) = 0 ⟹ 𝑥 = 0, ,1, , −1, 
  𝑦 ∶  −2𝑦 = 0 ⟹ 𝑦 = 0.                                                                , ,,     

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example10.flowField <- flowField(example10, x.lim = c(-2, 

+ 2), y.lim = c(-2, 2), points = 17, add = FALSE) 

> grid() 

> example10.nullclines <- nullclines(example10, x.lim = 

+ c(-3, 3), y.lim = c(-3, 3), points = 200) 

> y0 <- matrix(c(1.5, 2, -0.5, 2, 0.5, -2, -1.5, 2, 1.5, -2, 

+ -1.5, -2), ncol = 2, nrow = 6, byrow = TRUE) 

> example10.trajectory <- trajectory(example10, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines (and from the plot) we can see that the 
equilibrium points are at (0,0), (1,0) and (−1,0). To classify them we use the Jacobian: 
 

𝐉 = (−1 + 3𝑥∗
2 0

0 −2
). 

 

Thus we have: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(0,0) 2 1 −3 Stable node 

(1,0) −4 16 0 Saddle 

(−1,0) −4 16 0 Saddle 

 

Finally, we confirm this using stability: 

 

> example10.stability.1 <- stability(example10, 

+ y.star = c(0, 0)) 

 

T: -3   Delta: 2   Discriminant: 1   Classification: Stable 

node 

> example10.stability.2 <- stability(example10, 

+ y.star = c(1, 0), h = 1e-8) 

 

T: 1.004952e-08   Delta: -4   Discriminant: 16 

Classification: Saddle 

> example10.stability.3 <- stability(example10, 

+ y.star = c(-1, 0), h = 1e-8) 

 

T: -2.325717e-08   Delta: -4   Discriminant: 16 

Classification: Saddle 

 

Note that this example provides the first case we’ve come across where stability is 
unable to precisely determine the Jacobian. This can sometimes be the case for 
particularly tricky non-linear systems. 
 
b) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶ 2 − 𝑥2 − 𝑦2 = 0 ⟹ 𝑥2 + 𝑦2 = 2, 

𝑦 ∶ 𝑥2 − 𝑦2 = 0 ⟹ 𝑦 = ±𝑥.                  

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example13.flowField <- flowField(example13, x.lim = c(-5, 

+ 5), y.lim = c(-5, 5), points = 25, add = FALSE) 

> grid() 
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> example13.nullclines <- nullclines(example13, x.lim = 

+ c(-5, 5), y.lim = c(-5, 5), points = 200) 

> y0 <- matrix(c(2, 2, -3, 0, 0, 2, -1, 4, 4, 4, -2, -3, 2, 

+ -3), ncol = 2, nrow = 7, byrow = TRUE) 

> example13.trajectory <- trajectory(example13, y0 = y0, 

+ t.end = 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Now from the equations of the nullclines (and from the plot) we can see that the 
equilibrium points are at (1,1), (1, −1), (−1,1) and (−1, −1). To classify 
them we use the Jacobian: 
 

𝐉 = (
−2𝑥∗ −2𝑦∗

2𝑥∗ −2𝑦∗
). 

 

Thus we have: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(1,1) 8 −16 −4 Stable focus 

(1, −1) −8 32 0 Saddle 

(−1,1) −8 32 0 Saddle 

(−1, −1) 8 −16 4 Unstable focus 
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Finally, we confirm this using stability: 

 

> example13.stability.1 <- stability(example13, y.star = 

+ c(1, 1)) 

 

T: -4   Delta: 8   Discriminant: -16 

Classification: Stable focus 

> example13.stability.2 <- stability(example13, y.star =  

+ c(1, -1)) 

 

T: 0   Delta: -8   Discriminant: 32 

Classification: Saddle 

> example13.stability.3 <- stability(example13, y.star = 

+ c(-1, 1)) 

 

T: 0   Delta: -8   Discriminant: 32 

Classification: Stable focus 

> example13.stability.4 <- stability(example13, y.star = 

+ c(-1, -1)) 

 

T: 4   Delta: 8   Discriminant: -16 

Classification: Unstable focus 

 

Again, we see in some instances here that stability was unable to perfectly determine 
the value of the trace. 
 
c) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶ 𝑥2 − 𝑦 − 10 = 0 ⟹ 𝑦 = 𝑥2 − 10,                                             

𝑦 ∶ −3𝑥2 + 𝑥𝑦 = 0 ⟹ 𝑥(−3𝑥 + 𝑦) = 0 ⟹ 𝑥 = 0 or 𝑦 = 3𝑥. 

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example14.flowField <- flowField(example14, x.lim = c(-20, 

+ 20), y.lim = c(-20, 20), points = 25, add = FALSE) 

> grid() 

> example14.nullclines <- nullclines(example14, x.lim = c(-

20, 20), y.lim = c(-20, 20), points = 200) 

> y0 <- matrix(c(-15, 10, 10, 20, 0, 5, 0, -15), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> example14.trajectory <- trajectory(example14, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines, substituting one into the other, we can see 
that the equilibrium points are at (0, −10), (5,15) and (−2, −6). To classify them we 
use the Jacobian: 
 

𝐉 = (
2𝑥∗ −1

−6𝑥∗ + 𝑦∗ 𝑥∗
). 

 

Thus we have: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(0, −10) −10 40 0 Saddle 

(5,15) 35 85 15 Unstable node 

(−2, −6) 14 −20 −6 Stable focus 

 

Finally, we confirm this using stability: 

 

> example14.stability.1 <- stability(example14, 

+ y.star = c(0, -10)) 

 

T: 1.065814e-07   Delta: -10   Discriminant: 40 

Classification: Saddle 
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> example14.stability.2 <- stability(example14, 

+ y.star = c(5, 15)) 

 

T: 15   Delta: 35   Discriminant: 85   Classification: 

Unstable node 

> example14.stability.3 <- stability(example14, 

+ y.star = c(-2, -6)) 

 

T: -6   Delta: 14   Discriminant: -20   Classification: 

Stable focus 

 

d) We begin by identifying the nullclines by setting the derivatives to zero: 
 

𝑥 ∶ 𝑥2 − 3𝑥𝑦 + 2𝑥 = 0 ⟹ 𝑥(𝑥 − 3𝑦 + 2) = 0 ⟹ 𝑥 = 0 or 𝑦 =
𝑥 + 2

3
, 

𝑦 ∶ 𝑥 + 𝑦 − 1 = 0 ⟹ 𝑦 = 1 − 𝑥.                                                                        

 

We now plot the velocity field, nullclines and several trajectories: 

 

> example15.flowField <- flowField(example15, x.lim = c(-5, 

+ 5), y.lim = c(-5, 5), points = 15, add = FALSE) 

> grid() 

> example15.nullclines <- nullclines(example15, x.lim = 

+ c(-5, 5), y.lim = c(-5, 5), points = 100) 

> y0 <- matrix(c(-5, 1, 1, 0, 1, -3, -2, -2), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> example15.trajectory <- trajectory(example15, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines, substituting one into the other, we can see 
that the equilibrium points are at (0,1), (1/4,3/4). To classify them we use the 
Jacobian: 
 

𝐉 = (
2𝑥∗ − 3𝑦∗ + 2 −3𝑥∗

1 1
). 

 

Thus we have: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(0,1) −1 4 0 Saddle 

(1/4,3/4) 1 −2.4375 1.25 Unstable focus 

 

Finally, we confirm this using stability: 

 

> example15.stability.1 <- stability(example15, 

+ y.star = c(0, 1)) 

 

T: 3.922529e-09   Delta: -1   Discriminant: 4 

Classification: Saddle 

> example15.stability.2 <- stability(example15, 
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+ y.star = c(0.25, 0.75)) 

 

T: 1.25   Delta: 1   Discriminant: -2.4375   Classification: 

Unstable focus 

 

Exercise 9: We first produce a derivative function for this exercise: 

 

exercise9 <- function(t, y, parameters){ 

  x <- y[1] 

  y <- y[2] 

  dy    <- numeric(2) 

  dy[1] <- 6*x - 3*y 

  dy[2] <- 2*x - y 

  list(dy) 

} 

 

Next, we identify the nullclines by setting the derivatives to zero: 
 

𝑥 ∶ 6𝑥 − 3𝑦 = 0 ⟹ 𝑦 = 2𝑥, 

        𝑦 ∶ 4𝑥 + 3𝑦 = 0 ⟹ 𝑦 = −4𝑥/3. 

 

We now plot the velocity field, nullclines and several trajectories: 

 

> exercise9.flowField <- flowField(exercise9, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 

> grid() 

> exercise9.nullclines <- nullclines(exercise9, x.lim = 

+ c(-3, 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, 0, 0.5, 2, -2, -2, -2), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> exercise9.trajectory <- trajectory(exercise9, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines or from the plot we can see that the (only) 
equilibrium point is at (0,0), and that it appears to be an unstable focus. To confirm 
this we use the Jacobian: 
 

𝐉 = (
6 −3
4 3

), 

                           ⟹ 𝑇 = 9, Δ = −33, 𝑇2 − 4Δ = 148. 
 

Thus (0,0) is a saddle. We can also perform this analysis using stability: 

 

> exercise9.stability <- stability(exercise9, y.star = c(0, 

+ 0)) 

 

T: 9   Delta: 30   Discriminant: -39   Classification: 

Unstable focus 

 

Exercise 10: We first produce a derivative function for this exercise: 

 

exercise10 <- function(t, y, parameters){ 

  x <- y[1] 

  y <- y[2] 

  dy    <- numeric(2) 
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  dy[1] <- x^2 + y^2 - 13 

  dy[2] <- x*y – 2*x – 2*y + 4 

  list(dy) 

} 

 

Next, we identify the nullclines by setting the derivatives to zero: 
 

𝑥 ∶ 𝑥2 + 𝑦2 − 13 = 0 ⟹ 𝑥2 + 𝑦2 = 13,                                     

                    𝑦 ∶ 𝑥𝑦 − 2𝑥 − 2𝑦 + 4 = 0 ⟹ (𝑥 − 2)(𝑦 − 2) = 0 ⟹ 𝑥 = 2 or 𝑦 = 2. 

 

We now plot the velocity field, nullclines and several trajectories: 

 

> exercise10.flowField <- flowField(exercise10, x.lim = c(- 

5, + 5), y.lim = c(-5, 5), points = 15, add = FALSE) 

> grid() 

> exercise10.nullclines <- nullclines(exercise10, x.lim = 

+ c(-5, 5), y.lim = c(-5, 5), points = 100) 

> y0 <- matrix(c(-5, 1, 1, 0, 1, -3, -2, -2, 3, 4), ncol = 

+ 2, nrow = 5, byrow = TRUE) 

> exercise10.trajectory <- trajectory(exercise10, y0 = y0, 

+ t.end = 10) 
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Now from the equations of the nullclines, substituting one into the other, we can see 
that the equilibrium points are at (2,3), (2, −3), (3,2) and (−3,2). To classify them we 
use the Jacobian: 
 

𝐉 = (
2𝑥∗ 2𝑦∗

𝑦∗ − 2 𝑥∗ − 2
). 

 
Thus we have: 
 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(2,3) −6 40 4 Saddle 

(2, −3) −30 85 4 Saddle 

(3,2) 6 −20 7 Unstable node 

(−3,2) 30 1 −11 Stable node 

 
Finally, we confirm this using stability: 
 
> exercise10.stability.1 <- stability(exercise10, y.star = 

+ c(2, 3)) 

 

T: 4 Delta: -6 Discriminant: 40 Classification: Saddle 

> exercise10.stability.2 <- stability(exercise10, y.star = 

+ c(2, -3)) 

 

 

T: 4 Delta: -30 Discriminant: 136 Classification: 

Saddle 

> exercise10.stability.3 <- stability(exercise10, y.star = 

+ c(3, 2)) 

 

T: 7 Delta: 6 Discriminant: 25 Classification: 

Unstable node 

> exercise10.stability.4 <- stability(exercise10, y.star = 

+ c(-3, 2)) 

 

T: -11 Delta: 30 Discriminant: 0.9999998 

Classification: Stable node 

 
Exercise 11: Here, start by identifying the nullclines by setting the derivatives to zero 
(𝛼 ≠ 0 so there’s no problem dividing through): 
 

𝑥 ∶  −𝑥2 + 𝛼𝑥𝑦 = 0 ⟹ 𝑥(−𝑥 + 𝛼𝑦) = 0 ⟹ 𝑥 = 0 or 𝑦 =
𝑥

𝛼
, 

𝑦 ∶ 𝑥2 − 𝛼𝑥𝑦 − 𝑦 = 0 ⟹ 𝑦 =
𝑥2

𝛼𝑥 + 1
.                                            

 

We now plot the velocity field, nullclines and add several trajectories: 
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> lindemannMechanism.flowField <- 

+ flowField(lindemannMechanism, x.lim = c(-1, 5), y.lim = 

+ c(-1, 5), parameters = 1, points = 15, add = FALSE) 

> grid() 

> lindemannMechanism.nullclines <- 

+ nullclines(lindemannMechanism, x.lim = c(-1, 5), y.lim = 

+ c(-1, 5), parameters = 1, points = 500) 

> y0 <- matrix(c(1, 5, 4, 3, 2, 3, 4, 1), ncol = 2, nrow = 

+ 4, byrow = TRUE) 

> lindemannMechanism.trajectory <- 

+ trajectory(lindemannMechanism, y0 = y0, t.end = 10, 

+ parameters = 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Now from the equations of the nullclines, we can see that the only equilibrium point 
is at (0,0). To classify it we use the Jacobian: 
 

𝐉 = (
−2𝑥∗ + 𝛼𝑦∗ 𝛼𝑥∗

2𝑥∗ − 𝛼𝑦∗ −1
). 

 
Thus for (0,0) we have Δ = 0 and we are unable to determine stability. However, 
referring back to our earlier plot we can indeed see that (0,0) is stable. Again, this 
shows how plots can be useful when the Jacobian approach fails. 
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Exercise 12: First, note that the restriction to a population size less than 10 simply 
means that 𝑥 + 𝑦 ≤ 10 at all times. Next, identify the nullclines by setting the 
derivatives to zero: 
 

𝑥 ∶  −𝛽𝑥𝑦 = 0 ⟹ 𝑥 = 0 or 𝑦 = 0,                                   
 , , ,       𝑦 ∶ 𝛽𝑥𝑦 − 𝜈𝑦 = 0 ⟹ 𝑦(𝛽𝑥 − 𝜈) = 0 ⟹ 𝑦 = 0 or 𝑥 = 𝜈/𝛽. 

 
So we now have two cases, based upon whether the nullcline 𝑥 = 𝜈/𝛽 takes a value 
less than 10 or not. Before we plot these two cases, we will identify the equilibrium 
points and classify them. 
 
From the equations of the nullclines, we can see that we have a line of equilibrium 
points given by 𝑦 = 0. To classify them we turn to the Jacobian: 
 

𝐉 = (
−𝛽𝑦∗ −𝛽𝑥∗

𝛽𝑦∗ 𝛽𝑥∗ − 𝜈
). 

 
So if 𝑦∗ = 0 we have: 
 

𝐉 = (
0 −𝛽𝑥∗

0 𝛽𝑥∗ − 𝜈
). 

 
and Δ = 0, meaning we cannot determine stability using this method. We will have to 
use our following plots instead. We can confirm that the Taylor approach fails using 
stability (taking the example 𝛽 = 1, 𝜈 = 3): 
 

> SIR.stability <- stability(SIR, y.star = c(0, 0), 

+ parameters = c(1, 3)) 

 

T: -3   Delta: 0   Discriminant: 9   Classification: 

Indeterminate 

 

So, let us plot first the case where 𝛽 = 1, 𝜈 = 3, so that the nullcline does lie in the 
admissible region of the plane: 
 

> SIR.flowField <- flowField(SIR, x.lim = c(0, 5), y.lim = + 

c(0, 5), parameters = c(1, 3), points = 15, add = FALSE) 

> grid() 

> SIR.nullclines <- nullclines(SIR, x.lim = c(-1, 5), 

+ y.lim = c(-1, 5), parameters = c(1, 3), points = 500) 

> y0 <- matrix(c(4, 2, 5, 4, 1, 5), ncol = 2, nrow = 3, 

+ byrow = TRUE) 

> SIR.trajectory <- trajectory(SIR, y0 = y0, t.end = 10, 

+ parameters = c(1, 3)) 
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Thus, it appears here that the equilibrium points given by 𝑦 = 0 will be stable. Now 
however, we plot the velocity field, nullclines and trajectories in the case where 𝛽 =
1 and 𝜈 = 12, such that the nullcline 𝑥 = 𝜈/𝛽 does not lie in the admissible region of 
the plane: 
 

> SIR.flowField <- flowField(SIR, x.lim = c(0, 5), y.lim = + 

c(0, 5), parameters = c(1, 12), points = 15, add = FALSE) 

> grid() 

> SIR.nullclines <- nullclines(SIR, x.lim = c(-1, 5), 

+ y.lim = c(-1, 5), parameters = c(1, 12), points = 500) 

> y0 <- matrix(c(4, 2, 5, 4, 1, 5), ncol = 2, nrow = 3, 

+ byrow = TRUE) 

> SIR.trajectory <- trajectory(SIR, y0 = y0, t.end = 10, 

+ parameters = c(1, 12)) 
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Again it appears that the equilibrium points will be stable. Thus, biologically, our 
analysis here clearly means that regardless of the initial condition, we eventually 
approach a disease free equilibrium. However, when 𝜈/𝛽 < 10, the value of 𝑦 initially 
increases. This is indicative of an epidemic. Indeed, this condition on 𝛽 and 𝜈 can be 
generalised to establish when an epidemic is possible. 
 
Exercise 13: We begin by identifying the nullclines: 
 

𝑥 ∶ 𝜆𝑥 − 𝜖𝑥𝑦 = 0 ⟹ 𝑥(𝜆 − 𝜖𝑦) = 0 ⟹ 𝑥 = 0 or 𝑦 = 𝜆/𝜖, 
 𝑦 ∶ 𝜂𝑥𝑦 − 𝛿𝑦 = 0 ⟹ 𝑦(𝜂𝑥 − 𝛿) = 0 ⟹ 𝑦 = 0 or 𝑥 = 𝛿/𝜂. 

 
Next, we plot the velocity field, nullclines and several trajectories, for the case 𝜆 = 2, 
𝜖 = 1, 𝜂 = 3 and 𝛿 = 2: 

 

> lotkaVolterra.flowField <- flowField(lotkaVolterra, 

+ x.lim = c(-1, 5), y.lim = c(-1, 10), parameters = c(2, 1, 

+ 3, 2), points = 19, add = FALSE) 

> grid() 

> lotkaVolterra.nullclines <- nullclines(lotkaVolterra, 

+ x.lim = c(-1, 5), y.lim = c(-1, 10), parameters = c(2, 1, 

+ 3, 2), points = 500) 

> y0 <- matrix(c(1, 2, 2, 2, 3, 4), ncol = 2, nrow = 3, 
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+ byrow = TRUE) 

> lotkaVolterra.trajectory <- trajectory(lotkaVolterra, y0 = 

+ y0, t.end = 10, parameters = c(2, 1, 3, 2)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Now from the equations of the nullclines, we can see that there are two equilibrium 
points; at (0,0) and (𝛿/𝜂, 𝜆/𝜖). To classify them we use the Jacobian: 
 

𝐉 = (
𝜆 − 𝜖𝑦∗ −𝜖𝑥∗

𝜂𝑦∗ 𝜂𝑥∗ − 𝛿
). 

 
Thus we have: 
 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(0,0) −𝛿𝜆 < 0 N/A N/A Saddle 

(𝛿/𝜂, 𝜆/𝜖) 𝛿𝜆 > 0 −4𝛿𝜆 < 0 0 Centre 

 
Indeed, looking back at our earlier plot we can see this is the case. 
 

Finally, we verify this result for our specific case using stability: 

 

> lotkaVolterra.stability.1 <- stability(lotkaVolterra, 

+ y.star = c(0, 0), parameters = c(2, 1, 3, 2)) 
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T: 0   Delta: -4   Discriminant: 16   Classification: Saddle 

> lotkaVolterra.stability.2 <- stability(lotkaVolterra, 

+ y.star = c(2/3, 2), parameters = c(2, 1, 3, 2)) 

 

T: 0   Delta: 4   Discriminant: -16   Classification: Centre 

 

Biologically, this simply means that no matter what the initial starting values, 
according to this model the numbers of predator and prey will oscillate. 
 

Exercise 14: We begin by identifying the 𝑥-nullclines: 
 

𝑟1𝑥 (
𝐾1 − 𝑥 − 𝛼12𝑦

𝐾1
) = 0 ⟹ 𝑥 = 0 or 𝐾1 − 𝑥 − 𝛼12𝑦 = 0, 

                                   ⟹ 𝑥 = 0 or 𝑦 =
𝐾1 − 𝑥

𝛼12
. 

 
And now the 𝑦-nullclines: 
 

𝑟2𝑦 (
𝐾2 − 𝑦 − 𝛼21𝑥

𝐾2
) = 0 ⟹ 𝑦 = 0 or 𝐾2 − 𝑦 − 𝛼21𝑥 = 0, 

                                         ⟹ 𝑦 = 0 or 𝑦 = 𝐾2 − 𝛼21𝑥. 
 
Here things get slightly tricky; there are four cases based on how the nullclines sit 
relative to each other. The lines: 
 

𝑦 =
𝐾1 − 𝑥

𝛼12
 and 𝑦 = 𝐾2 − 𝛼21𝑥, 

 
can cross either way around, or one can lie completely above the other. To identify 
the conditions for each case we examine the intercepts for each axis. For example, for 
the 𝑦-nullcline to lie completely below the 𝑥-nullcline it must cross both axes first, i.e.: 
 

𝐾2 <
𝐾1

𝛼12
  and 

𝐾2

𝛼21
< 𝐾1. 

 
Performing similar calculations for each possibility we can draw up the four cases, 
and plot the velocity field, nullclines and several trajectories to illustrate it: 
 
Case 1: The 𝑦-nullcline lies completely below the 𝑥-nullcline (above): 
 

𝐾2 <
𝐾1

𝛼12
  and 

𝐾2

𝛼21
< 𝐾1. 

 
Take 𝐾1 = 8, 𝐾2 = 3, 𝛼12 = 0.5, 𝛼21 = 0.5, 𝑟1 = 𝑟2 = 1: 
 
> competition.1.flowField <- flowField(competition, x.lim = 

+ c(0, 20), y.lim = c(0, 20), parameters = c(1, 8, 0.5, 1, 
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+ 3, 0.5), points = 19, add = FALSE) 

> grid() 

> competition.1.nullclines <- nullclines(competition, 

+ x.lim = c(-1, 20), y.lim = c(-1, 20), parameters = c(1, 8, 

+ 0.5, 1, 3, 0.5), points = 500) 

> y0 <- matrix(c(1, 3, 3, 2, 8, 1, 8, 8, 2, 12), ncol = 2, 

+ nrow = 5, byrow = TRUE) 

> competition.1.trajectory <- trajectory(competition, y0 = 

+ y0, t.end = 10, parameters = c(1, 8, 0.5, 1, 3, 0.5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case 2: The 𝑥-nullcline lies completely below the 𝑦-nullcline: 
 

𝐾2 >
𝐾1

𝛼12
  and 

𝐾2

𝛼21
> 𝐾1. 

 
Take 𝐾1 = 8, 𝐾2 = 8, 𝛼12 = 0.5, 𝛼21 = 0.75, 𝑟1 = 𝑟2 = 1: 
 
> competition.2.flowField <- flowField(competition, x.lim = 

+ c(0, 20), y.lim = c(0, 20), parameters = c(1, 3, 0.5, 1, 

+ 8, 0.5), points = 19, add = FALSE) 

> grid() 

> competition.2.nullclines <- nullclines(competition, 

+ x.lim = c(-1, 20), y.lim = c(-1, 20), parameters = c(1, 3, 

+ 0.5, 1, 8, 0.5), points = 500) 
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> y0 <- matrix(c(1, 3, 3, 2, 8, 1, 8, 8, 2, 12), ncol = 2, 

+ nrow = 5, byrow = TRUE) 

> competition.2.trajectory <- trajectory(competition, y0 = 

+ y0, t.end = 10, parameters = c(1, 3, 0.5, 1, 8, 0.5)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 3: The 𝑥-nullcline cuts the 𝑥-axis first, but the 𝑦-axis second: 
 

𝐾2 >
𝐾1

𝛼12
  and 

𝐾2

𝛼21
< 𝐾1. 

 
Take 𝐾1 = 8, 𝐾2 = 8, 𝛼12 = 2, 𝛼21 = 2, 𝑟1 = 𝑟2 = 1: 
 
> competition.3.flowField <- flowField(competition, x.lim = 

+ c(0, 20), y.lim = c(0, 20), parameters = c(1, 8, 2, 1, 

+ 8, 2), points = 19, add = FALSE) 

> grid() 

> competition.3.nullclines <- nullclines(competition, 

+ x.lim = c(-1, 20), y.lim = c(-1, 20), parameters = c(1, 8, 

+ 2, 1, 8, 2), points = 500) 

> y0 <- matrix(c(1, 3, 3, 2, 8, 1, 8, 4, 2, 12), ncol = 2, 

+ nrow = 5, byrow = TRUE) 

> competition.3.trajectory <- trajectory(competition, y0 = 

+ y0, t.end = 10, parameters = c(1, 8, 2, 1, 8, 2)) 
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Case 4: The 𝑥-nullcline cuts the 𝑥-axis second, but the 𝑦-axis first: 
 

𝐾2 <
𝐾1

𝛼12
  and 

𝐾2

𝛼21
> 𝐾1. 

 
Take 𝐾1 = 8, 𝐾2 = 8, 𝛼12 = 0.5, 𝛼21 = 0.5, 𝑟1 = 𝑟2 = 1: 
 
> competition.4.flowField <- flowField(competition, x.lim = 

+ c(0, 20), y.lim = c(0, 20), parameters = c(1, 8, 0.5, 1, 

+ 8, 0.5), points = 19, add = FALSE) 

> grid() 

> competition.4.nullclines <- nullclines(competition, 

+ x.lim = c(-1, 20), y.lim = c(-1, 20), parameters = c(1, 

+ 8, 0.5, 1, 8, 0.5), points = 500) 

> y0 <- matrix(c(1, 3, 3, 2, 8, 1, 8, 8, 2, 12), ncol = 2, 

+ nrow = 5, byrow = TRUE) 

> competition.4.trajectory <- trajectory(competition, y0 = 

+ y0, t.end = 10, parameters = c(1, 8, 0.5, 1, 8, 0.5)) 
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From these plots, and from the nullcline formula, it should be fairly evident that we 
always have the three equilibrium points given by: 
 

(0,0),   (𝐾1, 0),   (0, 𝐾2). 
 
However, in cases 3 and 4, we also have a fourth equilibrium point given by the 
intersection of the two nullclines we studied in detail above. To find the location of 
this equilibria, we need to substitute one into the other and perform a little bit of 
algebra. Eventually we find: 
 

1

1 − 𝛼12𝛼21

(𝐾2 − 𝛼21𝐾1, 𝐾1 − 𝛼12𝐾2). 

 
Now, in order to determine the stability of these points, we will not perform the messy 
Jacobian analysis by hand, instead we will refer to our example plots: 
 
 Case 1: The system will be driven to the stable point (𝐾1, 0). The other two 

equilibria are unstable. 
 Case 2: The system will be driven to the stable point (0, 𝐾2). The other two 

equilibria are unstable. 
 Case 3: Depending upon the initial condition, the system will be driven to one of 

(𝐾1, 0) and (0, 𝐾2). The other two equilibria are unstable. 
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 Case 4: The system will be driven to the intersection of the two lines, which we 
computed on the previous page. The other three equilibria are unstable. 

 
Biologically, this all means that only for case 4 is it possible for both species to co-exist 
in a stable manner. Else, one species will always drive the other to extinction. 


