
Package ‘planor’
March 4, 2015

Title Generation of Regular Factorial Designs

Date 2015-03-04

Version 0.2-3

Author Hervé Monod, Annie Bouvier, André Kobilinsky

Description Automatic generation of regular factorial designs, including fractional designs, orthogo-
nal block designs, row-column designs and split-plots.

Maintainer Annie Bouvier <Annie.Bouvier@jouy.inra.fr>

License GPL (>= 2)

Depends methods, conf.design

Encoding UTF-8

URL http://www.inra.fr/miaj/public/logiciels/planor

Collate zzz.R debug.R generic.R designfactors.R keymatrix.R keyring.R
listofkeyrings.R planor.R basep.R randomize.R designkey.R
listofdesignkeys.R planordesign.R makedesignkey.R

LazyLoad yes

R topics documented:
planor-package . 2
alias-methods . 3
as.data.frame.planordesign . 5
bind-methods . 5
designfactors-class . 6
designkey-class . 7
getDesign-methods . 8
keymatrix-class . 9
keyring-class . 10
listofdesignkeys-class . 11
listofkeyrings-class . 12
makedesignkey . 13
pick-methods . 14
planor.design-methods . 15

1

http://www.inra.fr/miaj/public/logiciels/planor

2 planor-package

planor.designkey . 16
planor.factors . 18
planor.harmonize . 19
planor.model . 21
planor.randomize . 22
planordesign-class . 23
regular.design . 24
show-methods . 25
summary-methods . 26

Index 29

planor-package Generation of regular factorial designs, big-package-free version of
planor

Description

A package dedicated to the automatic generation of regular factorial designs, including fractional
designs, orthogonal block designs, row-column designs and split-plots.

Details

The user describes the factors to be controlled in the experiment and the anova model to be used
when the results will be analysed. He or she also specifies the size of the design, that is, the number
of available experimental units. Then planor looks for a design satisfying these specifications and
possibly randomizes it. The core of the algorithm is the search for the key matrix, an integer matrix
which determines the aliasing in the resulting factorial design.

The user may use the function regular.design where all these steps are integrated, and trans-
parent by default. Alternatively, the steps can be decomposed by using successively the functions
planor.factors, planor.model, planor.designkey and planor.design. For the
expert user, the function planor.designkey can give several key matrix solutions. Alias and
summary methods allow to study and compare these solutions, in order to select the most appropri-
ate one for the final design.

Note

• Option planor.max.print can be set to limit the amount of the matrices that are printed,
to planor.max.print rows and columns. Default: 20.

Author(s)

Hervé Monod, Annie Bouvier, André Kobilinsky (Applied Mathematics and Informatics Unit,
INRA UR 341 - Jouy-en-Josas, France. URL: http://www.jouy.inra.fr/mia_eng/)

References

see citation(planor)

http://www.jouy.inra.fr/mia_eng/

alias-methods 3

Examples

DESIGN SPECIFICATIONS
Treatments: four 3-level factors A, B, C, D
Units: 27 in 3 blocks of size 9
Non-negligible factorial terms:
block + A + B + C + D + A:B + A:C + A:D + B:C + B:D + C:D
Factorial terms to estimate:
A + B + C + D
1. DIRECT GENERATION, USING 'regular.design'
mydesign <- regular.design(factors=c("block", LETTERS[1:4]),
nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, randomize=~block/UNITS)

print(mydesign)
DUMMY ANALYSIS
Here we omit two-factor interactions from the model, so they are
confounded with the residuals (but not with ABCD main effects)
set.seed(123)
mydesigndata=mydesign@design
mydesigndata$Y <- runif(27)
mydesign.aov <- aov(Y ~ block + A + B + C + D, data=mydesigndata)
summary(mydesign.aov)
2. STEP-BY-STEP GENERATION, USING 'planor.designkey'
F0 <- planor.factors(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),

block=~block)
M0 <- planor.model(model=~block+(A+B+C+D)^2, estimate=~A+B+C+D)
K0 <- planor.designkey(factors=F0, model=M0, nunits=3^3, max.sol=2)
summary(K0)
mydesign.S4 <- planor.design(key=K0, select=2)

alias-methods Methods for function alias in package planor: summarize the de-
sign properties

Description

Summarize the design properties of an object containing key matrices. Display the design keys
matrix(ces) and the factorial effects confounded with the mean.

Usage

S4 method for signature 'designkey'
alias(object, model, ...)

S4 method for signature 'keymatrix'
alias(object, model, fact, block, ...)

S4 method for signature 'listofdesignkeys'
alias(object, model, ...)

S4 method for signature 'listofkeyrings'
alias(object, model, ...)

4 alias-methods

Arguments

object an object of the class.

model an optional model formula (by default the first model in object) or, when object
is a keymatrix, a matrix representing factorial model terms

fact a character or numeric vector of parent factor names for the columns of object

block a logical vector to identify the columns of object associated with a block
factor

... ignored

Details

• When object is a keymatrix, “alias” displays the key matrix and the factorial effects
confounded with the mean. It prints the unaliased treatment effects, then the groups of aliased
treatment effects, then the treatments effects confounded with block effects and finally the
unaliased block effects, when considering all the factorial terms that are represented in the
model argument, which is set if missing to the identity matrix (main effects only).

Value

• When object is a keymatrix, a vector with (i) the number of unaliased treatment effecs;
(ii) the number of mutually aliased treatment effects; (iii) the number of treatment effects
aliased with block effects.

• When object is a designkey, an invisible NULL.

• When object is a listofkeyrings, the factors, the model and the number of solutions
for each prime in a list indexed by the primes p of the object. Each element is a 3-column
matrix with one row per solution for prime p. The columns give (i) the number of unaliased
treatment effecs; (ii) the number of mutually aliased treatment effects; (iii) the number of
treatment effects aliased with block effects.

• The method is NOT YET IMPLEMENTED on objects of class listofdesignkeys.

See Also

Classes where this method applies: designkey, keymatrix, listofkeyrings.

Examples

Creation of an object of class "listofkeyrings"
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
alias on an object of class "keymatrix"
alias(K0[[1]][[1]])
alias on an object of class "designkey"
alias(K0[1])
alias on an object of class "listofkeyrings"
alias(K0)

as.data.frame.planordesign 5

as.data.frame.planordesign
Coerce a planordesign object to a data frame

Description

Extracts from a planordesign object the slot “design”, i.e the dataframe containing the final
design, and stores the other slots in attributes

Usage

S4 method for signature 'planordesign'
as.data.frame(x, ...)

Arguments

x an object of class planordesign

... Ignored

Value

A data frame with attributes “factors”, “model”, “designkey”, “nunits”, “recursive”.

Examples

Creation of a 'planordesign' object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

P0 <- planor.design(key=K0, select=1)
Convert into a data frame
D0=as.data.frame(P0)

bind-methods Methods for function bind in package planor: bind two objects

Description

Bind two objects of the same class.

Usage

S4 method for signature 'designfactors,designfactors'
bind(x, y)

Arguments

x an object of the first class in the signature.

y an object of the second class in the signature.

6 designfactors-class

Value

An object of the same class as x and y containing their joint content.

Note

Factors of the same name are repeated with distinct names and advertised with a warning.

See Also

Class where this method applies: designfactors

Examples

F1 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,4,2,6))
F2 <- planor.factors(factors=c("block",LETTERS[11:12]), nlevels=c(6,6,4))
Method bind on 'designfactors' objects
F3 <- bind(F1,F2)
names(F3)

designfactors-class
Class designfactors and methods of the class

Description

An S4 class to represent the design factors in the planor package and to store their characteristics.

Objects from the Class

Objects from this class can be created explicitly by calls to planor.factors or implicitly by
functions such as planor.designkey.

Slots

fact.info: a dataframe with one row per factor and with columns progressively storing infor-
mation on the factors, in particular their numbers of levels (nlev).

pseudo.info: a dataframe with one row per pseudofactor and with columns progressively stor-
ing information on the pseudofactors.

levels: a list of numeric or character vectors, with each vector containing the levels of one factor.

Methods

[extract a subset of factors and update all the slots.

bind bind two objects of the class and update all the slots. See bind.

length return the number of factors.

names return the names of the factors.

designkey-class 7

Details

Depending on the context and on the construction stage, fact.info may contain logical columns
that identify the block factors (block), the ordered factors (ordered), the basic factors (basic)
and so on. It may also include columns that store the information on the hierarchy relationships
between factors, if any.

In planor, factors are systematically decomposed into pseudofactors which all have a prime number
of levels and which play a key role in the design generation. The information on the pseudofactors is
stored in the pseudo.info slot. In addition to the columns of fact.info, it contains a column
(called parent) to give the factor that each pseudofactor decomposes.

Author(s)

H. Monod, and A. Bouvier

See Also

Creator function: planor.factors

Examples

F1 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,4,2,6))
F2 <- planor.factors(factors=c("block",LETTERS[11:12]), nlevels=c(4,6,6))
Method bind - see the warning because two factors in F1 and F2 have
the same name
F3 <- bind(F1,F2)
names(F3)
length(F3)
F3@levels
F3.trt <- F3[c(2:5,7,8)]
names(F3.trt)

designkey-class Class designkey and methods of the class

Description

An S4 class to represent a design-key solution in package planor.

Objects from the Class

Objects can be created by extraction from an object of class listofkeyrings or class listofdesignkeys.

Slots

.Data: a single design-key solution, i.e a list with one keymatrix per prime

factors: an object of class designfactors which contains the factors’ specifications

model: a "list" which contains the model and estimate specifications

nunits: the number of units of the design

recursive: a "logical" equal to TRUE if the design has been constructed recursively

8 getDesign-methods

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

alias summarize the design properties. See alias.

planor.design build the design from the design key matrix. See planor.design.

show display the object. see show

summary summarize the design properties. See summary

Author(s)

H. Monod, and A. Bouvier

Examples

Creation of a 'designkey' object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
print(K0[1])

getDesign-methods Methods for function getDesign in package planor: extract a de-
sign

Description

Extract a design data frame from an object

Usage

S4 method for signature 'planordesign'
getDesign(object)

Arguments

object Object of the class

Value

A data frame which contains the design.

See Also

Classes where this method applies: planordesign.

keymatrix-class 9

Examples

Creation of a 'planordesign' object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

P0 <- planor.design(key=K0, select=1)
Method getDesign on the 'planordesign' object
show(getDesign(P0))

keymatrix-class Class keymatrix and methods of the class

Description

An S4 class to represent an elementary key matrix in package planor

Objects from the Class

Objects from this class are usually components of an object of class keyring or designkey

Slots

.Data: a matrix of integers modulo p
p: a prime number

Extends

Class matrix, from data part. Class array, by class "matrix", distance 2. Class structure,
by class "matrix", distance 3. Class vector, by class "matrix", distance 4, with explicit coerce.

Methods

alias gives the aliasing relationships of the key matrix. See alias.
show display the object. See show-method
summary summarize the design properties. See summary

Author(s)

H. Monod, and A. Bouvier

See Also

keyring, designkey

Examples

showClass("keymatrix")
Creation of a 'listofkeyrings' object
K0 <- planor.designkey(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),
model=~block + (A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Method show on a 'keymatrix' of K0
show(K0[[1]][[1]])

10 keyring-class

keyring-class Class keyring and methods of the class

Description

An S4 class to represent a list of design-key matrices which are associated with the same prime and
which represent alternative solutions to the same design specifications.

Objects from the Class

Each component of the structure returned by planor.designkey is a keyring when the case
is not recursive.

Slots

.Data: a list of keymatrix objects.

p: a prime number.

LIB: a list containing a vector of row names and a vector of column names. The names are the
same for all key matrices.

pseudo.info: a dataframe containing information on the pseudofactors associated with the key
matrices. See the description of the class designfactors.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

show display the object. See show-method.

summary summarize the design properties. See summary

Note

Each key matrix in a keyring object is a possible solution to the same factors, model and estimate
specifications, with respect to the same prime number. An object of class listofkeyrings is
a list of keyring objects associated with the different primes involved in a given factorial design
problem.

Author(s)

H. Monod, and A. Bouvier

See Also

planor.designkey, method pick in class listofkeyrings, method summary in class
keymatrix and the class keyring

listofdesignkeys-class 11

Examples

showClass("keyring")
Creation of a 'listofkeyrings' object
K0 <- planor.designkey(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Method show applied on a 'keyring' component of K0
show(K0[[1]])

listofdesignkeys-class
Class listofdesignkeys and methods of the class

Description

An S4 class to represent a list of design key solutions

Objects from the Class

Objects are created by planor.designkey, when the search is recursive.

Slots

.Data: a list of objects of class designkey.

factors: an object of class designfactors which contains the factors’ specifications.

model: a "list" which contains the model and estimate specifications.

nunits: the number of units in the design.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

alias FUNCTION NOT YET IMPLEMENTED

[extract one design key in the list.

pick extract one design key in the list. See pick.

planor.design build a design from one design key in the list. See planor.design.

show display the object. See show.

summary summarize the design properties. See summary

Author(s)

H. Monod, and A. Bouvier

See Also

Creator function: planor.designkey

12 listofkeyrings-class

Examples

showClass("listofdesignkeys")
Creation of a "listofdesignkeys" object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Show the object
show(K0)
Method length
length(K0)
Extraction: the following two commands are equivalent
K <- K0[2]
K <- pick(K0,2)

listofkeyrings-class
Class listofkeyrings and methods of the class

Description

An S4 class to store design key solutions when there is only one prime involved or when the solu-
tions are independent between primes.

Objects from the Class

Objects are created by planor.designkey, when the case is not recursive.

Slots

.Data: a list of objects of class keyring associated with different primes.

factors: an object of class designfactors which contains the factors’ specifications.

model: a "list" which contains the model and estimate specifications.

nunits: the number of units of the design.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

alias give the aliasing for each key-matrix. See alias.

[extract one design key by taking one key matrix per prime.

pick extract one design key by taking one key matrix per prime. See pick.

planor.design build a design using one key matrix per prime. See planor.design.

show display the object. See show.

summary summarize the design properties from object. See summary.

Author(s)

H. Monod, and A. Bouvier

makedesignkey 13

See Also

Creator function: planor.designkey

Examples

showClass("listofkeyrings")
Creation of a 'listofkeyrings' objct
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

show(K0)

makedesignkey A function to turn integer matrices into an object of class designkey

Description

Creates an object of class designkey directly from a list of integer matrices

Usage

makedesignkey(keys, primes)

Arguments

keys a list of n integer matrices with column names

primes a vector of n prime numbers

Details

the names of the factors are extracted from the matrix column names

Value

an object of class designkey

Author(s)

H. Monod

See Also

Class designkey

14 pick-methods

Examples

mat1 <- cbind(diag(3),1)
colnames(mat1) <- c("A","B","C","D")
mat2 <- cbind(diag(2),c(1,2))
colnames(mat2) <- c("E","F","G")
mat.dk <- makedesignkey(list(mat1,mat2), primes=c(2,3))
print(mat.dk)
summary(mat.dk)
alias(mat.dk)
mat.plan <- planor.design(mat.dk)

pick-methods Methods for function pick (or [) in package planor: extract a single
result from an object of class list

Description

Extract a single designkey object (with one key matrix per prime) from a complex object

Usage

S4 method for signature 'listofdesignkeys'
pick(keys, selection)
S4 method for signature 'listofkeyrings'
pick(keys, selection)

Arguments

keys an object of the class

selection when keys is a listofdesignkeys object, an integer scalar equal to the
position of the required solution.
when keys is a listofkeyrings object, the index vector to select the key
matrix for each prime.

Value

An object of class designkey, which contains the selected design

Note

K <- pick(K0,1) can be simply written K <- K0[1]

See Also

Classes where this method applies: listofdesignkeys, listofkeyrings.

planor.design-methods 15

Examples

Creation of an object of class "listofdesignkeys"
K2 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2 , nunits=12,
base=~R+C+U, max.sol=2)
Method 'pick' applied on the "listofdesignkeys" object
K2.1 <- pick(K2,1)
K2.1 <- K2[1] ## Another way of extracting ([is synonym of pick)

Creation of an object of class "listofkeyrings"
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"),
nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
Method 'pick' applied on the "listofkeyrings" object
K0.1 <- pick(K0,1)
K0.1 <- K0[1] ## the same

planor.design-methods
Methods for function planor.design in package planor: build a

design from a design-key solution

Description

Construction of a factorial design from an object containing key matrices

Usage

S4 method for signature 'designkey'
planor.design(key, randomize=NULL, ...)

S4 method for signature 'listofdesignkeys'
planor.design(key, randomize=NULL, selection=1, ...)

S4 method for signature 'listofkeyrings'
planor.design(key, randomize=NULL, selection,...)

S4 method for signature 'numeric'
planor.design(key, start=1)

Arguments

key an object of the first class in the signature, or a vector of integers.

randomize an optional formula to specify the block structure for design randomization.

selection when key is a listofdesignkeys object, an integer scalar.
when key is a listofkeyrings object, should be an index vector to select
the key matrix for each prime.

... additional arguments, in particular those related to randomization (see planor.randomize).

start an integer from where to start the series of symbols.

16 planor.designkey

Details

• When key is numeric, it should be a vector of integers of length s. Then, the function
generates a full factorial n1xn2x...xns design with columns considered as factors. It returns
an integer matrix with prod(n) rows and s columns giving all combinations along the rows, in
lexicographic order.

• When key is a listofdesignkeys object, build one design from a selected solution.

Value

An object of class planordesign, which contains the design built from the input. This function
is restricted to giving a single design. When key is numeric, see Details

See Also

Classes where this method applies: designkey, listofdesignkeys, listofkeyrings.

Examples

Creation of a 'listofdesignkeys' object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method planor.design applied on the 'listofdesignkeys' object
P0 <- planor.design(key=K0, select=1)
Method planor.design applied on a designkey' object
P0 <- planor.design(K0[1])

Creation of a 'listofkeyrings' object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2, verbose=TRUE)
Method planor.design applied on a designkey' object
P0 <- planor.design(K0[1])
P0.R <- planor.design(K0[1], randomize=~A+B+C+D) ## randomize the final design

planor.designkey Search for a design key or a collection of design keys

Description

Search for a design key or a collection of design keys that satisfy the design properties specified by
the arguments. This function calls the core algorithms implemented in planor.

Usage

planor.designkey(factors, nlevels, block, ordered, hierarchy, model,
estimate, listofmodels, resolution, nunits, base, max.sol=1,
randomsearch=FALSE, verbose=TRUE)

planor.designkey 17

Arguments

factors an object of class designfactors, typically an output from planor.factors.
Alternatively, the arguments factors, nlevels, ordered, hierarchy
may follow the syntax of planor.factors.

nlevels See planor.factors. Ignored if factors is of class designfactors.

block See planor.factors. Ignored if factors is of class designfactors.

ordered See planor.factors. Ignored if factors is of class designfactors.

hierarchy See planor.factors. Ignored if factors is of class designfactors.

model a list of model-estimate pairs of formulae, typically an output from planor.model.
Alternatively, the arguments model, estimate, listofmodels and resolution
may follow the syntax of planor.model.

estimate See planor.model. Ignored if model is a list.

listofmodels See planor.model. Ignored if model is a list.

resolution See planor.model. Ignored if model is a list.

nunits a scalar giving the total number of units in the design

base an optional additive formula to specify the basic factors. See Note.

max.sol maximum number of solutions before exit.

randomsearch a logical; if TRUE, the searches for a key matrix are performed in a random
order.

verbose a logical to set to TRUE for verbose display.

Details

The methods implemented in planor rely on a decomposition of the design search according to
prime numbers. The prime numbers involved are those that decompose the numbers of levels of
the factors. For example, if all factors have 2, 4, or 8 levels, then the number of units must be a
power of 2 and the only prime number involved is 2. This is called the symmetric case. But if at
least one factor has 6 levels, or if factor A has 2 levels and factor B has 3 levels, then the number of
units must be the product of a power of 2 by a power of 3. In this case the search is automatically
decomposed into one for prime 2 and one for prime 3. This is called the asymmetric case.

In the symmetric case with prime p, a regular factorial design requires a single key matrix of integers
modulo p. In the asymmetric case, it requires one key matrix per prime. In planor, key matrices
are stored in objects of class keymatrix. The lists made of one key matrix per prime are called
design keys. They are stored in objects of class designkey.

The function planor.designkey essentially searches for design keys that satisfy the user spec-
ifications. For technical reasons, however, its output can take two different forms: either an ob-
ject of class listofkeyrings or an object of class listofdesignkeys. The function
planor.designkey detects automatically which case applies. In the first case (independent
case), the key matrix solutions can be searched independently between primes and they are stored
in objects of class listofkeyrings. The second case (recursive case) occurs exceptionnally.
In that case the search cannot be independent between primes and so the different solutions are
directly stored in a list of class listofdesignkeys.

Value

an object of class listofkeyrings in most cases. Otherwise, i.e in recursive cases, an object of
class listofdesignkeys.

18 planor.factors

Note

The base formula must be an additive formula involving a subset of factors, called the basic factors.
Using the base argument ensures that the design solutions will include the full factorial design for
the basic factors. This option can speed up the search because it restricts the domain to be explored
by the search algorithm.

Author(s)

H. Monod, and A. Bouvier

See Also

planor.factors, planor.model, and the classes designfactors, listofkeyrings,
listofdesignkeys

Examples

K0 <- planor.designkey(factors=c("block", LETTERS[1:4]),
nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

With automatic model generation
Km <- planor.designkey(factors=c("block", LETTERS[1:4]),

nlevels=rep(2,5), resolution=3, nunits=2^4)

planor.factors Create an object of class ’designfactors’

Description

A function to create an object of class designfactors, either by giving the factor names and
their numbers of levels, or by giving a named list of factor levels. Both ways can be used in the
same call. Additional information can be provided that will be used during the design search or in
the summary functions.

Usage

planor.factors(factors = NULL, nlevels = NULL,
block = NULL, ordered = NULL, hierarchy = NULL,
dummy = FALSE)

Arguments

factors a character vector of factor names, or possibly a scalar, a dataframe or a list (see
DETAILS)

nlevels a vector of level numbers for each factor name (see DETAILS)
block an additive model formula to indicate the block factors
ordered an additive model formula to indicate the quantitative factors (not used at all in

the present version)
hierarchy a formula or a list of formulae to indicate hierarchy relationships between factors

(see the planor vignette for details)
dummy a logical to identify dummy factors created and deleted by PLANOR functions

for technical reasons

planor.harmonize 19

Value

An object of class designfactors

Note

The basic usage is to specify the names of the factors by a character vector of length n in argument
factors and their numbers of levels by a numeric vector of length n in argument nlevels.
Alternatively, the factors argument can be an integer n, in which case the first n capital letters
of the alphabet are used as factor names. If nlevels is a scalar s, it is considered that all factors
have s levels. There are two more possibilities which allow for alphanumeric factor levels. If
factors is a dataframe, the factors in this dataframe are extracted together with their levels.
Finally factors can be a named list of n vectors, with each vector containing the levels of one
factor. Note that nlevels is ignored in these latter two cases. See the examples. The argument
block allows to specify the block or nuisance factors. This information is used by the alias and
summary functions but it has no effect on the design generation and randomization which depend
on other arguments.

Author(s)

H. Monod, and A. Bouvier

See Also

Class designfactors

Examples

planor.factors(c("A","B","C","P"),c(2,3,6,3))
planor.factors(LETTERS[1:12],2)
planor.factors(12,2)
planor.factors(c("A","B","Block"), 3, block=~Block)
zz <- planor.factors(c("A","B","Block"), c(2,3,5))
zz@levels$A <- c("plus","moins")
planor.factors(factors=list(A=c("plus","moins"), B=1:3, Block=1:5))
AB <- data.frame(A=c(rep(c("a","b"),3)), B=rep(c("z","zz","zzz"),rep(2,3)), C=1:6)
planor.factors(factors=AB)

planor.harmonize Harmonize the factors

Description

Harmonize the factors originating from a list of factors, a list of models, and a list of basic factors
(this function is essentially for internal use)

Usage

planor.harmonize(factors, nlevels, ordered, hierarchy, model, estimate,
listofmodels, base)

20 planor.harmonize

Arguments

factors an object of class designfactors, typically an output from planor.factors).
Otherwise the arguments factors, nlevels, ordered, hierarchy fol-
low the syntax of planor.factors.

nlevels See planor.factors. Ignored if factors is of class designfactors.

ordered See planor.factors. Ignored if factors is of class designfactors.

hierarchy See planor.factors. Ignored if factors is an object of class designfactors.

model a list of model-estimate pairs of formulae, typically an output from planor.model.
Otherwise the arguments model, estimate and listofmodels follow the
syntax of planor.model.

estimate See planor.model. Ignored if model is a list.

listofmodels See planor.model. Ignored if model is a list.

base an optional formula to specify the basic factors. These factors must belong to
the factors argument

Value

An object of class designfactors very similar to factors, but with two additional logical
columns in slots fact.info and pseudo.info:

- model (TRUE for the factors present in at least one model formula),

- basic (TRUE for the basic factors).

Note

This function is called at the start of the design search. It is essentially a check that the factors in
all three arguments are coherent, even though it performs some additional tasks. The function stops
if it detects a model or basic factor that is absent from factors. This is because the number of
levels of such a factor is unknown and so the design search cannot proceed. Besides, the function
eliminates the factors that do appear neither in model nor in base and it reorders the factors by
putting first the basic ones.

Author(s)

H. Monod, and A. Bouvier

Examples

F2 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,6,4,2))
M2 <- planor.model(model=~block+(A+B+C)^2, estimate=~A+B+C)
F2.h <- planor.harmonize(factors=F2, model=M2, base=~A+B)
names(F2)
names(F2.h)

planor.model 21

planor.model Model and estimate specifications for a design search

Description

A function to declare the factorial terms that must be considered as non-negligible and the factorial
terms that must be estimable when the experiment will be analysed.

Usage

planor.model(model, estimate, listofmodels, resolution, factors)

Arguments

model main model formula. It contains all the non-negligible factorial terms.

estimate optional formula specifying the factorial terms to estimate. If missing, it is con-
sidered that all factorial terms in model have to be estimated.

listofmodels list of c(model, estimate) pairs, where model and estimate are for-
mulae; using several pairs allows more flexibility in the design constraints (see
Kobilinsky, 2005, or the split-plot example in the vignette); estimate is op-
tional.

resolution an integer larger than or equal to 3, to specify the design resolution. When set,
the model and estimate arguments are ignored. See Note.

factors a designfactors object, typically an output from planor.factors. It
must be set only when the resolution argument is used.

Value

A list of c(model, estimate) pairs, where model and estimate are formulae

Note

The user can specify:
1/ either, model or listofmodels or both,
2/ or, resolution and factors, and possibly listofmodels.

When model and resolution are both set, model is ignored.

The second case, — when resolution and factors are set —, causes the automatic generation
of the main c(model, estimate) pair. Assuming S denotes the additive formula including all
factors,
- if resolution is odd, the model formula is ~(S)^(resolution-1)/2,
- if resolution is even, the model formula is ~(S)^(resolution/2) and the estimate for-
mula is ~(S)^(resolution/2)-1.

Author(s)

H. Monod, and A. Bouvier

22 planor.randomize

Examples

Basic example
planor.model(model=~block + (A+B+C)^2, estimate=~(A+B+C)^2)
Resolution: both calls to 'planor.model' below are equivalent
planor.model(model=~(A+B+C+D)^2, estimate=~A+B+C+D)
myfactors <- planor.factors(factors=c(LETTERS[1:4]), nlevels=rep(2,4))
planor.model(resolution=4, factors=myfactors)
Complicated examples
planor.model(~A+B+C+D+A:B, ~A+B+C+D, listofmodels=list(c(~E+F,~E)))
planor.model(~A+B+C+D+A:B,~A+B+C+D, listofmodels=

list(c(~E+F,~E), ~G, ~H, c(~M+N,~N)))

planor.randomize A function to randomize a factorial design according to an orthogonal
block structure

Description

A function to randomize a factorial design according to a specified block structure formula

Usage

planor.randomize(blockformula, data, out.order, keep.initial=FALSE)

Arguments

blockformula the block structure formula
data a data frame.
out.order a list of data factors that will be used to order the rows of the randomized

design; if missing, the factors of the block formula are used.
keep.initial if TRUE, the initial row order of the design is stored in column InitialUNITS

of the returned dataframe.

Value

the input data frame after randomization.

Note

Each name in blockformula must correspond to a factor of the dataframe data. The only ex-
ception is UNITS. If UNITS is used in blockformula but absent from data, a factor is added to
data, with one level per row. See the examples below for the usage of UNITS in blockformula.

Author(s)

H. Monod, and A. Bouvier

References

Bailey, R.A., 1983. Generalized wreath products of permutation groups. Proc. London Math. Soc.,
47, 69-82.

Kobilinsky A., 1989. Randomization of a cartesian block structure. Technical Report. Laboratoire
de Biométrie de l’INRA Versailles.

planordesign-class 23

Examples

Block design
Design <- data.frame(block=rep(1:4,rep(2,4)),
treatment=c("A1","B1","A2","B2","A3","B3","A4","B4"))
planor.randomize(~block, data=Design) ## no within-block randomization
planor.randomize(~block/UNITS, data=Design) ## blocks and units within blocks randomization
Row-Column design
RowColDes <- data.frame(row=rep(1:3,rep(3,3)),col=rep(1:3,3),
treatment=LETTERS[c(1:3,2,3,1,3,1,2)],
oldRow=rep(1:3,rep(3,3)),oldCol=rep(1:3,3))
planor.randomize(~row*col, data=RowColDes)

planordesign-class Class planordesign and methods of the class

Description

An S4 class to represent a final design

Objects from the Class

Objects can be created by calls to method planor.design applied on an object of class designkey
or on an object of class listofkeyrings, and by calls to regular.design when argument
output is equal to ‘planordesign’

Slots

design: a dataframe containing the final design

factors: an object of class designfactors which contains the factors’ specifications

model: a list containing the model and estimate specifications

designkey: a list which contains the designkey matrices used to create the object

nunits: the number of units of the design

recursive: a "logical" equal to TRUE if the design has been constructed recursively

Methods

getDesign extract a design data frame. See getDesign

as.data.frame coerce into a data frame. See as.data.frame.planordesign

Author(s)

H. Monod, and A. Bouvier

See Also

Creators: method planor.design applied on an object of class designkey or class listofkeyrings
or class listofdesignkeys
See also class designfactors.

24 regular.design

Examples

showClass("planordesign")
Creation of a 'listofdesignkeys' object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Creation of a 'planordesign' object from K0
P0 <- planor.design(key=K0, select=1)
show(P0)

regular.design Construct and randomize a regular factorial design

Description

Construct and randomize a regular factorial design

Usage

regular.design(factors = NULL, nlevels = NULL, block = NULL,
ordered = NULL, hierarchy = NULL, model = NULL, estimate = NULL,
listofmodels = NULL, resolution = NULL, nunits = NULL,
base = NULL, randomize = NULL, randomsearch = FALSE,
output = "planordesign", verbose = FALSE, ...)

Arguments

factors an object of class designfactors, typically an output from planor.factors).
Otherwise the arguments factors, nlevels, ordered, hierarchy fol-
low the syntax of planor.factors.

nlevels See planor.factors. Ignored if factors is of class designfactors.

block See planor.factors. Ignored if factors is of class designfactors.

ordered See planor.factors. Ignored if factors is of class designfactors.

hierarchy See planor.factors. Ignored if factors is of class designfactors.

model a list of model-estimate pairs of formulae, typically an output from planor.model.
Otherwise the arguments model, estimate, listofmodels and resolution
follow the syntax of planor.model.

estimate See planor.model. Ignored if model is a list.

listofmodels See planor.model. Ignored if model is a list.

resolution See planor.model. Ignored if model is a list.

nunits See planor.designkey.

base See planor.designkey.

randomize an optional formula to randomize the design.

randomsearch See planor.designkey.

output a string to specify the class of the output value: either a data.frame or a
planordesign object

verbose a logical to set to TRUE for verbose display

... additional arguments, in particular those related to randomization

show-methods 25

Value

An object of class data.frame or planordesign, depending on the output argument

Author(s)

H. Monod, and A. Bouvier

See Also

planor.factors, planor.model, and the classes designfactors, listofkeyrings,
listofdesignkeys

Examples

mydesign <- regular.design(factors=c("block", LETTERS[1:4]),
nlevels=rep(3,5), model=~block + (A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, randomize=~block/UNITS)

print(mydesign)

show-methods Methods for function show in package planor

Description

print the design key matrices.

Usage

S4 method for signature 'designkey'
show(object)

S4 method for signature 'keymatrix'
show(object)

S4 method for signature 'keyring'
show(object)

S4 method for signature 'listofdesignkeys'
show(object)

S4 method for signature 'listofkeyrings'
show(object)

Arguments

object object of the class

Details

The slot pseudo.info of the objects of class keymatrix is invisible.

26 summary-methods

Value

NULL

Note

- The number of rows and columns of the matrices that are printed are limited by the option
planor.max.print
- Objects of the class are automatically displayed by invocation of ‘show’ (see examples).

See Also

Classes where this method applies: designkey, keymatrix, keyring, listofdesignkeys,
listofkeyrings

Examples

Creation of a "listofdesignkeys" object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method show applied on a "keymatrix" object
show(K0[[1]][[1]])
Method show applied on a "designkey" object
show(K0[1])
Method show applied on the "listofdesignkeys" object
show(K0)
K0 # the same

Creation of a "listofkeyrings" object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
Method show applied on a "keyring" object
show(K0[[1]])
print(K0[[1]]) # the same
K0[[1]] # the same
Method show applied on the "listofkeyrings" object
show(K0)

summary-methods Methods for function summary in package planor

Description

Summarize the design properties of an object, by printing the summary of each key matrix

Usage

S4 method for signature 'designkey'
summary(object, show="dtbw", save="k", ...)

S4 method for signature 'keymatrix'
summary(object, fact, block, show="dtbw", save="k", ...)

summary-methods 27

S4 method for signature 'keyring'
summary(object, show="tbw",save ="kw", ...)

S4 method for signature 'listofdesignkeys'
summary(object, show="tbw", save="kw", ...)

S4 method for signature 'listofkeyrings'
summary(object, show="tbw", save="kw", ...)

Arguments

object an object of the class

fact a character or numeric vector of parent factor names for the columns of the
object

block a logical vector to identify the columns of the object associated with a block
factor

show an optional string to identify the type of information to display. The recognized
letters are: ’d’ for the design keys matrices, ’t’ for the treatment effects con-
founded with the mean, ’b’ for the block-and-treatment effects confounded with
the mean, ’w’ for the weight profiles

save an optional string to identify the type of information to return. The recognized
letters are: ’k’ for the kernel matrices, ’w’ for the weight profiles of the treatment
effects confounded with the mean.

... ignored

Details

The amount of display depends on the value of the argument show, and the type of returned infor-
mation depends on the value of the argument save.

• When object is of class keymatrix, “summary” prints the key matrix, the factorial effects
confounded with the mean, and the weight profiles of the effects confounded with the mean,
according to the value of the argument show.
The keymatrix argument being denoted by key,
- The rows of key are associated with units factors (or pseudofactors) while its columns are
associated with treatment or block factors (or pseudofactors).
- The vectors in the arguments fact and block give information on the treatment and block
factors, so that their length is expected to be equal to the number of columns of key.
- If missing, fact attributes a distinct parent factor to each column of key and block is set
to TRUE for all columns.
“summary” returns a list with the components required by the argument save.

• When object is of class designkey, “summary” prints the summary of each of the key
matrices. It returns a list with as many components as key matrices, each one with the com-
ponents required by the argument save.

• When object is of class listofdesignkeys, “summary” prints the summary of each
key matrix in each design key. It returns a list with as many components as design keys, each
one is a list of the key matrices summaries.

• When object is of class listofkeyrings, “summary” prints the summary of each key
matrix in each keyring. It returns a list with as many components as keyrings, each one is a
list of the key matrices summaries.

28 summary-methods

• When object is of class keyring, “summary” prints the summary of each of its key ma-
trices. It returns a list with as many components as key matrices.

Value

A list. See Details
Information returned for each key matrix depends on the argument save.

• When save includes the character ’k’, the returned list has a component named ’k’.It is a
matrix, the columns of which are kernel generators of the key matrices.

• When save includes the character ’w’, the returned list has a component named ’w’, which
contains the weight profiles of the effects confounded with the mean.

Note

The number of rows and columns of the matrices that are printed are limited by the option planor.max.print.

See Also

Classes where this method applies: designkey, keymatrix, keyring, listofdesignkeys,
listofkeyrings

Examples

Creation of a "listofdesignkeys" object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method summary applied on a "keymatrix" object
r <- summary(K0[[1]][[1]])
Method summary applied on a "designkey" object
summary(K0[1], save=NULL)
Method summary applied on the "listofdesignkeys" object
r <-summary(K0, show="dt")

Creation of a "listofkeyrings" object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Method summary applied on the "keymatrix" object
r <-summary(K0[[1]][[1]])
Method summary applied on the "keyring" object
r <-summary(K0[[1]])
Method summary applied on the "listofkeyrings" object
r <- summary(K0, show="dtb", save ="k")
print(r)

Index

∗Topic classes
designfactors-class, 6
designkey-class, 7
keymatrix-class, 9
keyring-class, 10
listofdesignkeys-class, 11
listofkeyrings-class, 12
planordesign-class, 23

∗Topic design
alias-methods, 3
bind-methods, 5
designfactors-class, 6
designkey-class, 7
getDesign-methods, 8
keymatrix-class, 9
keyring-class, 10
listofdesignkeys-class, 11
listofkeyrings-class, 12
pick-methods, 14
planor-package, 2
planor.design-methods, 15
planor.designkey, 16
planor.factors, 18
planor.harmonize, 19
planor.model, 21
planor.randomize, 22
planordesign-class, 23
regular.design, 24
show-methods, 25

∗Topic methods
alias-methods, 3
as.data.frame.planordesign, 5
bind-methods, 5
getDesign-methods, 8
pick-methods, 14
planor.design-methods, 15
show-methods, 25
summary-methods, 26

∗Topic package
planor-package, 2

[,designfactors,ANY,ANY,ANY-method
(designfactors-class), 6

[,designfactors-method

(pick-methods), 14
[,listofdesignkeys,ANY,ANY,ANY-method

(listofdesignkeys-class),
11

[,listofdesignkeys-method
(pick-methods), 14

[,listofkeyrings,ANY,ANY,ANY-method
(listofkeyrings-class), 12

[,listofkeyrings-method
(pick-methods), 14

[,planordesign,ANY,ANY,ANY-method
(planordesign-class), 23

[,planordesign-method
(pick-methods), 14

alias, 8, 9, 12, 19
alias,designkey-method

(alias-methods), 3
alias,keymatrix-method

(alias-methods), 3
alias,listofdesignkeys-method

(alias-methods), 3
alias,listofkeyrings-method

(alias-methods), 3
alias-methods, 3
alias.designkey (alias-methods), 3
alias.keymatrix (alias-methods), 3
alias.listofdesignkeys

(alias-methods), 3
alias.listofkeyrings

(alias-methods), 3
array, 9
as.data.frame,planordesign-method

(as.data.frame.planordesign),
5

as.data.frame.planordesign, 5, 23

bind, 6
bind (bind-methods), 5
bind,designfactors,designfactors-method

(bind-methods), 5
bind-method (bind-methods), 5
bind-methods, 5

designfactors, 6, 7, 10–12, 17–21, 23–25

29

30 INDEX

designfactors-class, 6
designkey, 4, 9, 11, 14, 16, 17, 23, 26–28
designkey-class, 7

getDesign, 23
getDesign (getDesign-methods), 8
getDesign,planordesign-method

(getDesign-methods), 8
getDesign-method

(getDesign-methods), 8
getDesign-methods, 8

keymatrix, 4, 7, 10, 17, 25–28
keymatrix-class, 9
keyring, 9, 10, 12, 26, 28
keyring-class, 10

length,designfactors-method
(designfactors-class), 6

list, 8, 10–12
listofdesignkeys, 4, 7, 14–18, 23,

25–28
listofdesignkeys-class, 11
listofkeyrings, 4, 7, 10, 14–18, 23,

25–28
listofkeyrings-class, 12

makedesignkey, 13
matrix, 9

names,designfactors-method
(designfactors-class), 6

pick, 11, 12
pick (pick-methods), 14
pick,listofdesignkeys-method

(pick-methods), 14
pick,listofkeyrings-method

(pick-methods), 14
pick-method (pick-methods), 14
pick-methods, 14
planor-package, 2
planor.design, 2, 8, 11, 12, 23
planor.design

(planor.design-methods), 15
planor.design,designkey-method

(planor.design-methods), 15
planor.design,listofdesignkeys-method

(planor.design-methods), 15
planor.design,listofkeyrings-method

(planor.design-methods), 15
planor.design,numeric-method

(planor.design-methods), 15
planor.design-methods, 15

planor.designkey, 2, 6, 10–13, 16, 17,
24

planor.factors, 2, 6, 7, 17, 18, 18, 20,
21, 24, 25

planor.harmonize, 19
planor.model, 2, 17, 18, 20, 21, 24, 25
planor.randomize, 15, 22
planordesign, 5, 8, 16, 25
planordesign-class, 23

regular.design, 2, 23, 24

show, 8, 11, 12
show,designkey-method

(show-methods), 25
show,keymatrix-method

(show-methods), 25
show,keyring-method

(show-methods), 25
show,listofdesignkeys-method

(show-methods), 25
show,listofkeyrings-method

(show-methods), 25
show-method, 9, 10
show-method (show-methods), 25
show-methods, 25
structure, 9
summary, 8–12
summary,designkey-method

(summary-methods), 26
summary,keymatrix-method

(summary-methods), 26
summary,keyring-method

(summary-methods), 26
summary,listofdesignkeys-method

(summary-methods), 26
summary,listofkeyrings-method

(summary-methods), 26
summary-methods, 26
summary.designkey

(summary-methods), 26
summary.keymatrix

(summary-methods), 26
summary.keyring

(summary-methods), 26
summary.listofdesignkeys

(summary-methods), 26
summary.listofkeyrings

(summary-methods), 26

vector, 8–12

	planor-package
	alias-methods
	as.data.frame.planordesign
	bind-methods
	designfactors-class
	designkey-class
	getDesign-methods
	keymatrix-class
	keyring-class
	listofdesignkeys-class
	listofkeyrings-class
	makedesignkey
	pick-methods
	planor.design-methods
	planor.designkey
	planor.factors
	planor.harmonize
	planor.model
	planor.randomize
	planordesign-class
	regular.design
	show-methods
	summary-methods
	Index

