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1 Preliminaries

This document is designed to get a person up and running doing elementary probability in R using
the prob package. In addition to prob, you will want to install the combinat package in order to
use a couple of functions, but other than that a base installation of R should be more than enough.

The prerequisites are minimal. The term “data frame” should ring a bell, along with some
common tricks like using 1:6 to represent the integers from 1 to 6. That being said, please note
that this document is not a treatise on probability. The reader should have a passing familiarity
with the basic tenets of probability and some of the topics that are customarily studied to be able
to follow along.

In the interest of space, most of the examples described below are uncharacteristically small
and do not fully showcase the true computational power of R. Nevertheless, the goal is for these
small examples to serve as a starting point from which users can investigate more complicated
problems at their leisure.

2 Sample Spaces

The first step is to set up a sample space, or set of possible outcomes of an experiment. In the
prob package, the most simple form of a sample space is represented by a data frame, that is, a
rectangular collection of variables. Each row of the data frame corresponds to an outcome of the
experiment.

This is the primary way we will represent a sample space, both due to its simplicity and to
maximize compatibility with the R Commander by John Fox. However, this structure is not rich
enough to describe some of the more interesting probabilistic applications we will encounter. To
handle these we will need to consider the more general list data structure. See the last section for
some remarks in this direction.

Note that the machinery doing the work to generate most of the sample spaces below is the
expand.grid() function in the base package, also combn() in combinat and new but related
permsn().

2.1 Some Standard Sample Spaces

The prob package has some functions to get one started. For example, consider the experiment
of tossing a coin. The outcomes are H and T . We can set up the sample space quicky with the
tosscoin() function:

> tosscoin(1)

toss1

1 H

2 T

The number 1 tells tosscoin() that we only want to toss the coin once. We could toss it three
times:

> tosscoin(3)

toss1 toss2 toss3

1 H H H

2 T H H

3 H T H

4 T T H

5 H H T

6 T H T

7 H T T

8 T T T
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As an alternative, we could consider the experiment of rolling a fair die:

> rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

The rolldie() function defaults to a 6-sided die, but we can change it with the nsides

argument. Typing rolldie(3, nsides = 4) would be for rolling a 4-sided die three times.
Perhaps we would like to draw one card from a standard set of playing cards (it is a long data

frame):

> cards()

rank suit

1 2 Club

2 3 Club

3 4 Club

4 5 Club

5 6 Club

6 7 Club

7 8 Club

8 9 Club

9 10 Club

10 J Club

11 Q Club

12 K Club

13 A Club

14 2 Diamond

15 3 Diamond

16 4 Diamond

17 5 Diamond

18 6 Diamond

19 7 Diamond

20 8 Diamond

21 9 Diamond

22 10 Diamond

23 J Diamond

24 Q Diamond

25 K Diamond

26 A Diamond

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart
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36 J Heart

37 Q Heart

38 K Heart

39 A Heart

40 2 Spade

41 3 Spade

42 4 Spade

43 5 Spade

44 6 Spade

45 7 Spade

46 8 Spade

47 9 Spade

48 10 Spade

49 J Spade

50 Q Spade

51 K Spade

52 A Spade

The cards() function that we just used has arguments jokers (if you would like Jokers to be
in the deck) and makespace which we will discuss later.

Additionally, the roulette() function gives the standard sample space for one spin on a
roulette wheel. There are EU and USA versions available. I would appreciate hearing about any
other game or sample spaces that may be of general interest.

2.2 Sampling from Urns

Perhaps the most fundamental of statistical experiments consists of drawing distinguishable objects
from an urn. The prob package addresses this topic with the urnsamples(x, size, replace,

ordered) function. The argument x represents the urn from which sampling is to be done. The
size argument tells how large the sample will be. The ordered and replace arguments are logical
and specify how sampling will be performed. We will discuss each in turn. In the interest of saving
space, for this example let our urn simply contain three balls, labeled 1, 2, and 3, respectively. We
are going to take a sample of size 2.

Ordered, With Replacement

If sampling is with replacement, then we can get any outcome 1, 2, 3 on any draw. Further, by
“ordered” we mean that we shall keep track of the order of the draws that we observe. We can
accomplish this in R with

> urnsamples(1:3, size = 2, replace = TRUE, ordered = TRUE)

X1 X2

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

Notice that rows 2 and 4 are identical, save for the order in which the numbers are shown.
Further, note that every possible pair of the numbers 1 through 3 are listed. This experiment
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is equivalent to rolling a 3-sided die twice, which we could have accomplished with rolldie(2,

nsides = 3).

Ordered, Without Replacement

Here sampling is without replacement, so we may not observe the same number twice in any row.
Order is still important, however, so we expect to see the outcomes 1, 2 and 2, 1 somewhere in
our data frame as before.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = TRUE)

X1 X2

1 1 2

2 2 1

3 1 3

4 3 1

5 2 3

6 3 2

This is just as we expected. Notice that there are less rows in this answer, due to the restricted
sampling procedure. If the numbers 1, 2, and 3 represented“Fred”, “Mary”, and“Sue”, respectively,
then this experiment would be equivalent to selecting two people of the three to serve as president
and vice-president of a company, respectively, and the sample space lists all possible ways that
this could be done.

Unordered, Without Replacement

Again, we may not observe the same outcome twice, but in this case, we will only keep those
outcomes which (when jumbled) would not duplicate earlier ones.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = FALSE)

X1 X2

1 1 2

2 1 3

3 2 3

This experiment is equivalent to reaching in the urn, picking a pair, and looking to see what
they are. This is the default setting of urnsamples(), so we would have received the same output
by simply typing urnsamples(1:3,2).

Unordered, With Replacement

The last possibility is perhaps the most interesting. We replace the balls after every draw, but we
do not remember the order in which the draws come.

> urnsamples(1:3, size = 2, replace = TRUE, ordered = FALSE)

X1 X2

1 1 1

2 1 2

3 1 3

4 2 2

5 2 3

6 3 3
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We may interpret this experiment in a number of alternative ways. One way is to consider
this as simply putting two 3-sided dice in a cup, shaking the cup, and looking inside as in a game
of Liar’s Dice, for instance. Each row of the sample space is a potential pair we could observe.
Another equivalent view is to consider each outcome a separate way to distribute two identical
golf balls into three boxes labeled 1, 2, and 3. Regardless of the interpretation, urnsamples() lists
every possible way that the experiment can conclude.

Note that the urn does not need to contain numbers; we could have just as easily taken our urn
to be x <- c("Red", "Blue", "Green"). But, there is an important point to mention before
proceeding. Astute readers will notice that in our example, the balls in the urn were distinguishable
in the sense that each had a unique label to distinguish it from the others in the urn. A natural
question would be, “What happens if your urn has indistinguishable elements, for example, what
if x <- c("Red", "Red", "Blue")?” The answer is that urnsamples() behaves as if each ball
in the urn is distinguishable, regardless of its actual contents. We may thus imagine that while
there are two red balls in the urn, the balls are such that we can tell them apart (in principle) by
looking closely enough at the imperfections on their surface.

In this way, when the x argument of urnsamples() has repeated elements, the resulting sample
space may appear to be ordered = TRUE even when, in fact, the call to the function was urnsam-
ples(..., ordered = FALSE). Similar remarks apply for the replace argument. We investigate
this issue further in the last section.

3 Counting Tools

The sample spaces we have seen so far have been relatively small, and we can visually study them
without much trouble. However, it is VERY easy to generate sample spaces that are prohibitively
large. And while R is wonderful and powerful and does almost everything except wash windows,
even R has limits of which we should be mindful.

In many cases, we do not need to actually generate the sample spaces of interest; it suffices
merely to count the number of outcomes. The nsamp() function will calculate the number of
rows in a sample space made by urnsamples(), without actually devoting the memory resources
necessary to generate the space. The arguments are: n, the number of (distinguishable) objects
in the urn, k, the sample size, and replace, ordered as above.

In a probability course, one derives the formulas used in the respective scenarios. For our
purposes, it is sufficient to merely list them in the following table. Note that x! = x(x − 1)(x −
2) · · · 3 · 2 · 1 and

(
n
k

)
= n!/[k!(n− k)!].

Values of nsamp(n, k, replace, ordered)

ordered = TRUE ordered = FALSE

replace = TRUE nk (n−1+k)!
(n−1)!k!

replace = FALSE n!
(n−k)!

(
n
k

)

Examples

We will compute the number of outcomes for each of the four urnsamples() examples that we saw
in the last section. Recall that we took a sample of size two from an urn with three distinguishable
elements.

> nsamp(n=3, k=2, replace = TRUE, ordered = TRUE)

[1] 9
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> nsamp(n=3, k=2, replace = FALSE, ordered = TRUE)

[1] 6

> nsamp(n=3, k=2, replace = FALSE, ordered = FALSE)

[1] 3

> nsamp(n=3, k=2, replace = TRUE, ordered = FALSE)

[1] 6

Compare these answers with the length of the data frames generated above.

3.1 The Multiplication Principle

A benefit of nsamp() is that it is vectorized, so that entering vectors instead of numbers for n, k,
replace, and ordered results in a vector of corresponding answers. This becomes particularly
convenient when trying to demonstrate the Multiplication Principle for solving combinatorics
problems.

Example

Question: There are 11 artists who each submit a portfolio containing 7 paintings for competition
in an art exhibition. Unfortunately, the gallery director only has space in the winners’ section
to accomodate 12 paintings in a row equally spread over three consecutive walls. The director
decides to give the first, second, and third place winners each a wall to display the work of their
choice. The walls boast 31 separate lighting options apiece. How many displays are possible?

Answer: The judges will pick 3 (ranked) winners out of 11 (with rep=FALSE, ord=TRUE). Each
artist will select 4 of his/her paintings from 7 for display in a row (rep=FALSE, ord=TRUE), and
lastly, each of the 3 walls has 31 lighting possibilities (rep=TRUE, ord=TRUE). These three numbers
can be calculated quickly with

> n <- c(11, 7, 31)

> k <- c(3, 4, 3)

> r <- c(FALSE,FALSE,TRUE)

> x <- nsamp(n, k, rep = r, ord = TRUE)

[1] 990 840 29791

(Notice that ordered is always TRUE; nsamp() will recycle ordered and replace to the appro-
priate length.) By the Multiplication Principle, the number of ways to complete the experiment
is the product of the entries of x:

> prod(x)

[1] 24774195600

Compare this with the some standard ways to compute this in R:

> (11*10*9)*(7*6*5*4)*31^3

[1] 24774195600

or alternatively

> prod(9:11)*prod(4:7)*31^3
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[1] 24774195600

or even

> prod(factorial(c(11,7))/factorial(c(8,3)))*31^3

[1] 24774195600

As one can guess, in many of the standard counting problems there aren’t much savings in
the amount of typing; it is about the same using nsamp() versus factorial() and choose().
But the virtue of nsamp() lies in its collecting the relevant counting formulas in a one-stop shop.
Ultimately, it is up to the user to choose the method that works best for him/herself.

4 Defining a Probability Space

Once a sample space is defined, the next step is to associate a probability model with it in order
to be able to answer probabilistic questions. Formally speaking, a probability space is a triple
(S,B, IP), where S is a sample space, B is a sigma-algebra of subsets of S, and IP is a probability
measure defined on B. However, for our purposes all of the sample spaces are finite, so we may
take B to be the power set (the set of all subsets of S) and it suffices to specify IP on the elements
of S, the outcomes. The only requirement for IP is that its values should be nonnegative and sum
to 1.

The end result is that in the prob package, a probability space is an object of outcomes S and
a vector of probabilities (called “probs”) with entries that correspond to each outcome in S. When
S is a data frame, we may simply add a column called probs to S and we will be finished; the
probability space will simply be a data frame which we may call space. In the case that S is a list,
we may combine the outcomes and probs into a larger list, space; it will have two components:
outcomes and probs. The only requirement we place is that the entries of probs be nonnegative
and sum(probs) is one.

To accomplish this in R, we may use the probspace() function. The general syntax is prob-

space(x, probs), where x is a sample space of outcomes and probs is a vector (of the same
length as the number of outcomes in x). The specific choice of probs depends on the context of
the problem, and some examples follow to demonstrate some of the more common choices.

4.1 Examples

The Equally Likely Model

The equally likely model asserts that every outcome of the sample space has the same probability,
thus, if a sample space has n outcomes, then probs would be a vector of length n with identical
entries 1/n. The quickest way to generate probs is with the rep() function. We will start with
the experiment of rolling a die, so that n = 6. We will construct the sample space, generate the
probs vector, and put them together with probspace().

> outcomes <- rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

> p <- rep(1/6, times = 6)
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[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

> probspace(outcomes, probs = p)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

The probspace() function is designed to save us some time in many of the most common
situations. For example, due to the especial simplicity of the sample space in this case, we could
have achieved the same result with simply (note the name change for the first column)

> probspace(1:6, probs = p)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

Further, since the equally likely model plays such a fundamental role in the study of probability,
the probspace() function will assume that the equally model is desired if no probs are specified.
Thus, we get the same answer with only

> probspace(1:6)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

And finally, since rolling dice is such a common experiment in probability classes, the rolldie()
function has an additional logical argument makespace that will add a column of equally likely
probs to the generated sample space:

> rolldie(1, makespace = TRUE)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

or just rolldie(1:6,TRUE). Many of the other sample space functions (tosscoin(), cards(),
roulette(), etc.) have similar makespace arguments. Check the documentation for details.

One sample space function that does NOT have a makespace option is the urnsamples()

function. This was intentional. The reason is that under the varied sampling assumptions the
outcomes in the respective sample spaces are NOT, in general, equally likely. It is important for
the user to carefully consider the experiment to decide whether or not the outcomes are equally
likely, and then use probspace() to assign the model.
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An unbalanced coin

While the makespace argument to tosscoin() is useful to represent the tossing of a fair coin, it
is not always appropriate. For example, suppose our coin is not perfectly balanced, for instance,
maybe the “H” side is somewhat heavier such that the chances of a H appearing in a single toss
is 0.70 instead of 0.5. We may set up the probability space with

> probspace(tosscoin(1), probs = c(0.70, 0.30))

toss1 probs

1 H 0.7

2 T 0.3

The same procedure can be used to represent an unbalanced die, roulette wheel, etc.

4.2 Independent, Repeated Experiments

In some situations it is desired to repeat a certain experiment multiple times under identical
conditions and in an independent manner. We have seen many examples of this already: tossing
a coin repeatedly, rolling a die or dice, etc.

Example: An unbalanced coin continued

It was easy enough to set up the probability space for one toss, however, the situation becomes
more complicated when there are multiple tosses involved. Clearly, the outcome HHH should not
have the same probability as TTT , which should again not have the same probability as HTH.

At the same time, there is symmetry in the experiment in that the coin does not remember the
face it shows from toss to toss, and it is easy enough to toss the coin in a similar way repeatedly.

The iidspace() function was designed specifically for this situation. It has three arguments:
x which is a vector of outcomes, ntrials which is an integer telling how many times to repeat the
experiment, and probs to specify the probabilities of the outcomes of x in a single trial. We may
represent tossing our unbalanced coin three times with the following:

> iidspace(c("H","T"), ntrials = 3, probs = c(0.7, 0.3))

X1 X2 X3 probs

1 H H H 0.343

2 T H H 0.147

3 H T H 0.147

4 T T H 0.063

5 H H T 0.147

6 T H T 0.063

7 H T T 0.063

8 T T T 0.027

As expected, the outcome HHH has the largest probability, while TTT has the smallest.
(Since the trials are independent, IP(HHH) = 0.73 and IP(TTT ) = 0.33, etc.) Note that the
result of the function call is a probability space, not a sample space (which we could construct
already with the tosscoin() or urnsamples() functions). The same procedure could be used to
represent an unbalanced die, or any experiment that can be represented with a vector of possible
outcomes.

Note that iidspace() will assume x has equally likely outcomes if no probs argument is
specified. Also note that the argument x is a vector, not a data frame. Trying something like
iidspace(tosscoin(1),...) will give an error.
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4.3 Words of Warning

It should be mentioned that while the splendour of R is uncontested, it, like everything else, has
limits both with respect to the sample/probability spaces it can manage and with respect to the
finite accuracy of the representation of most numbers (see the R FAQ 7.31). When playing around
with probability, it is tempting to try to set up a probability space of tossing 100 coins or rolling
50 dice, and then attempt to answer some scintillating questions. (Bear in mind: rolling a die just
9 times has a sample space with over 10 million outcomes.)

Alas! Even if there were enough RAM to barely hold the sample space (and there were enough
time to wait for it to be generated), the infinitesimal probabilities that are associated with SO
MANY outcomes make it difficult for the underlying machinery to handle reliably. In some cases,
special algorithms need to be called just to give something that holds asymptotically. User beware.

5 Subsets and Set Algebra

A sample space contains all possible outcomes of an experiment. An event represents a subset of
the sample space, that is, a certain subcollection of outcomes.

5.1 Finding Subsets

There are plenty of existing methods for finding subsets of data frames, so we will only mention
some of them here in passing.

Given a data frame sample/probability space S, we may extract rows using the [] operator:

> S <- tosscoin(2, makespace = TRUE)

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

4 T T 0.25

> S[1:3, ]

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

> S[c(2,4), ]

toss1 toss2 probs

2 T H 0.25

4 T T 0.25

and so forth. We may also extract rows that satisfy a logical expression using the subset()

function, for instance

> S <- cards()

> subset(S, suit == "Heart")

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

10



30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

> subset(S, rank %in% 7:9)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

32 7 Heart

33 8 Heart

34 9 Heart

45 7 Spade

46 8 Spade

47 9 Spade

We could continue indefinitely. Also note that mathematical expressions are allowed:

> subset(rolldie(3), X1+X2+X3 > 16)

X1 X2 X3

180 6 6 5

210 6 5 6

215 5 6 6

216 6 6 6

5.2 Functions for Finding Subsets

It does not take long before the subsets of interest become more and more complicated to specify.
Yet the main idea is that we have a particular logical condition that we would like to apply to
each row. If the row satisfies the condition, then it should be in the subset and it should not be
in the subset otherwise.

There are many ways to construct logical expressions, and there is an abundance of material
that does a great job describing how to go about it. The ease with which the expression may
be coded depends of course on the question being asked. The prob package contributes a few
functions that help to answer questions typically encountered in an elementary probability course.

The function isin()

Experienced users of R will no doubt be familiar with the function %in%. It can be used in the
following way.

> x <- 1:10

> y <- 3:7

> y %in% x
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[1] TRUE TRUE TRUE TRUE TRUE

Notice that the value is a vector of length 5 which tests if each element of y is in x, in turn.
But perhaps we would like to know whether the whole vector y is in x. We can do this with the
isin() function.

> isin(x,y)

[1] TRUE

Of course, one may ask why we did not try something like all(y %in% x), which would give
a single result, TRUE. The reason is that the answers are different in the case that y has repeated
values. Compare:

> x <- 1:10

> y <- c(3,3,7)

> all(y %in% x)

[1] TRUE

> isin(x,y)

[1] FALSE

The reason is of course that x contains the value 3, but it doesn’t have two 3’s. The difference
becomes significant when rolling multiple dice, playing cards, etc. Note that there is an argument
ordered, which tests whether the elements of y appear in x in the order in which they are specified
in y. The consequences are

> isin(x, c(3,4,5), ordered = TRUE)

[1] TRUE

> isin(x, c(3,5,4), ordered = TRUE)

[1] FALSE

The connection to probability is that we are given a data frame sample space and we would
like to find a subset of the space. A data.frame method has been written for isin() that simply
applies the function to each row of the data frame. Certainly, one could extend the function to
work for columns or entries instead of rows, but simplicity is a primary goal of the prob package.
It is easy enough for experienced users to modify the code as desired to serve their purposes.

We can see the method in action with the following:

> S <- rolldie(4)

> subset(S, isin(S, c(2,2,6), ordered = TRUE))

X1 X2 X3 X4

188 2 2 6 1

404 2 2 6 2

620 2 2 6 3

836 2 2 6 4

1052 2 2 6 5

1088 2 2 1 6

1118 2 1 2 6

1123 1 2 2 6

1124 2 2 2 6
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1125 3 2 2 6

1126 4 2 2 6

1127 5 2 2 6

1128 6 2 2 6

1130 2 3 2 6

1136 2 4 2 6

1142 2 5 2 6

1148 2 6 2 6

1160 2 2 3 6

1196 2 2 4 6

1232 2 2 5 6

1268 2 2 6 6

There are a few other functions written to find useful subsets, namely, countrep() and is-

rep(). Essentially these were written to test for (or count) a specific number of designated values
in outcomes. See the documentation for details.

5.3 Set Union, Intersection, and Difference

Given subsets A and B, it is often useful to manipulate them in an algebraic fashion. To this end,
we have three set operations at our disposal: union, intersection, and difference. Below is a table
summarizing the pertinent information about these operations.

Name Denoted Defined by elements Code
Union A ∪B in A or B or both union(A,B)

Intersection A ∩B in both A and B intersect(A,B)

Difference A\B in A but not in B setdiff(A,B)

Some examples follow.

> S <- cards()

> A <- subset(S, suit == "Heart")

> B <- subset(S, rank %in% 7:9)

We can now do some set algebra:

> union(A,B)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart
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38 K Heart

39 A Heart

45 7 Spade

46 8 Spade

47 9 Spade

> intersect(A,B)

rank suit

32 7 Heart

33 8 Heart

34 9 Heart

> setdiff(A,B)

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

> setdiff(B,A)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

45 7 Spade

46 8 Spade

47 9 Spade

Notice that setdiff() is not symmetric. Further, note that we can calculate the comple-
ment of a set A, denoted Ac and defined to be the elements of S that are not in A simply with
setdiff(S,A).

While our example did not have a probs column, the set algebra functions operate the same
way even if one had been there (although, in that case one would need to be careful that the events
were each subsets of the same probability space, or some strange answers may result).

There have been methods written for intersect(), setdiff(), subset(), and union() in the
case that the input objects are of class ps. See Section 9.1.

Note:

When you loaded the prob package, you most certainly noticed the message: “The following ob-

ject(s) are masked from package:base: intersect setdiff, subset, union”. The rea-
son is that there already exist methods for the functions union(), intersect(), and setdiff()

in the base package which ships with R. However, these methods were designed for when the ar-
guments are vectors of the same mode. Since we are manipulating probability spaces consisting of
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data frames and lists, it was necessary to write methods to handle those cases as well. When the
prob package is loaded, R recognizes that there are multiple versions of the same function in the
search path and acts to shield the new definitions from the existing ones. But there is no cause
for alarm, thankfully, because the prob functions have been carefully defined to be the usual base
package definition in the case that the arguments are vectors.

6 Calculating Probabilities

Now that we have ways to find subsets, we can at last move to calculating the probabilities
associated with them. This is accomplished with the Prob() function.

Consider the experiment of drawing a card from a standard deck of playing cards. Let’s denote
the probability space associated with the experiment as S, and let the subsets A and B be defined
by the following:

> S <- cards(makespace = TRUE)

> A <- subset(S, suit == "Heart")

> B <- subset(S, rank %in% 7:9)

Now it is easy to calculate

> Prob(A)

[1] 0.25

Note that we can get the same answer with

> Prob(S, suit == "Heart")

[1] 0.25

We also find Prob(B) = 0.23 (listed here approximately, but 12/52 actually) and Prob(S)=1.
In essence, the Prob() function operates by summing the probs column of its argument. It will
find subsets “on-the-fly” if desired.

We have as yet glossed over the details. More specifically, Prob() has three arguments: x

which is a probability space (or a subset of one), event which is a logical expression used to define
a subset, and given which is described in the next subsection.

WARNING. The event argument is used to define a subset of x, that is, the only outcomes
used in the probability calculation will be those that are elements of x and satisfy event simul-
taneously. In other words, Prob(x,event) calculates Prob(intersect(x, subset(x, event))).
Consequently, x should be the entire probability space in the case that event is non-null.

6.1 Conditional Probability

The conditional probability of the subset A given the event B is defined to be

IP(A|B) =
IP(A ∩B)

IP(B)
, if IP(B) > 0.

We already have all of the machinery needed to compute conditional probability. All that is
necessary is to use the given argument to the Prob() function, which will accept input in the
form of a data frame or a logical expression. Using the above example with S={draw a card},
A ={suit = "Heart"}, and B={rank is 7, 8, or 9}.

> Prob(A, given = B)

[1] 0.25
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> Prob(S, suit=="Heart", given = rank %in% 7:9)

[1] 0.25

> Prob(B, given = A)

[1] 0.2307692

Of course, we know that given the event B has occurred (a 7, 8, 9 has been drawn), the
probability that a Heart has been drawn is 1/4. Similarly, given that the suit is ”Heart”, there
are only three out of the 13 Hearts that are a 7, 8, or 9, so IP(B|A) = 3/13. We can compute it
by going back to the definition of conditional probability:

> Prob( intersect(A,B) ) / Prob(B)

[1] 0.25

We have seen that there is some flexibility in the given argument in that it can be either a
data frame or it can be a logical expression that defines the subset. HOWEVER, that flexibility
is limited. In particular, if given is a logical expression, then event must also be specified (also
a logical expression). And in this case, the argument x should be the entire sample space, not a
subset thereof, for the reason described in the last section.

Pedagogical Notes

We can now begin to reap the benefits of this framework. Suppose we would like to see an example
of the General Addition Rule:

> Prob( union(A,B) )

[1] 0.4230769

> Prob(A) + Prob(B) - Prob(intersect(A,B))

[1] 0.4230769

Or perhaps the Multiplication Rule:

> Prob( intersect(A,B) )

[1] 0.05769231

> Prob(A) * Prob(B, given = A)

[1] 0.05769231

We could give evidence that consecutive trials of flipping a coin are independent:

> S <- tosscoin(2, makespace = TRUE)

> Prob(S, toss2 == "H")

[1] 0.5

> Prob(S, toss2 == "H", given = toss1=="H")

[1] 0.5

There are many topics available for investigation. Keep in mind, however, that the point is
not that R (or any other software package, for that matter) will ever be an effective surrogate for
critical thinking; rather, the point is that statistical tools like R serve to change the classroom
landscape, hopefully for the better. Plus, it’s free.
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7 Simulating Experiments

Given a probability space, how do we actually perform the experiment in R? The prob package
handles this with the sim() function. The only arguments are x for the probability space and
ntrials for the desired number of repetitions.

We already have all of the outcomes contained in the probability space, and we know each
outcome’s probability from the probs column. Thus, the only task is to sample the rows of x

according to their respective probabilities, which is deftly perfomed with the existing sample()

function. Essentially, the sim() function is a wrapper for sample(), except that it strips the
probs column from the result and renames the rownames of the data frame consecutively from
1:n.

Suppose, for example, that the experiment consisted of picking a single card at random from
a standard deck of playing cards. The code would look something like the following.

> S <- cards(makespace=TRUE)

> sim(S, ntrials = 5)

rank suit

1 K Spade

2 7 Heart

3 Q Club

4 9 Heart

5 6 Heart

We only simulated the experiment 5 times in the interest of space; a person could simulate
as many trials as desired (within reason). Note that when the sample space has more than 250
reasonably likely rows then a special procedure (Walker’s alias method) is used to perform the
sampling. See ?sample and the reference to Ripley (1987) listed there.

7.1 Comparing Theory with Practice

Some may be skeptical of the results from sim(). After all, how does one know that the sampling
procedure is going according to plan? The answer is: we don’t, at least not for certain. But we
can get a pretty good idea using the empirical() function.

The function works by adding a probs column to the simulated data frame (called sims, say)
with equally likely entries of 1/n, where n is the number of rows. Then it aggregates the duplicated
rows of sims, all the while accumulating the probabilities associated with each. The final result
will be a data frame containing the unique rows of sims, together with a column probs at the end
containing the respective observed relative frequencies of the rows.

Let’s look at an example. For simplicity suppose the experiment is tossing a coin twice. We
will construct the probability space, simulate 50,000 double coin flips, and empirical() the result.

> S <- tosscoin(2, makespace = TRUE)

> sims <- sim(S, ntrials = 50000)

> empirical(sims)

toss1 toss2 probs

1 H H 0.25144

2 T H 0.25136

3 H T 0.24776

4 T T 0.24944

We see that each outcome has an observed relative frequency fairly close to 0.25, as we would
expect. Of course, this doesn’t prove that the sampling is perfect, but it is good news nonetheless.
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8 Adding Random Variables

We have seen how to construct sample spaces, find subsets, define probability spaces, and simulate
experiments. But, sometimes we are not interested so much in the experiment itself, rather, we
care more about a certain numerical quantity associated with the experiment, also known as a
random variable. This section describes how to define random variables based on an experiment
and how to examine their behavior once defined.

The primary vessel we use for this task is the addrv() function. There are two ways to use it,
and will describe both.

8.1 Supplying a Defining Formula

The first method is based on the existing transform() function written by Peter Dalgaard. See
?transform. The idea is to write a formula defining the random variable inside the function, and
it will be added as a column to the data frame. As an example, let us roll a 4-sided die three
times, and let’s define the random variable U = X1−X2 + X3.

> S <- rolldie(3, nsides = 4, makespace = TRUE)

> S <- addrv(S, U = X1-X2+X3)

Now let’s take a look at the values of U . In the interest of space, we will only reproduce the
first few rows of S (there are 43 = 64 rows in total).

> S[1:9,]

X1 X2 X3 U probs

1 1 1 1 1 0.015625

2 2 1 1 2 0.015625

3 3 1 1 3 0.015625

4 4 1 1 4 0.015625

5 1 2 1 0 0.015625

6 2 2 1 1 0.015625

7 3 2 1 2 0.015625

8 4 2 1 3 0.015625

9 1 3 1 -1 0.015625

We see by looking at the U column it is operating just like it should. We can now answer
questions like

> Prob(S, U > 6)

[1] 0.015625

8.2 Supplying a Function

Sometimes we have a function laying around that we would like to apply to some of the outcome
variables, but it is unfortunately tedious to write out the formula defining what the new variable
would be. The addrv() function has an argument FUN specifically for this case. Its value should be
a legitimate function from R, such as sum, mean, median, etc. Or, you can define your own function.
Continuing the previous example, let’s define V = max(X1, X2, X3) and W = X1 + X2 + X3.

> S <- addrv(S, FUN = max, invars = c("X1","X2","X3"), name = "V")

> S <- addrv(S, FUN = sum, invars = c("X1","X2","X3"), name = "W")

> S[1:9,]
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X1 X2 X3 U V W probs

1 1 1 1 1 1 3 0.015625

2 2 1 1 2 2 4 0.015625

3 3 1 1 3 3 5 0.015625

4 4 1 1 4 4 6 0.015625

5 1 2 1 0 2 4 0.015625

6 2 2 1 1 2 5 0.015625

7 3 2 1 2 3 6 0.015625

8 4 2 1 3 4 7 0.015625

9 1 3 1 -1 3 5 0.015625

Notice that addrv() has an invars argument to specify exactly to which columns one would
like to apply the function FUN. If no input variables are specified, then addrv() will apply FUN to
all non-probs columns. Further, addrv() has an optional argument name to give the new variable;
this can be useful when adding several random variables to a probability space (as above). If not
specified, the default name is “X”.

8.3 Marginal Distributions

As we can see above, often after adding a random variable V to a probability space one will find
that V has values that are repeated, so that it becomes difficult to understand what the ultimate
behavior of V actually is. We can use the marginal() function to aggregate the rows of the sample
space by values of V , all the while accumulating the probability associated with V ’s distinct values.
Continuing our example from above, suppose we would like to focus entirely on the values and
probabilities of V = max(X1, X2, X3).

> marginal(S, vars = "V")

V probs

1 1 0.015625

2 2 0.109375

3 3 0.296875

4 4 0.578125

We could save the probability space of V in a data frame and study it further, if we wish. As
a final remark, we can calculate the marginal distributions of multiple variables desired using the
vars argument. For example, suppose we would like to examine the joint distribution of V and
W .

> marginal(S, vars = c("V", "W"))

V W probs

1 1 3 0.015625

2 2 4 0.046875

3 2 5 0.046875

4 3 5 0.046875

5 2 6 0.015625

6 3 6 0.093750

7 4 6 0.046875

8 3 7 0.093750

9 4 7 0.093750

10 3 8 0.046875

11 4 8 0.140625

12 3 9 0.015625

13 4 9 0.140625

14 4 10 0.093750
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15 4 11 0.046875

16 4 12 0.015625

Note that the default value of vars is the names of all columns except probs. This can be
useful if there are duplicated rows in the probability space; see the next section.

9 Additional Topics

9.1 More Complicated Sample Spaces

A Poker Case Study

This subsection is for those who are interested in calculating probability on more complicated
spaces than those represented by a simple data frame. We will walk through the example of
a game of poker because it highlights some of the issues encountered when investigating more
complicated sample spaces.

We have discussed the case of drawing a single card from a standard deck. In that case, each
card has two properties: a rank and suit. We can ask questions about either or both to define
subsets and calculate probabilities.

But now let us imagine a standard poker hand of five cards (Five Card Stud, for example).
How may we represent a typical outcome? One way is to make 10 columns in a data frame. The
first two could be the suit and rank of the first card, the next two could be the suit and rank

of the second card, and so forth.
This representation is undesirable for two reasons. The first is that the order of draws in a

poker hand is irrelevant for the Five Card Stud game. Thus, we would need to disregard the order
of the entries with respect to columns, while keeping the columns paired with respect to the draws,
which is not tractable to perform in R. The second reason is that many of the important properties
of a poker hand (are all of the suits the same? do the ranks form an ascending sequence?, etc.)
are not easy to examine when the data are split between columns. For instance, to see if we had
a flush, we would need to check the value of the suit in columns 2, 4, 6, 8, and 10. To combine
this question with something about rank makes it even more complicated.

It would be nice if all five cards in the hand could be represented by a data frame, with the
two columns rank and suit, and five rows, one for each card in the hand. It would be easier to
ask questions of a particular outcome (are all rows of suit the same? etc.), and we already have
been considering the rows of a data frame sample space to be unordered. Of course, the sample
space of all possible five card hands would now be the set of all possible data frames, dimension
5x2, consisting of respective rows of the cards() sample space.

But this last task could be easily achieved by doing urnsamples(replace = FALSE , ordered

= FALSE) on the rows of cards(). Samples would be of size 5. And for each possible sample, we
construct a 5x2 data frame of the respective rows and store the results. Where to store them? In
a list, called outcomes. Each entry of the list will be a data frame, conceptually, a five card hand.

Once we have the outcomes, to each entry we should associate a probability, which we could
store in a vector called probs. To construct a probability space, we combine the list outcomes

and the vector probs into a master list, which we call space.

Details

The preceding discussion has motivated the definition of what in the prob package is the most gen-
eral probability space: a list containing the two components outcomes and probs. The component
outcomes is a list containing elements of the most arbitrary sort; they can be data frames, vectors,
more lists, whatever. The probs component is a vector (of the same length as outcomes), which
associates to each element of outcomes a nonnegative number. The only additional requirement
is that the sum of probs be one.

Of course, in most cases of interest the elements of outcomes will have a decidedly regular
structure, to facilitate asking useful questions. To handle experiments similar in format to the
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poker example, the urnsamples() function has been made generic and a data frame method has
been added. In this way, one can urnsample from a data frame x, and a list of outcomes is the
returned value. Each entry of outcomes is a data frame with the same columns as x, simply with
the number of rows equaling size.

In addition, the probspace() function is also generic, and has a list method to construct
probability spaces from an input list x and a vector of probabilities probs. If no probs are
specified, then probspace() assumes that the equally likely model was intended and automatically
generates a vector of the correct length and with the correct entries.

The output object has class ps, to represent a probability space. It also has a secondary class
of list, so that the list methods for other useful functions (such as print()) will work in the
case that no ps method is found.

Example

We will walk through an example to get you started making more general sample spaces, and we
will continue with the poker example above with one modification. For our simple poker game,
we will only draw two cards instead of five. (Even two cards takes a few seconds, and five cards
is incredibly large, over 2.5 million outcomes. See Section 4.3.)

> L <- cards()

> M <- urnsamples(L, 2)

> N <- probspace(M)

The first command initializes the set of 52 cards into the data frame L. The second command
generates the set of all possible 2 card hands from the deck and stores them in M; note that M is a
list of length 1326. The third command takes M and combines it with a vector probs, which is by
default assumed to represent the equally likely model. The result is the probability space N.

We then define some subsets so that we can do probability. The next four commands set up
the four events A, B, C, and D.

> A <- subset(N, all(suit=="Heart"))

> B <- subset(N, any(suit=="Heart"))

> C <- subset(N, any(suit=="Heart") & all(rank=="A"))

> D <- subset(N, any(suit=="Spade") & any(rank=="A"))

Now let’s do some probability:

> Prob(A)

[1] 0.05882353

> Prob(B)

[1] 0.4411765

> Prob(C, given = D)

[1] 0.01149425

> Prob(D, given = C)

[1] 0.3333333

We can use all(suit=="Heart") to check for a flush, for instance. Note that general sample
spaces constructed in the above fashion tend to get very large, very quickly. This has consequences
when it comes time to do set algebra and compute conditional probability. Be warned that these
can use a large amount of computing resources. Since the theme of the prob package leans toward
simplicity over efficiency, users interested in doing authentically complicated probability problems
would be advised to streamline the prob package functions for their own uses.
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9.2 Discrete Multivariate Distributions

It is plain to see that while we were doing all of this talking about “outcomes”, “sample spaces”,
etc., what we were really talking about were discrete multivariate distributions with finite support
(strictly speaking, only when all of the outcomes are numeric). The multinomial distribution is
one example, and there are infinitely many others.

It is customary to represent the support of an n dimensional discrete random variable as a
suitable subset of an n dimensional lattice or Euclidean space, and it seems like some of the
existing R packages for discrete multivariate distributions have made progress in this area. We
hope that the prob package helps for further development of this important topic.

For a simple example, let’s set up a standard multinomial probability space. Our experiment
will be taking a sample, with replacement, of size 2 from an urn with three balls inside, labeled 1,
2, and 3, respectively. The random variables X1, X2, and X3 will be the respective counts of the
balls labelled 1, 2, and 3 in our sample (do you see how to do this the long way?).

> library(combinat)

> out <- data.frame(t(xsimplex(3,2)))

> p <- apply(out, MARGIN = 1, FUN = dmultinom, prob = c(1,1,1))

> S <- probspace(out, p)

X1 X2 X3 probs

1 2 0 0 0.1111111

2 1 1 0 0.2222222

3 1 0 1 0.2222222

4 0 2 0 0.1111111

5 0 1 1 0.2222222

6 0 0 2 0.1111111

The first command sets up the sample space. The xsimplex() function (in the combinat

package) constructs a 3x6 matrix of all points on a {3,2} simplex lattice. The transpose function
t() transposes the matrix to be 6x3, so that the outcomes will be rows instead of columns. The
data.frame() function coerces the matrix into a data frame, in the format of a prob sample space.

The next line defines the probs vector associated with the outcomes, and it is done with the
apply() function. The idea is to apply the dmultinom() function to each row (MARGIN=1) of the
data frame out. In general, given any multivariate probability mass function, we can use the FUN

argument of apply() to define the probs vector.
Once we set up the probability space S, we are free to study it in detail. We can simulate,

calculate marginal distributions, measure correlations, etc.

9.3 (In)distinguishable Elements

We hinted at the end of Section 2 that some interesting things happen when sampling from an urn
with repeated elements. As we remarked there, as far as urnsamples() is concerned, all elements
of the urn are distinguishable, even if they may not appear to be to our naked eye. (The reason
is that urnsamples() operates on the basis of the indices of the elements of the urn x, and not
actually on the elements themselves. This can be very useful for keeping track of the elements,
but gives some surprises if the user is not careful.)

Let’s look at a concrete example. We will sample from an urn that has 4 red balls and 10
blue balls inside. We will sample without replacement, and in an unordered fashion (the default
behavior of urnsamples).

> x <- rep(c("Red", "Blue"), times = c(4,10))

> P <- urnsamples(x, size = 3, replace = FALSE, ordered = FALSE)

> Q <- probspace(P)
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So far, so good. If I were to ask the reader about the experiment just described, (s)he would
likely say, “Of course! This corresponds to the hypergeometric model, where Red constitutes a
success, and in the case that we are interested in the number of Reds in our sample”. However,
if we take a look at the probability space Q, then we are in for quite a surprise! It has 364
elements, most of which being all Red or all Blue. So what happened? The answer is that while
many outcomes Blue Blue Blue may look the same listed in the data frame Q, these were derived
from actually many, many Blues in separate positions in x. Imagine that we took out a large
magnifying glass and took a closer look: many of the Blues that look the same from a distance
reveal themselves to be quite different upon closer examination. Again, the technical reason for
the repeats is that urnsamples() operates on the 1, 2, . . . , 14 indices of x by drawing unordered
samples, without replacement, of 1:14. It then takes those samples and substitutes back to
generate the entries of the data frame. In the case where x has repeated values, the result is many
repeated rows in the sample space P.

So what do we do? What if we really want to see the hypergeometric model, and we really
only care about the number of Reds in our sample? Well, the good news is that while there are
many repeated rows, it turns out that there are exactly the right number of rows repeated exactly
the right number of times. We simply need to accumulate them to get the desired answer.

The noorder() function was designed for this case. The way it works is to 1) sort the out-
comes of each row, 2) aggregate these new rows to eliminate duplications, and 3) accumulate the
probabilities of each of the duplicated rows. Its only input is a probability space, and its return
value is also a probability space. Let’s noorder() the probability space Q and see what happens:

> noorder(Q)

X1 X2 X3 probs

1 Blue Blue Blue 0.32967033

2 Blue Blue Red 0.49450549

3 Blue Red Red 0.16483516

4 Red Red Red 0.01098901

Now, this is more like it. There are four outcomes, each with a differing number of Reds in the
sample, namely, either 0, 1, 2, or 3 Reds. The probabilities associated with each outcome perhaps
look familiar, and we can confirm the connection between these and the hypergeometric model
with the dhyper() function:

> dhyper(0:3, 4, 10, 3)

[1] 0.32967033 0.49450549 0.16483516 0.01098901

Indeed, the matches are no coincidence. This example drives home the point that in every
case, one must think carefully about the experiment, look carefully at the results during every
step of the process, and apply the tools at hand to ultimately solve the problem.

Keep in mind that we could have arrived at the same answer by simply defining the random
variable X = number of Reds and finding the marginal() distribution of X.

9.4 Some Things That This Package Does Not Do

Some users will notice that some topics were omitted from the prob package. The following is a
partial list of some of the more important missing topics.

• Expectation: the concept of expectation is nowhere to be found in the prob package. There
are two reasons for this. First, once we have the probability space it is simple to use column
operations to find expected values and it is instructive for students to perform those tasks
themselves. Second, there already exists a perfectly fine expectation operator E() in the
distr family of packages; there is no need to duplicate that functionality here.
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• Infinite Sample Spaces: the package as a whole assumes that the sample space is finite.
This rules out common sample spaces discussed in many probability courses, for instance,
the sample space associated with tossing a coin until Heads occurs. Unfortunately, it is
impossible to store an infinitely long vector in the finite memory of a computer.

There are of course tricks around difficulties like these, such as chopping off the sample space
once the probabilities drop below a certain threshold. But the geometric case also poses the
problem that the outcomes are of differing lengths, which does not line up nicely in data
frame format. I decided to forego addressing these issues at the present time.

• Bayes’ Rule: there are no specific functions devoted to Bayes’ Rule, and this is simply
because they are not needed; we have the entire sample space at our disposal and can
discuss partitions of it naturally without any extra help. The prob package was written
to be largely neutral with respect to both the frequentist and subjective interpretations
of probability, and it can be used under either paradigm. In fact, the only function even
remotely frequentist is empirical(). The fact that probs is arbitrary leaves it to the user
to determine an appropriate model.

If you know of topics that would be of general interest and could be incorporated in the prob

package framework, I would be happy to hear about them. Comments and suggestions are always
welcomed.
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