
rcdk: Integrating the CDK with R

Rajarshi Guha
Miguel Rojas Cherto

October 8, 2014

Contents

1 Introduction 3

2 Input / Output 4

3 Visualization 6

4 Manipulating Molecules 7

4.1 Adding Information to Molecules 7

4.2 Atoms and Bonds . 8

4.3 Substructure Matching . 10

5 Molecular Descriptors 10

6 Fingerprints 14

7 Handling Molecular Formulae 17

7.1 Parsing a Molecule To a Molecular Formula 18

1

7.2 Initializing a Formula from the Symbol Expression 19

7.3 Generating Molecular Formula 20

7.4 Calculating Isotope Pattern 21

2

1 Introduction

Given that much of cheminformatics involves mathematical and statistical
modeling of chemical information, R is a natural platform for such work.
There are many cheminformatics applications that will generate useful in-
formation such as descriptors, fingerprints and so on. While one can always
run these applications to generate data that is then imported into R, it can
be convenient to be able to manipulate chemical structures and generate
chemical information with the R environment.

The CDK is a Java library for cheminformatics that supports a wide va-
riety of cheminformatics functionality ranging from reading molecular file
formats, performing ring perception and armaticity detection to fingerprint
generation and molecular descriptors.

The goal of the rcdk package is to allow an R user to access the chemin-
formatics functionality of the CDK from within R. While one can use the
rJava package to make direct calls to specific methods in the CDK, from R,
such usage does not usually follow common R idioms. The goal of the rcdk
is to allow users to use the CDK classes and methods in an R-like fashion.

The library is loaded as follows

> library(rcdk)

To list the documentation for all available packages try

> library(help=rcdk)

The package also provides an example data set, called bpdata which contains
277 molecules, in SMILES format and their associated boiling points (BP)
in Kelvin. The data.frame has two columns, viz., the SMILES and the BP.
Molecules names are used as row names.

3

2 Input / Output

Chemical structures come in a variety of formats and the CDK supports
many of them. Many such formats are disk based and these files can be
parsed and loaded by specifying their full paths

> mols <- load.molecules(c('data1.sdf', '/some/path/data2.sdf'))

Note that the above function will load any file format that is supported by
the CDK, so there’s no need to specify formats. In addition one can specify a
URL (which should start with “http://”) to specify remote files as well. The
result of this function is a list of molecule objects. The molecule objects
are of class jobjRef (provided by the rJava package). As a result,they
are pretty opaque to the user and are really meant to be processed using
methods from the rcdk or rJava packages.

However, since it loads all the molecules from the specified file into a list,
large files can lead to out of memory errors. In such a situtation it is prefer-
able to iterate over the file, one structure at a time. Currently this behavior
is supported for SDF and SMI files. An example of such a usage for a large
SD file would be:

> iter <- iload.molecules('verybig.sdf', type='sdf')
> while(hasNext(iter)) {

+ mol <- nextElem(iter)

+ print(get.property(mol, "cdk:Title"))

+ }

Another common way to obtain molecule objects is by parsing SMILES
strings. The simplest way to do this is

> smile <- 'c1ccccc1CC(=O)C(N)CC1CCCCOC1'
> mol <- parse.smiles(smile)[[1]]

Usage is more efficient when multiple SMILE are supplied, since then a single
SMILES parser object is used to parse all the supplied SMILES.

4

> smiles <- c('CCC', 'c1ccccc1', 'CCCC(C)(C)CC(=O)NC')
> mols <- parse.smiles(smiles)

If you plan on parsing a large number of SMILES, you may run into memory
issues, due to the large size of IAtomContainer objects. In such a case, it
can be useful to call the Java and R garbage collectors explicitly at the
appropriate time. In addition it can be useful to explicitly allocate a large
amount of memory for the JVM. For example,

> options("java.parameters"=c("-Xmx4000m"))

> library(rcdk)

> for (smile in smiles) {

+ m <- parse.smiles(smile)

+ ## perform operations on this molecule

+

+ jcall("java/lang/System","V","gc")

+ gc()

+ }

Given a list of molecule objects, it is possible to serialize them to a file in
some specified format. Currently, the only output formats are SMILES or
SDF. To write molecules to a disk file in SDF format:

> write.molecules(mols, filename='mymols.sdf')

By default, if mols is a list of multiple molecules, all of them will be written
to a single SDF file. If this is not desired, you can write each on to individual
files (which are prefixed by the value of filename):

> write.molecules(mols, filename='mymols.sdf', together=FALSE)

To generate a SMILES representation of a molecule we can do

> get.smiles(mols[[1]])

[1] "CCC"

5

> unlist(lapply(mols, get.smiles))

CCC c1ccccc1 CCCC(C)(C)CC(=O)NC

"CCC" "C1=CC=CC=C1" "CCCC(C)(C)CC(=O)NC"

3 Visualization

Currently the rcdk package only supports 2D visualization. This can be
used to view the structure of individual molecules or multiple molecules in
a tabular format. It is also possible to view a molecular-data table, where
one of the columns is the 2D image and the remainder can contain data
associated with the molecules.

Unfortunately, due to event handling issues, the depictions will display on
OS X, but the Swing window will become unresponsive. As a result, it is
not recommended to generate 2D depictions on OS X.

Molecule visualization is performed using the view.molecule.2d function.
For viewing a single molecule or a list of multiple molecules, it is simply

> smiles <- c('CCC', 'CCN', 'CCN(C)(C)',
+ 'c1ccccc1Cc1ccccc1',
+ 'C1CCC1CC(CN(C)(C))CC(=O)CC')
> mols <- parse.smiles(smiles)

> view.molecule.2d(mols[[1]])

> view.molecule.2d(mols)

If multiple molecules are provided, they are display in a matrix format, with
a default of four columns. This can be changed via the ncol argument.
Furthermore, the size of the images are 200 × 200 pixels, by default. But
this can be easily changed via the cellx and celly arguments.

In many cases, it is useful to view a “molecular spreadsheet”, which is a table
of molecules along with information related to the molecules being viewed.
The data is arranged in a spreadsheet like manner, with one of the columns
being molecules and the remainder being textual or numeric information.

6

This can be achieved using the view.table method which takes a list of
molecule objects and a data.frame containing the associated data. As ex-
pected, the number of rows in the data.frame should equal the length of
the molecule list.

> dframe <- data.frame(x = runif(4),

+ toxicity = factor(c('Toxic', 'Toxic', 'Nontoxic', 'Nontoxic')),
+ solubility = c('yes', 'yes', 'no', 'yes'))
> view.table(mols[1:4], dframe)

As shown, the view.table supports numeric, character and factor data
types.

4 Manipulating Molecules

In general, given a jobjRef for a molecule object one can access all the
class and methods of the CDK library via rJava. However this can be
cumbersome. The rcdk package is in the process of exposing methods and
classes that manipulate molecules. This section describes them - more will
be implemented in future releases.

4.1 Adding Information to Molecules

In many scenarios it’s useful to associate information with molecules. Within
R, you could always create a data.frame and store the molecule objects
along with relevant information in it. However, when serializing the molecules,
you want to be able to store the associated information.

Using the CDK it’s possible to directly add information to a molecule ob-
ject using properties. Note that adding such properties uses a key-value
paradigm, where the key should be of class character. The value can be
of class integer, double, character or jobjRef. Obviously, after setting
a property, you can get a property by its key.

> mol <- parse.smiles('c1ccccc1')[[1]]
> set.property(mol, "title", "Molecule 1")

7

> set.property(mol, "hvyAtomCount", 6)

> get.property(mol, "title")

[1] "Molecule 1"

It is also possible to get all available properties at once in the from of a list.
The property names are used as the list names.

> get.properties(mol)

$title

[1] "Molecule 1"

$hvyAtomCount

[1] 6

After adding such properties to the molecule, you can write it out to an SD
file, so that the property values become SD tags.

> write.molecules(mol, 'tagged.sdf', write.props=TRUE)

4.2 Atoms and Bonds

Probably the most important thing to do is to get the atoms and bonds of
a molecule. The code below gets the atoms and bonds as lists of jobjRef

objects, which can be manipulated using rJava or via other methods of this
package.

> mol <- parse.smiles('c1ccccc1C(Cl)(Br)c1ccccc1')[[1]]
> atoms <- get.atoms(mol)

> bonds <- get.bonds(mol)

> cat('No. of atoms =', length(atoms), '\n')

No. of atoms = 15

8

> cat('No. of bonds =', length(bonds), '\n')

No. of bonds = 16

Right now, given an atom the rcdk package does not offer a lot of methods
to operate on it. One must access the CDK directly. In the future more
manipulators will be added. Right now, you can get the symbol for each
atom

> unlist(lapply(atoms, get.symbol))

[1] "C" "C" "C" "C" "C" "C" "C" "Cl" "Br" "C" "C" "C" "C" "C"

[15] "C"

It’s also possible to get the 3D (or 2D coordinates) for an atom.

> coords <- get.point3d(atoms[[1]])

Given this, it’s quite easy to get the 3D coordinate matrix for a molecule

> coords <- do.call('rbind', lapply(atoms, get.point3d))

Once you have the coordinate matrix, a quick way to check whether the
molecule is flat is to do

> if (any(apply(coords, 2, function(x) length(unique(x))) == 1)) {

+ print("molecule is flat")

+ }

This is quite a simplistic check that just looks at whether the X, Y or
Z coordinates are constant. To be more rigorous one could evaluate the
moments of inertia about the axes.

9

4.3 Substructure Matching

The CDK library supports substructure searches using SMARTS (or SMILES)
patterns. The implementation allows one to check whether a target molecule
contains a substructure or not as well as to retrieve the atoms and bonds
of the target molecule that match the query substructure. At this point,
the rcdk only support the former operation - given a query pattern, does it
occur or not in a list of target molecules. The match method of this package
is modeled after the same method in the base package. An example of its
usage would be to identify molecules that contain a carbon atom that has
exactly two bonded neighbors.

> mols <- parse.smiles(c('CC(C)(C)C','c1ccc(Cl)cc1C(=O)O', 'CCC(N)(N)CC'))
> query <- '[#6D2]'
> hits <- match(query, mols)

> print(hits)

[1] NA

5 Molecular Descriptors

Probably the most desired feature when doing predictive modeling of molec-
ular activities is molecular descriptors. The CDK implements a variety of
molecular descriptors, categorized into topological, constitutional, geomet-
ric, electronic and hybrid. It is possible to evaluate all available descriptors
at one go, or evaluate individual descriptors.

First, we can take a look at the available descriptor categories.

> dc <- get.desc.categories()

> dc

[1] "electronic" "protein" "topological" "geometrical"

[5] "constitutional" "hybrid"

10

Given the categories we can get the names of the descriptors for a single
category. Of course, you can always provide the category name directly.

> dn <- get.desc.names(dc[1])

Each descriptor name is actually a fully qualified Java class name for the
corresponding descriptor. These names can be supplied to eval.desc to
evaluate a single or multiple descriptors for one or more molecules.

> aDesc <- eval.desc(mol, dn[1])

> allDescs <- eval.desc(mol, dn)

The return value of eval.desc is a data.frame with the descriptors in the
columns and the molecules in the rows. For the above example we get a single
row. But given a list of molecules, we can easily get a descriptor matrix.
For example, lets build a linear regression model to predict boiling points
for the BP dataset. First we need a set of descriptors and so we evaluate
all available descriptors. Also note that since a descriptor might belong to
more than one category, we should obtain a unique set of descriptor names

> descNames <- unique(unlist(sapply(get.desc.categories(), get.desc.names)))

For the current discussion we focus on a few, manually selected descriptors
that we know will be related to boiling point.

> data(bpdata)

> mols <- parse.smiles(bpdata[,1])

> descNames <- c(

+ 'org.openscience.cdk.qsar.descriptors.molecular.KierHallSmartsDescriptor',
+ 'org.openscience.cdk.qsar.descriptors.molecular.APolDescriptor',
+ 'org.openscience.cdk.qsar.descriptors.molecular.HBondDonorCountDescriptor')
> descs <- eval.desc(mols, descNames)

> class(descs)

[1] "data.frame"

11

> dim(descs)

[1] 277 81

As you can see we get a data.frame. Many of the columns will be NA. This
is because when a descriptor cannot be evaluated (due to some error) it
returns NA. In our case, since our molecules have no 3D coordinates many
geometric, electronic and hybrid descriptors cannot be evaluated.

Given the ubiquity of certain descriptors, some of them are directly avail-
able via their own functions. Specifically, one can calculate TPSA (topo-
logical polar surface area), AlogP and XlogP without having to go through
eval.desc.1.

> mol <- parse.smiles('CC(=O)CC(=O)NCN')[[1]]
> convert.implicit.to.explicit(mol)

> get.tpsa(mol)

[1] 72.19

> get.xlogp(mol)

[1] -0.883

> get.alogp(mol)

[1] -1.5983

In any case, now that we have a descriptor matrix, we easily build a linear
regression model. First, remove NA’s, correlated and constant columns. The
code is shown below, but since it involves a stochastic element, we will not
run it for this example. If we were to perform feature selection, then this
type of reduction would have to be performed.

1Note that AlogP and XlogP assume that hydrogens are explicitly specified in the
molecule. This may not be true if the molecules were obtained from SMILES

12

> descs <- descs[, !apply(descs, 2, function(x) any(is.na(x)))]

> descs <- descs[, !apply(descs, 2, function(x) length(unique(x)) == 1)]

> r2 <- which(cor(descs)^2 > .6, arr.ind=TRUE)

> r2 <- r2[r2[,1] > r2[,2] ,]

> descs <- descs[, -unique(r2[,2])]

Note that the above correlation reduction step is pretty crude and there
are better ways to do it. Given the reduced descriptor matrix, we can
perform feature selection (say using leaps or a GA) to identify a suitable
subset of descriptors. For now, we’ll select some descriptors that we know
are correlated to BP. The fit is shown in Figure 1 which plots the observed
versus predicted BP’s.

> model <- lm(BP ~ khs.sCH3 + khs.sF + apol + nHBDon, data.frame(bpdata, descs))

> summary(model)

Call:

lm(formula = BP ~ khs.sCH3 + khs.sF + apol + nHBDon, data = data.frame(bpdata,

descs))

Residuals:

Min 1Q Median 3Q Max

-94.395 -20.911 -1.168 19.574 114.237

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 267.3135 6.0006 44.548 <2e-16 ***

khs.sCH3 -22.7948 2.0676 -11.025 <2e-16 ***

khs.sF -24.4121 2.6548 -9.196 <2e-16 ***

apol 8.6211 0.3132 27.523 <2e-16 ***

nHBDon 47.1187 3.7061 12.714 <2e-16 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 34.08 on 272 degrees of freedom

Multiple R-squared: 0.837, Adjusted R-squared: 0.8346

F-statistic: 349.1 on 4 and 272 DF, p-value: < 2.2e-16

13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●● ●
●

● ●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

● ●

●
●

● ●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●●

●●●● ●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

200 300 400 500 600

20
0

30
0

40
0

50
0

60
0

Observed BP

P
re

di
ct

ed
 B

P

Figure 1: A plot of observed versus predicted boiling points, obtained from
a linear regression model using 277 molecules.

6 Fingerprints

Fingerprints are a common representation used for a variety of purposes
such as similarity searching and predictive modeling. The CDK provides
four types of fingerprints, viz.,

• Standard - a path based, hashed fingerprint. The default size is 1024
bits, but this can be changed via an argument

• Extended - similar to the Standard form, but takes into account ring
systems. Default size is 1024 bits

• EState - a structural key type fingerprint that checks for the presence
or absence of 79 EState substructures. Length of the fingerprint is 79

14

bits

• MACCS - the well known 166 bit structural keys

When using rcdk to evaluate fingerprints, you will need the fingerprint pack-
age. Since this is a dependency of the rcdk package, it should have been
automatically installed.

To generate the fingerprints, we must first obtain molecule objects. Thus
for example,

> smiles <- c('CCC', 'CCN', 'CCN(C)(C)',
+ 'c1ccccc1Cc1ccccc1',
+ 'C1CCC1CC(CN(C)(C))CC(=O)CC')
> mols <- parse.smiles(smiles)

> fp <- get.fingerprint(mols[[1]], type='maccs')

The variable, fp, will be of class fingerprint and can be manipulated using
the methods provided by the package of the same name. A simple example
is to perform a hierarchical clustering of the first 50 structures in the BP
dataset.

> mols <- parse.smiles(bpdata[1:50,1])

> fps <- lapply(mols, get.fingerprint, type='extended')
> fp.sim <- fp.sim.matrix(fps, method='tanimoto')
> fp.dist <- 1 - fp.sim

Once we have the distance matrix (which we must derive from the Tanimoto
similarity matrix), we can then perform the clustering and visualize it.

Another common task for fingerprints is similarity searching. In other words,
given a collection of “target” molecules, find those molecules that are similar
to a “query” molecule. This is achieved by evaluating a similarity metric
between the query and each of the target molecules. Those target molecules
exceeding a user defined cutoff will be returned. With the help of the fin-
gerprint package this is easily accomplished.

For example, we can identify all the molecules in the BP dataset that have
a Tanimoto similarity of 0.3 or more with acetalehyde, and then create

15

> clustering <- hclust(as.dist(fp.dist))

> plot(clustering, main='A Clustering of the BP dataset')

26 35
37 31 27 30 36 42

43 49 22 24
7

2 6
25 1

17
11 3 8

14 20 46
15 47

29 40 41 48
34

16
5 10 33 23 28 39 44

45 50 32 38
18

12 4 9
21

13 19

0.
0

0.
2

0.
4

0.
6

0.
8

A Clustering of the BP dataset

hclust (*, "complete")
as.dist(fp.dist)

H
ei

gh
t

Figure 2: A clustering of the first 50 molecules of the BP dataset, using the
CDK extended fingerprints.

a summary in Table 1. Note that this could also be accomplished with
molecular descriptors, in which case you’d probably evaluate the Euclidean
distance between descriptor vectors.

> query.mol <- parse.smiles('CC(=O)')[[1]]
> target.mols <- parse.smiles(bpdata[,1])

> query.fp <- get.fingerprint(query.mol, type='maccs')
> target.fps <- lapply(target.mols, get.fingerprint, type='maccs')
> sims <- unlist(lapply(target.fps,

+ distance,

+ fp2=query.fp, method='tanimoto'))

16

> hits <- which(sims > 0.3)

SMILES Similarity

11 CC(C)C=O 0.60
1 O=C 0.50
3 CC(=O)Cl 0.50
6 CC(=O)C 0.50
7 CCC=O 0.50
4 CC(=O)O 0.43

13 CC(C)C(=O)C 0.43
16 CC(C)C(=O)C(C)C 0.43
5 COC=O 0.38
2 CO 0.33
8 CC(=O)OC 0.33
9 C(=O)CCC 0.33

10 CCC(=O)C 0.33
12 CC(C)C(=O)O 0.33
14 CCC(=O)CC 0.33
15 CC(=O)C(C)(C)C 0.33

Table 1: Summary of molecules in the BP dataset that are greater than 0.3
similar to acetaldehyde

7 Handling Molecular Formulae

The molecular formula is the simplest way to characterize a molecular com-
pound. It specifies the actual number of atoms of each element contained
in the molecule. A molecular formula is represented by the chemical symbol
of each constituent element. If a molecule contains more than one atom for
a particular element, the quantity is shown as subscript after the chemical
symbol. Otherwise, the number of neutrons (atomic mass) that an atom is
composed can differ. This different type of atoms are known as isotopes. The
number of nucleos is denoted as superscripted prefix previous to the chem-
ical element. Generally it is not added when the isotope that characterizes
the element is the most occurrence in nature. E.g. C4H11O

2D.

17

7.1 Parsing a Molecule To a Molecular Formula

Front a molecule, defined as conjunct of atoms helding together by chemical
bonds, we can simplify it taking only the information about the atoms. rcdk
package provides a parser to translate molecules to molecular formlulas, the
get.mol2formula function.

> sp <- get.smiles.parser()

> molecule <- parse.smiles('N')[[1]]
> convert.implicit.to.explicit(molecule)

> formula <- get.mol2formula(molecule,charge=0)

Note that the above formula object is a CDKFormula-class. A cdkFormula-
class contains some attributes that defines a molecular formula. For exam-
ple, the mass, the charge, the isotopes, the character representation of the
molecular formula and the IMolecularFormula jobjRef object.

The molecular mass for this formula.

> formula@mass

[1] 17.02655

The charge for this formula.

> formula@charge

[1] 0

The isotopes for this formula. It is formed for three columns. isoto (the
symbol expression of the isotope), number (number of atoms for this isotope)
and mass (exact mass of this isotope).

> formula@isotopes

18

isoto number mass

[1,] "N" "1" "14.003074"

[2,] "H" "3" "1.007825032"

The jobjRef object from the IMolecularFormula java class in CDK.

> formula@objectJ

[1] "Java-Object{org.openscience.cdk.formula.MolecularFormula@768a1787}"

The symbol expression of the molecular formula.

> formula@string

[1] "H3N"

Depending of the circumstances, you may want to change the charge of the
molecular formula.

> formula <- set.charge.formula(formula, charge=1)

7.2 Initializing a Formula from the Symbol Expression

Other way to create a cdkFormula is from the symbol expression. Thus,
setting the characters of the elemental formula, the function get.formula

parses it to an object of cdkFormula-class.

> formula <- get.formula('NH4', charge = 1);

> formula

cdkFormula: H4N , mass = 18.03383 , charge = 1

19

7.3 Generating Molecular Formula

Mass spectrometry is an essential and reliable technique to determine the
molecular mass of compounds. Conversely, one can use the measured mass
to identify the compound via its elemental formula. One of the limitations
of the method is the precision and accuracy of the instrumentation. As
a result, rather than specify exact masses, we specify tolerances or ranges
of possible mass, resulting in multiple candidate formulae for a given mass
window. The generate.formula function returns a list formulas which have
a given mass (within an error window):

> mfSet <- generate.formula(18.03383, window=1,

+ elements=list(c("C",0,50),c("H",0,50),c("N",0,50)),

+ validation=FALSE);

> for (i in 1:length(mfSet)) {

+ print(mfSet[i])

+ }

[[1]]

cdkFormula: H4N , mass = 18.03437 , charge = 0

[[1]]

cdkFormula: CH6 , mass = 18.04695 , charge = 0

[[1]]

cdkFormula: H18 , mass = 18.14085 , charge = 0

Important to know is if an elemental formula is valid. The method is-

valid.formula provides this function. Two constraints can be applied, the
nitrogen rule and the (Ring Double Bond Equivalent) RDBE rule.

> formula <- get.formula('NH4', charge = 0);

> isvalid.formula(formula,rule=c("nitrogen","RDBE"))

[1] FALSE

We can observe that the ammonium is only valid if it is defined with charge
of +1.

20

7.4 Calculating Isotope Pattern

Due to the measurement errors in medium resolution spectrometry, a given
error window can result in a massive number of candidate formulae. The
isotope pattern of ions obtained experimentally can be compared with the
theoretical ones. The best match is reflected as the most probable elemental
formula. rcdk provides the function get.isotopes.pattern which predicts
the theoretical isotope pattern given a formula.

> formula <- get.formula('CHCl3', charge = 0)

> isotopes <- get.isotopes.pattern(formula,minAbund=0.1)

> isotopes

mass abund

[1,] 117.9144 1.0000000

[2,] 119.9114 0.9598733

[3,] 121.9085 0.3071189

In this example we generate a formula for a possible compound with a charge
(z =≈ 0) containing the standard elements C, H, and Cl. The isotope
pattern can be visually inspectd, as shown in Figure 3.

21

> plot(isotopes, type="h", xlab="m/z", ylab="Intensity")

118 119 120 121 122

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m/z

In
te

ns
ity

Figure 3: Theoretical isotope pattern given a molecular formula.

22

	Introduction
	Input / Output
	Visualization
	Manipulating Molecules
	Adding Information to Molecules
	Atoms and Bonds
	Substructure Matching

	Molecular Descriptors
	Fingerprints
	Handling Molecular Formulae
	Parsing a Molecule To a Molecular Formula
	Initializing a Formula from the Symbol Expression
	Generating Molecular Formula
	Calculating Isotope Pattern

