
seasonal: R interface to X-13ARIMA-SEATS

Christoph Sax

February 5, 2015

1 Introduction

seasonal is an easy-to-use and full-featured R-interface to X-13ARIMA-SEATS, the newest seasonal
adjustment software developed by the United States Census Bureau. X-13ARIMA-SEATS combines and
extends the capabilities of the older X-12ARIMA (developed by the Census Bureau) and TRAMO-SEATS
(developed by the Bank of Spain).

If you are new to seasonal adjustment or X-13ARIMA-SEATS, the automated procedures of seasonal
allow you to quickly produce good seasonal adjustments of time series. Start with the Installation and
Getting started section and skip the rest. Alternatively, demo(seas) gives an overview of the package
functionality.

If you are familiar with X-13ARIMA-SEATS, you may benefit from the flexible input and output
structure of seasonal. The package allows you to use (almost) all commands of X-13ARIMA-SEATS,
and it can import (almost) all output generated by X-13ARIMA-SEATS. The only exception is the
‘composite’ spec, which is easy to replicate in basic R. Read the Input and Output sections and have a
look at the wiki, where the examples from the official X-13ARIMA-SEATS manual are reproduced in R.

2 Installation

2.1 Getting seasonal

The stable version is available from CRAN:

install.packages("seasonal")

2.2 Getting X-13

seasonal does not include the binary executables of X-13ARIMA-SEATS. They can be obtained precom-
piled from here (Windows: x13ashtmlall.zip). There are guides for building it from source for Ubuntu
or Mac OS-X.

Download the file, unzip it and copy x13ashtml.exe (or x13ashtml, on a Unix system) to any desired
location on your file system.

2.3 Telling R where to find X-13

Next, you need to tell seasonal where to find the binary executables of X-13ARIMA-SEATS, by setting
the specific environmental variable X13_PATH. This may be done during your active session in R:

Sys.setenv(X13_PATH = "YOUR_X13_DIRECTORY")

Exchange YOUR_X13_DIRECTORY with the path to your installation of X-13ARIMA-SEATS. Note that
the Windows path C:\something\somemore has to be entered UNIX-like C:/something/somemore or
C:\\something\\somemore. You can always check your installation with:

checkX13()

1

http://www.census.gov/srd/www/x13as/
https://github.com/christophsax/seasonal/wiki/Examples-of-X-13ARIMA-SEATS-in-R
http://www.census.gov/ts/x13as/docX13ASHTML.pdf
http://www.census.gov/srd/www/x13as/x13down_pc.html
http://askubuntu.com/questions/444354/how-do-i-install-x13-arima-seats-for-rstudio-from-source
https://github.com/christophsax/seasonal/wiki/Compiling-X-13ARIMA-SEATS-from-Source-for-OS-X

If it works, you may want to set the environmental variable permanently, by adding the Sys.setenv

line to one of your .Rprofile files. The easiest is to use the one located in your home directory, which
can be written directly from R:

write('Sys.setenv(X13_PATH = "YOUR_X13_DIRECTORY")',
file = "~/.Rprofile", append = TRUE)

If the file does not exist (by default), it will be created. Make sure that you get the quotes right:
double quotes around your directory, single quotes around the whole Sys.setenv line, such that R
understands your string. Check first that the the Sys.setenv line works correctly; once it is written you
may have to edit .Rprofile manually. (Or add a second, overwriting line to it.) For other ways to set
an environmental variable permanently in R, see ?Startup.

3 Getting started

seas is the core function of the seasonal package. By default, seas calls the automatic procedures of
X-13ARIMA-SEATS to perform a seasonal adjustment that works well in most circumstances:

m <- seas(AirPassengers)

The first argument of seas has to be a time series of class "ts". The function returns an object of
class "seas" that contains all necessary information on the adjustment.

There are several functions and methods for "seas" objects: The final function returns the adjusted
series, the plot method shows a plot with the unadjusted and the adjusted series. The summary method
allows you to display an overview of the model:

final(m)

plot(m)

summary(m)

By default, seas calls the SEATS adjustment procedure. If you prefer the X11 adjustment procedure,
use the following option (see the Input section for details on how to use arbitrary options with X-13):

seas(AirPassengers, x11 = "")

A default call to seas also invokes the following automatic procedures of X -13ARIMA-SEATS:

• Transformation selection (log / no log)

• Detection of trading day and Easter effects

• Outlier detection

• ARIMA model search

Alternatively, all inputs may be entered manually, as in the following example:

seas(x = AirPassengers,

regression.variables = c("td1coef", "easter[1]", "ao1951.May"),

arima.model = "(0 1 1)(0 1 1)",

regression.aictest = NULL,

outlier = NULL,

transform.function = "log")

The static command returns the manual call of a model. The call above can be easily generated
from the automatic model:

static(m)

static(m, coef = TRUE) # also fixes the coefficients

If you have Shiny installed, the inspect command offers a way to analyze and modify a seasonal
adjustment procedure (see the section below for details):

inspect(m)

2

4 Input

In seasonal, it is possible to use almost the complete syntax of X-13ARIMA- SEATS. This is done via the
... argument in the seas function. The X -13ARIMA-SEATS syntax uses specs and arguments, with
each spec optionally containing some arguments. These spec-argument combinations can be added to
seas by separating the spec and the argument by a dot (.). For example, in order to set the ‘variables’
argument of the ‘regression’ spec equal to td and ao1999.jan, the input to seas looks like this:

m <- seas(AirPassengers, regression.variables = c("td", "ao1955.jan"))

Note that R vectors may be used as an input. If a spec is added without any arguments, the spec
should be set equal to an empty string (or, alternatively, to an empty list, as in previous versions).
Several defaults of seas are empty strings, such as the default seats = "". See the help page (?seas)
for more details on the defaults. Note the difference between "" (meaning the spec is enabled but has
no arguments) and NULL (meaning the spec is disabled).

It is possible to manipulate almost all inputs to X-13ARIMA-SEATS in this way. The best way to
learn about the relationship between the syntax of X-13ARIMA-SEATS and seasonal is to study the
comprehensive list of examples in the wiki. For instance, example 1 in section 7.1 from the manual,

series { title = "Quarterly Grape Harvest" start = 1950.1

period = 4

data = (8997 9401 ... 11346) }

arima { model = (0 1 1) }

estimate { }

translates to R in the following way:

seas(AirPassengers,

x11 = ""),

arima.model = "(0 1 1)"

)

seas takes care of the ‘series’ spec, and no input beside the time series has to be provided. As seas

uses the SEATS procedure by default, the use of X11 has to be specified manually. When the ‘x11’ spec is
added as an input (like above), the mutually exclusive and default ‘seats’ spec is automatically disabled.
With arima.model, an additional spec-argument is added to the input of X-13ARIMA-SEATS. As the
spec cannot be used in the same call as the ‘automdl’ spec, the latter is automatically disabled.

There are some mutually exclusive specs in X-13ARIMA-SEATS. If more than one mutually exclusive
spec is included in seas, specs are overwritten according the following priority rules:

• Model selection

1. arima

2. pickmdl

3. automdl (default)

• Adjustment procedure

1. x11

2. seats (default)

As an alternative to the ... argument, spec-arguments can also be supplied as a named list (exper-
imental feature, inspired by base R save). This is useful for programming:

seas(list = list(x = AirPassengers, x11 = ""))

3

https://github.com/christophsax/seasonal/wiki/Examples-of-X-13ARIMA-SEATS-in-R
http://www.census.gov/ts/x13as/docX13ASHTML.pdf

5 Output

seasonal has a flexible mechanism to read data from X-13ARIMA-SEATS. With the series function, it
is possible to import almost all output that can be generated by X-13ARIMA-SEATS. For example, the
following command returns the forecasts of the ARIMA model as a "ts" time series:

m <- seas(AirPassengers)

series(m, "forecast.forecasts")

Because the forecast.save = "forecasts" argument has not been specified in the model call,
series re-evaluates the call with the ‘forecast’ spec enabled. It is also possible to return more than one
output table at the same time:

series(m, c("forecast.forecasts", "d1"))

You can use either the unique short names of X-13 (such as d1), or the the long names (such as
forecasts). Because the long table names are not unique, they need to be combined with the spec
name (forecast). See ?series for a complete list of options.

Note that re-evaluation doubles the overall computation time. If you want to speed it up, you have
to be explicit about the output in the model call:

m <- seas(AirPassengers, forecast.save = "forecasts")

series(m, "forecast.forecasts")

Some specs, like ‘slidingspans’ and ‘history’, are time consuming. Re-evaluation allows you to separate
these specs from the basic model call:

m <- seas(AirPassengers)

series(m, "history.saestimates")

series(m, "slidingspans.sfspans")

If you are using the HTML version of X-13, the out function shows the content of the main output
in the browser:

out(m)

6 Graphs

There are several graphical tools to analyze a seas model. The main plot function draws the seasonally
adjusted and unadjusted series, as well as the outliers. Optionally, it also draws the trend of the seasonal
decomposition:

m <- seas(AirPassengers, regression.aictest = c("td", "easter"))

plot(m)

plot(m, outliers = FALSE)

plot(m, trend = TRUE)

The monthplot function allows for a monthwise plot (or quarterwise, with the same function name)
of the seasonal and the SI component:

monthplot(m)

monthplot(m, choice = "irregular")

Also, many standard R function can be used to analyze a "seas" model:

pacf(resid(m))

spectrum(diff(resid(m)))

plot(density(resid(m)))

qqnorm(resid(m))

The identify method can be used to select or deselect outliers by point and click. Click several
times to loop through different outlier types.

identify(m)

4

7 Inspect tool

The inspect function is a graphical tool for choosing a seasonal adjustment model, using Shiny. To
install the latest version of Shiny, type:

install.packages("shiny")

The goal of inspect is to summarize all relevant options, plots and statistics that should be usually
considered. inspect uses a "seas" object as its only argument:

inspect(m)

The inspect function opens an interactive window that allows for the manipulation of a number of
arguments. It offers several views to analyze the series graphically. With each change, the adjustment
process and the visualizations are recalculated. Summary statistics are shown in the first tab. The last
tab offers access to all series that can be produced with X-13. The views in inspect are also customizable,
see the examples in ?inspect.

8 Chinese New Year, Indian Diwali and other customized hol-
idays

seasonal includes genhol, a function that makes it easy to model user-defined holiday regression effects.
genhol is an R replacement for the equally named software by the Census Office; no additional installation
is required. The function uses an object of class "Date" as its first argument, which specifies the
occurrence of the holiday.

In order to adjust Indian industrial production for Diwali effects, use, e.g.,:

data(seasonal) # Indian industrial production: iip

data(holiday) # dates of Chinese New Year, Indian Diwali and Easter

seas(iip,

x11 = "",

xreg = genhol(diwali, start = 0, end = 0, center = "calendar"),

regression.usertype = "holiday"

)

For more examples, including Chinese New Year and complex pre- and post-holiday adjustments, see
?genhol.

9 Production use

While seasonal offers a quick way to adjust a time series in R, it is equally suited for the recurring
processing of potentially large numbers of time series. There are two kind of seasonal adjustments in
production use:

1. a periodic application of an adjustment model to a time series

2. an automated adjustment to a large number of time series

This section shows how both tasks can be accomplished with seasonal and basic R.

9.1 Storing calls and batch processing

seas calls are R objects of the standard class "call". Like any R object, calls can be stored in a list.
In order to extract the call of a "seas" object, you can access the $call element or extract the static
call with static(). For example,

5

http://shiny.rstudio.com

two different models for two different time series

m1 <- seas(fdeaths, x11 = "")

m2 <- seas(mdeaths, x11 = "")

l <- list()

l$c1 <- static(m1) # static call (with automated procedures substituted)

l$c2 <- m2$call # original call

The list can be stored and re-evaluated if new data becomes available:

ll <- lapply(l, eval)

which returns another list containing the re-evaluated "seas" objects. If you want to extract the
final series, use:

do.call(cbind, lapply(ll, final))

Of course, you also can extract any other series, e.g.:

seasonal component of an X11 adjustment, see ?series

do.call(cbind, lapply(ll, series, "d10"))

9.2 Automated adjustment of multiple series

X-13 can also be applied to a large number of series, using automated adjustment methods. This can be
accomplished with a loop or an apply function. It is useful to wrap the call to seas in a try statement;
that way, an error will not break the execution. You need to develop an error handling strategy for
these cases: You can either drop them, use them without adjustment or switch to a different automated
routine.

collect data

dta <- list(fdeaths = fdeaths, mdeaths = mdeaths)

loop over dta

ll <- lapply(dta, function(e) try(seas(e, x11 = "")))

list failing models

is.err <- sapply(ll, class) == "try-error"

ll[is.err]

return final series of successful evaluations

do.call(cbind, lapply(ll[!is.err], final))

If you have several cores and want to speed things up, the process is well suited for parallelization
(thanks, Matthias Bannert):

a list with 100 time series

largedta <- rep(list(AirPassengers), 100)

library(parallel) # R-core team, part of R

set up cluster

cl <- makeCluster(detectCores())

load 'seasonal' for each node

clusterEvalQ(cl, library(seasonal))

export data to each node

6

clusterExport(cl, varlist = "largedta")

run in parallel (2.2s on a 8-core Macbook)

parLapply(cl, largedta, function(e) try(seas(e, x11 = "")))

compare to standard lapply (9.6s)

lapply(largedta, function(e) try(seas(e, x11 = "")))

finally, stop the cluster

stopCluster(cl)

10 License

seasonal is free and open source, licensed under GPL-3. It has been developed for the use at the Swiss
State Secretariat of Economic Affairs and is not related to the development of X-13ARIMA-SEATS
(license).

Please report bugs and suggestions on Github or send me an e-mail. Thank you!

7

https://www.census.gov/srd/www/disclaimer.html
https://github.com/christophsax/seasonal
mailto:christoph.sax@gmail.com

	Introduction
	Installation
	Getting seasonal
	Getting X-13
	Telling R where to find X-13

	Getting started
	Input
	Output
	Graphs
	Inspect tool
	Chinese New Year, Indian Diwali and other customized holidays
	Production use
	Storing calls and batch processing
	Automated adjustment of multiple series

	License

