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The R package secrdesign is a set of tools to assist the design of studies using spatially explicit capture—
recapture (SECR). It provides convenient wrappers for simulation and model fitting functions in package
secr to emulate many features of the ‘Simulator’ module of Density 5.0 (Efford 2012). Other tools may be
added in future.

This document is a technical guide to secrdesign. It assumes an understanding of estimator properties such
as bias, precision, and confidence interval coverage, and the use of Monte Carlo simulation to predict the
frequentist performance of different sampling designs. Using secrdesign can be daunting because it allows
for many different combinations of data generation, model fitting and summary statistics. Several examples
are given to indicate the range of possibilities.

Introduction
When designing a study we assume you have in mind —

(i) a population parameter you want to measure (probably density or population size),

(ii) one or more design variables over which you have some control (number and spacing of detectors,
number of sampling occasions etc.),

(iii) some pilot data, or parameter estimates from published studies, and

(iv) a criterion by which to evaluate different designs. This is most likely the precision of the estimates, as
this in turn determines your ability (power) to recognise changes. Cost or effort may be an explicit
criterion, or the designs may be constructed to allocate constant effort in different ways.

We use ‘relative standard error’ (RSE) for the relative precision of an estimate. This is sometimes called the
coefficient of variation (CV) of the estimate, but RSE is more appropriate. We use ‘accuracy’ in the sense of
Williams et al. (2002 p.45) and other authors from the United States. Accuracy combines both systematic
error (bias) and precision: one measure is the square root of the mean squared difference between the true
value and the estimate (RMSE).

Once you have sorted out (i)—(iv) you can proceed to use Monte Carlo simulation in secrdesign to evaluate
how alternative sampling scenarios perform with respect to your chosen criterion.

Fig. 1 shows the sequence of steps taken in secrdesign to conduct simulations and summarise the results.
Each step is described in detail in a later section. Simulations are specified by ‘scenarios’ stored in a dataframe.
The scenario dataframe will usually be constructed with make.scenarios. You may construct it manually,
but there is a rigid list of required columns (see The scenarios dataframe).

Typically, you will (i) construct detector array(s), (ii) construct a dataframe of scenarios, (iii) use
run.scenarios() to generate data and fit SECR models, (iv) select some statistics with select.stats(),
and (v) summarise and plot the results.
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Fig. 1. Core functions in secrdesign (yellow) and their main inputs and outputs. Output from the
simulation function run.scenarios() may be saved as whole fitted models, predicted values (parameter
estimates), or selected statistics. Each form of output requires different subsequent handling. The default
path is shown by solid blue arrows.

A simple example

For an introductory example we construct a simple set of scenarios and perform some simulations. The trap
layout is a default 6 x 6 grid of multi-catch traps at 20-m spacing. Density takes one of two levels (5/ha or
10/ha) and detection parameters sigma and g0 are fixed.

library(secrdesign)

scenl <- make.scenarios(D = c(5,10), sigma

trapsl <- make.grid()

simsl <- run.scenarios(nrepl = 50, trapset = trapsl, scenarios =
scenl, seed = 345, fit = TRUE)

25, g0 = 0.2)

The output is an object of class c( "estimatetables", "secrdesign", "list"). We use the summary
method for estimatetables to view results, and here display only the summary output (omitting a header that
describes the simulations).

summary (sims1) $0UTPUT

## $°1°



## n mean se

## estimate 50 5.23767 0.24994
## SE.estimate 50 1.84409 0.05958
## 1cl 50 2.70152 0.16476
## ucl 50 10.28534 0.37589
## RB 50 0.04753 0.04999
## RSE 50 0.36890 0.00962
## COV 50 0.92000 0.03876
##

## $°2°

## n mean se
## estimate 50 9.58795 0.36972
## SE.estimate 50 2.45915 0.05721
## 1cl 50 5.86410 0.27453
## ucl 50 15.75842 0.47775
## RB 50 -0.04121 0.03697
## RSE 50 0.26727 0.00668
## COV 50 0.92000 0.03876

Later sections show how to customize the summary and plot results.

Defining scenarios

Detector layouts

Detector layouts are specified as secr ‘traps’ objects. These may be input from text files using read.traps or
constructed according to a particular geometry and spacing with functions such as make.grid, make.circle,
make.systematic or trap.builder. See the help files for these secr functions for further details. The
detector type (multi-catch trap, proximity detector etc.) is stored as an attribute of each ‘traps’ object, which
may also include detector-level covariates and detector ‘usage’ by occasion.

Multiple layouts are combined in a single list object; component names (‘grid6x6’ etc.) will be used to
annotate the output.

library(secrdesign)

mydetectors <- list(grid6x6 = make.grid(6,6),
grid8x9 = make.grid(8,9),
grid12x12 = make.grid(12,12))

This creates square grids with the default detector type ‘multi’ and default spacing 20 m. See
?secr: :make.grid for other options.

The scenarios dataframe

The function make.scenarios() constructs a dataframe in which each row defines a simulation scenario. Its
arguments (with defaults) are:

make.scenarios (trapsindex = 1, ,
sigma, lambdaO, detectfn = 0, recapfactor = 1, popindex =
detindex = 1, fitindex = 1, groups, crosstraps = TRUE)

noccasions = 3, nrepeats = 1, D, g0,
ilg



Each argument except for ‘groups’ and ‘crosstraps’ may be used to specify a range of values for a parameter.
Four (‘trapsindex’, ‘popindex’, ‘detindex’, ‘fitindex’) are actually surrogate numerical indices; the index is
used to select one component from a list of possibilities later provided as input to run.scenarios().

By default, a scenario is formed from each unique combination of the input values (trapsindex, noccasions,
nrepeats, D, g0, sigma, lambda0, detectfn, recapfactor, popindex, and fitindex) using expand.grid. For
example,

make.scenarios (trapsindex = 1:3, noccasions = 4, D = 5, g0 = 0.2, sigma = c(20,30))

##  scenario trapsindex noccasions nrepeats D g0 sigma detectfn recapfactor popindex
## 1 1 1 4 150.2 20 0 1 1
## 2 2 2 4 150.2 20 0 1 1
## 3 3 3 4 150.2 20 0 1 1
## 4 4 1 4 150.2 30 0 1 1
## 5 5 2 4 150.2 30 0 1 1
## 6 6 3 4 150.2 30 0 1 1
## detindex fitindex
## 1 1 1
## 2 1 1
## 3 1 1
## 4 1 1
## 5 1 1
## 6 1 1

In this case three different grids (possibly differing in number of traps) are trapped for the same number of
occasions. A more interesting possibility is to vary the number of occasions inversely with the number of
traps. However, if we naively set e.g., noccasions = c(8, 4, 2), this would generate all combinations of
grid and number of occasions (18 different scenarios).

The alternative is to set crosstraps = FALSE. Then the vectors ‘trapsindex’, ‘noccasions’, and ‘nrepeats’
are locked together (if fewer values are provided in one of the vectors then it is re-used as required), and only
the combination is crossed with the remaining parameter scenarios:

make.scenarios (trapsindex = 1:3, noccasions = c(8,4,2), D =5, g0 = 0.2,
sigma = c¢(20,30), crosstraps = FALSE)

##  scenario trapsindex noccasions nrepeats D gO sigma detectfn recapfactor popindex
## 1 1 1 8 150.2 20 0 1 1
## 2 2 2 4 150.2 20 0 1 1
## 3 3 3 2 150.2 20 0 1 1
## 4 4 1 8 150.2 30 0 1 1
## 5 5 2 4 150.2 30 0 1 1
## 6 6 3 2 150.2 30 0 1 1
## detindex fitindex
## 1 1 1
## 2 1 1
## 3 1 1
## 4 1 1
## 5 1 1
## 6 1 1

All arguments except ‘fitindex’ control the generation of data. Note that ‘g0’ and ‘lambda0’ are alternatives:
use the one appropriate to the detection function specified with detectfn’ (see?secr::detectfn‘ for codes).



‘D’ is omitted if an inhomogeneous Poisson distribution is specified using a mask covariate (see Non-uniform
populations). D is in animals / hectare (1 ha = 0.01km?) and sigma is in metres, as in secr.

The ‘nrepeats’ column refers to the number of notional independent replicates of the particular detector
layout. Notional replicates are simulated by (invisibly) multiplying density (D) by this factor, and ultimately
dividing it into the estimate. Think of 5 grids of automatic cameras so widely separated that no animal
moves between the grids. As detections of different animals are ordinarily modelled as independent, the entire
design is equivalent to 5 times the density of animals interacting with one grid. This breaks down, of course,
if animals compete for traps (as with single-catch traps), and should not be used in that case except as a
rough approximation.

Just as trapsindex serves as a placeholder for entire detector arrays, popindex, detindex and fitindex tell
run.scenarios() which set of arguments to select from pop.args, det.args and fit.args for sim.popn,
sim.capthist and secr.fit respectively. These are for more advanced use: you may not need them.

When a vector of group identifiers is provided in ‘groups’, the population in each scenario is a set of
independently sampled groups, each defined on a separate row. Groups are initially assigned the same
parameter values and other settings: it is up to the user to insert group-specific values (example at Grouped
populations).

Running simulations

The function run.scenarios() generates multiple datasets and, if requested, fits an SECR model to each
one. In this section we describe its main arguments, with additional detail on habitat masks and customizing
the output.

Arguments of run.scenarios()

run.scenarios (nrepl, scenarios, trapset, maskset, xsigma = 4,
nx = 32, pop.args, det.args, fit = FALSE, fit.args, extractfn =
NULL, multisession = FALSE, ncores = 1, seed = 123)

nrepl determines the number of replicate simulations. Make this large enough that the summary statistics
have enough precision to answer your question. This is usually a matter for experimentation, remembering
that precision (SE) is proportional to the square root of nrepl.

scenarios is the dataframe constructed with make.scenarios() as described in the last section.
trapset is a single ‘traps’ object or a list of traps objects, as described in ‘Detector layouts’ above.

maskset is an optional set of habitat masks, usually one per detector layout. If not specified, then masks will
be constructed ‘on the fly’ using secr: :make.mask with a ‘buffer’ of width xsigma x scenarios$sigma and
nx cells in the x dimension.

pop.args provides additional control over sim.popn (see ?secr::sim.popn for more). You may wish, for
example, to set pop.args = list(Ndist = "fixed") to override the default of Poisson variation in the
total number of simulated animals.

det.args provides additional control over sim.capthist (see ?secr: :sim.capthist for more). One use is to
retain the simulated population as an attribute of the capthist object by setting det.args = list(savepopn
= TRUE); another is to set the binomN argument for count detectors. The sim.capthist arguments traps,
popn, detectpar, detectfn and noccasions are defined in the scenario or pop.args and cannot be overridden
by setting det.args.



Use fit = FALSE to generate and summarise detection data without fitting SECR models. This lets you
check that your scenarios result in reasonable numbers of detected individuals (n), detections (ndet), and
movements (nmov), before launching a full-blown simulation.

fit.args lets you specify how SECR models will be fitted to the simulated data. Most default arguments of
secr.fit may be overridden by including them in fit.args. For example, to specify a negative exponential
detection function use fit.args = list(detectfn = "EX"). If you wish to compare nspec different model
specifications then fit.args should be a list of lists, one per specification, with fitindex taking values in
the range 1:nspec.

The use of multisession and ncores is discussed under Additional topics.

Customising run.scenarios()

The output from run.scenarios() is controlled by its argument extractfn. This is a short function that is
applied either (i) to each simulated raw dataset (capthist object) (fit = FALSE), or (ii) to each fitted model
(fit = TRUE).

The default (builtin) extractfn (below) behaves appropriately for either data type. It is mostly concerned
with summarising raw counts when fit = FALSE. A dataframe with no rows is returned when a model fails
to fit.

extractfn <- function(x) {
if (inherits(x, 'capthist')) {
## summarised raw data
counts <- function(CH) {
## for single-session CH
if (nrow(CH)==0)
c(n=0, ndet=0, nmov=0, dpa = NA)
else {
nmoves <- sum(unlist(sapply(moves(CH), function(y) y>0)))
## detectors per animal
dpa <- if (length(dim(CH)) == 2)
mean (apply(abs(CH), 1, function(y) length(unique(y[y>0]1))))
else
mean (apply(apply(abs(CH), c(1,3), sum)>0, 1, sum))
c(n=nrow(CH), ndet=sum(abs(CH)>0), nmov=nmoves, dpa = dpa)

}
3
if (ms(x))
unlist(lapply(x, counts))
else {
gp <- covariates(x)$group
if (is.null(gp))
counts (x)
else
unlist(lapply(split(x,gp,dropnullocc=TRUE), counts))
}

X
else if (inherits(x,'secr') & ('is.null(x$fit)))
## fitted model:
## default predictions of 'real' parameters
predict(x)
else
## null output: dataframe of O rows and O columns



data.frame()

When fit = FALSE, the default output from each replicate is a vector of 4 summary statistics:

o n - number of different individuals

o ndet - total number of detections (captures’ andrecaptures’)

o nmov - total number of detections at a detector other than the one where an animal was last detected
o dpa - detectors per animal (average number of detectors at which each animal was recorded)

When fit = TRUE, the default output from each replicate is the result of applying predict to the fitted
model, i.e. a dataframe of ‘real’ parameter estimates and their standard errors etc. (an empty dataframe is
returned if model fitting fails). Nearly the same is achieved by setting extractfn = predict for the ‘beta’
coeflicients set extractfn = coef. For a conditional likelihood fit it may be appropriate to set extractfn
= derived. To focus on population size in the masked region, set extractfn = region.N.

The user may also choose to save the entire dataset (fit = FALSE) or the entire fitted model (secr object;
fit = TRUE) for each replicate by setting extractfn = identity. For a large analysis there is a risk of
exceeding memory limits in R, and saving everything is generally not a good idea. For most purposes it is
sufficient to save a trimmed version of the fitted model extractfn = trim (note secr defines the function
trim). However, the full model is needed for derived.SL or regionN.SL (see Extracting estimate tables from
fitted models).

run.scenarios() sets the class' of its output to distinguish among fitted models (“fittedmodels”), estimate
tables from predict, coef etc. (“estimatetables”), and numeric values ready for summarisation (“selectd-
statistics”). Simulated data saved with fit = FALSE, extractfn = identity have class c(“rawdata”,
“secrdesign”, “list”). An attribute ‘outputtype’ is used to make finer distinctions among these types of output
(“secrfit”; “predicted”, “coef”, “capthist”, or “numeric”). Output from extractfn = derived is treated as
“predicted”.

When fit = TRUE, analyses are performed with secr.fit. Other analyses may be specified by setting fit =
FALSE and providing the analysis function as the value for extractfn. The function should accept a ‘capthist’
object as input. For example, conventional closed-population estimates may be obtained with

closedNsim <- run.scenarios (nrepl = 10, scenarios = scenl, trapset = trapsi,
extractfn = closedN, estimator = c("null", "chao", "chaomod"))

This applies various nonspatial estimators to simulated spatial samples. Named arguments of extractfn
may be included (here, ‘estimator’); these are used for all scenarios, unlike fit.args which may vary among
scenarios. Summarisation of alternative analyses will usually require careful selection of ‘parameter’ and
‘statistics’ in select.stats (see Choosing the statistics to summarise).

An alternative is to write your own code along these lines:

suml <- function(out) {
require (abind)
## collapse replicates to an array, omitting non-numeric column
out <- do.call(abind, c(out, along = 3))[,-1,,drop = FALSE]
## convert array from character to numeric
mode (out) <- "numeric"
## take the average over replicates (meaningless for some fields)
apply(out, 1:2, mean, na.rm = TRUE)
b
lapply(closedNsim$output, suml)

Tthe full class is actually c(x, “secrdesign”“,”list“) where x is as described.



More on masks

A habitat mask in secr is a raster representation of the region near the detectors in which the centres of
detected animals may lie. This excludes both nearby non-habitat, and habitat that is so distant that it is
implausible any animal centred there would reach a detector. It is often convenient to define a mask to
include all cells whose centre is within a certain distance of a detector - the buffer radius.

Within secrdesign, a mask is used both when generating populations of animals with sim.popn and when
fitting SECR models with secr.fit. The extent of the mask used to generate populations is important if
you are concerned with population size (for example, if you set extractfn = region.N). Then the size of
the region determines the true value of the parameter of interest (/V), and influences its sampling variance.
The extent of the mask is less critical when density is the parameter of interest.

The default behaviour of run.scenarios() is to use a concave buffer of width xsigma x sigma around
the particular detector layout. The ‘coarseness’ of the mask is determined by nx; note that the default
for run.scenarios (nx = 32) is coarser than the default for secr: :make.mask (nx = 64). This makes for
speed, and is fairly safe when the buffer width is well matched to the scale of movement (we know sigma, so
the default buffer width is well-matched). The same mask is used both for generating populations and fitting
models.

Users may specify their own masks in the ‘maskset’ list argument. If the number of masks in maskset is one
or a number equal to the number of detector layouts, then a column ‘maskindex’ is added automatically
to the scenarios dataframe (all 1, or equal to trapsindex, in the two cases). Otherwise, the user must have
manually added a maskindex column to scenarios to clarify which mask should be used with which scenario.

Summarising simulation output

run.scenarios usually takes a long time to run, but having saved its output you can quickly extract and
summarise the results in many different ways.

We saw in the previous section and Fig. 1 that the output from run.scenarios for each replicate may be
a fitted model, a table of parameter estimates, or a numeric vector. Summarisation across replicates (the
summary method) requires output in ‘selected statistics’ form, so each of the other forms must be processed
first?

Look again at Fig. 1: you will see that the primary input to the summary function is in the form of selected
statistics. A secondary route is to automatically extract statistics from estimates tables, as shown by the
dashed line in Fig. 1 — we used this in A simple example. We now address how other forms of output from
run.scenarios can be processed into ‘selected statistics’ form.

Extracting estimate tables from fitted models

The methods predict and coef for the ‘fittedmodels’ class and the function derived.SL are provided to
extract estimates of ‘real’ parameters from each fitted model. These are direct analogues of predict, coef
and derived in secr. Here, they apply across all replicates of all scenarios and return an object of class
estimatetables. regionN.SL is another possibility.

In each case, the result is a dataframe or list of dataframes for each replicate. Rows correspond to estimated
parameters (or ‘R.N” and ‘E.N’ for regionN.SL) and columns to the respective estimates, standard errors,
and confidence limits (with some variations).

The ...argument of the functions predict, coef, derived.SL and regionN.SL lets you pass arguments such
as alpha to the corresponding secr function (e.g., predict.secr or derived).

2Processing happens silently using default settings of select.stats() when summary is applied directly to ‘estimate tables’
output.



We can skip this step for the output from our simple example as it is already in ‘estimatetables’ form.

Choosing the statistics to summarise

Given tabular output from predict () or derived.SL(), we must select replicate-specific numerical quantities
for further summarisation.® This is the role of select.stats(), which has arguments —

select.stats(object, parameter = "D", statistics)

The parameter of interest defaults to density (“D”); others such as “g0” or “sigma” may be substituted,so
long as they appear in the input object. To check which parameters are available use

find.param(object)

The task of select.stats() is to reduce each replicate to a vector of numeric values - we can think of the
result as a replicate x values matrix for each scenario (Fig. 2). A later step (see Summary method) computes
statistics (‘fields’) such as mean and SE for each column in the matrix.

statistics
[1171]
o link estimate SE.estimate 1cl ucl
$ D log 4.761 1.8%31 2.2470 10.088
& gl logit 0.143 0.0552 0.0646 0.287
g Sigma log 27.5986 6.935%6 17.3383 45.172
[S3 .
(1211 replicates
1i estimate SE.estimate 1cl ucl
D 1pg [ 3.548 1.4400 1.6507 7.628
gl logit 0.134 0.0573 0.0556 0.2895
sigma og 37.507 8.4570 24.1%30 £58.149
[ select.stats
computed by select.stats
estimate SE.estimate 1lcl ucl [ RE RSE COV]
1 4.76 1.853 2,247 10.0% -0.0478 0.358 1
Z 3.55 1.440 1.651 7.63 -0.2503 0.406 1
3 5.93 2.371 2.791 1z.6Z2 0.1867 0.400 1
4 4.42 1.483 2.330 8.38 -0.11s2 0.33¢ 1
] c.11 1.980 3.288 11.35 0.2218 0.324 1

[ summary

Fig. 2. Operation of select.stats for one scenario. Each replicate contributes one row to a replicates x
statistics matrix.

3If run.scenarios () has been used with fit = FALSE, then the output from each replicate is probably already in the form of
selected statistics (the default raw data summaries ‘n’, ‘ndet’,‘'nmov’ and ‘dpa’) and select.stats() is not relevant. The same
may also apply with a user-provided extractfn when fit = TRUE.
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Here we describe the replicate-specific statistics that form the numeric vector. These may be simply ‘estimate’,
‘SE.estimate’, ‘lcl” and ‘ucl’ as output from predict.secr. Additionally, when fit = TRUE, we can include
statistics derived from the estimates of a parameter (Table 1). To describe these we use ‘true’ to stand for
the known value of a real parameter, and ‘estimate’ for the estimate from a particular replicate.

Table 1. Computed statistics available in select.stats()

Statistic Short name Value

Relative bias! RB (estimate — true) / true
Relative SE? RSE SE.estimate / estimate
Absolute deviation ERR abs(estimate — true)
Coverage indicator COV (estimate > lcl) & (estimate < ucl)

1. Also called ‘normalized bias’

2. Also called ‘coefficient of variation’

We use (‘lcl’, ‘ucl’) to represent a confidence interval for ‘estimate’. Usually these are 95% intervals, but
the level may be varied by setting the argument ‘alpha’ in predict (e.g., alpha = 0.1 for a 90% interval).
Intervals from predict.secr are symmetrical on the link scale, and hence asymmetrical on the natural scale.
Note also the argument loginterval in derived; the default loginterval = TRUE gives an asymmetrical
interval on the natural scale.

The coverage indicator COV is a binary value (0/1); this becomes interesting later when averaged over a
large number of replicates to give a coverage proportion. The absolute deviation ERR also comes into its
own later as the basis for RMSE. In a sense the same is true of replicate-specific RB: RB should be reported
only as an average over a large number of replicates.

Returning to our simple example, we apply select.stats() to focus on the density parameter “D”.

statsl <- select.stats(simsl, parameter = "D", statistics = c("estimate",
l|lcl|l’ lluclll’ IIRBII’ I|RSEII’ IICDVII))
lapply(statsi$output, head, 4)

## $°1°

## estimate 1cl ucl RB RSE COV
## 1 4.563484 2.320220 8.975609 -0.08730323 0.3556572 1
## 2 3.625584 1.766920 7.439423 -0.27488310 0.3794131 1
## 3 3.860603 1.838079 8.108603 -0.22787945 0.3926149 1
## 4 4.455237 2.395654 8.285477 -0.10895269 0.3246465 1
##

## $°2°

## estimate 1cl ucl RB RSE COV
## 1 16.329709 11.210633 23.78629 0.63297089 0.1936836 0
## 2 9.600765 5.694946 16.18535 -0.03992348 0.2712667 1
## 3 10.305960 6.417433 16.55067 0.03059603 0.2452631 1
## 4 12.628829 8.370561 19.05336 0.26288289 0.2121620 1

The two scenarios yield two replicates x statistic matrices, from which we display the first 4 rows.
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Disposing of rogue values

Simulation output may contain rogue values due to idiosyncracies of model fitting. For example, nonidentifia-
bility due to inadequate data can result in spurious extreme estimates of the sampling variance. The median
(chosen as a field value in summary) is recommended as a robust alternative to the mean when there are some
extreme estimates. Another way to deal with the problem is to set statistics to NA when a simulation fails.
The function validate sets selected ‘target’ statistics to NA for replicates in which another test statistic is
out-of-range or NA:

x <- validate (x, test, validrange = c(0, Inf), targets = test)

The permissable bounds are usually arbitrary, and the method should be used with care. The keyword “all”
may be used for targets to indicate all columns.

validate accepts a selectedstatistics object (x) as input and returns a modified selectedstatistics object as
output. See Learned trap response for an application.

Summary method

The summary method for ‘selectedstatistics’ objects reports both header information on the simulation
scenarios and user-selected summaries of the pre-selected statistics.

summary (object, dec = 5, fields = c("n", "mean", "se"), alpha = 0.05,
type = c("list", "dataframe", "array"), ...)

Here the summary statistics are called ‘fields’ to distinguish them from the ‘statistics’ in each column of the
numeric replicate x value matrix for each scenario (see Choosing the statistics to summarise). The task of
the summary method is to compute the ‘field’ value for each ‘statistic’, summarising across replicates to give
a ‘statistic’ x ‘field’ matrix for each scenario. The choice of ‘fields’ is shown in Table 2.

Table 2. Statistic fields available in the summary method for selectedstatistics objects.

Field Description

n number of non-missing values
mean mean

se standard error
sd sample standard deviation

min  minimum

max maximum
lel  lower 100(1 — ) % confidence limit
ucl  upper 100(1 — o) % confidence limit

rms root mean square

median  median

gxxx  xxx/1000 quantile
qyyy yyy/1000 quantile

12



The summary fields ‘lel” and ‘ucl’ are for a simple Wald interval (4 + ZQ/QS/E(ﬂ), i+ Zl_a/QS/E(ﬂ)) where z,
is the 100a-percentile of a standard normal distribution (e.g., zp.975 = 1.96). [Do not confuse these with the
confidence limit statistics of the same name that are symmetrical only on the link scale].

Quantiles are specified as ‘qxxx’ and ‘qyyy’ where xxx and yyy are integers between 1 and 999 corresponding
to quantiles 0.001 to 0.999. For example, ‘q025’ refers to the 2.5% quantile.

Applying the ‘rms’ field to the absolute deviation of an estimate (ERR) provides the root-mean-square-error
‘RMSE’.

To recap — a summary value is reported for each combination of a selected statistic, computed for each
replicate, and a ‘field’ that summarises the statistic across replicates, potentially resulting in a table with this
structure:

Fields
Statistics n mean se sd min max lcl ucl rms median q025 975

estimate ° o . . . . . . . . .
SE.estimate o e e o o . . . . . .
1cl o o e o o . . . .
ucl o o ¢« o o . . . .
RB o o ° ° . ° ° ° °
RSE e o L] L] L] L] L] L] L] L] L]
ERR e o L] L L] L] L] . L L] L] L]
cov . o« o o .

Cells are left blank for combinations that are unlikely to be meaningful. ‘rms’ is useful with ERR (i.e. RMSE),
but not when applied to other statistics. ‘n’, ‘mean’ and ‘se’ summarise the COV indicator, but other
potential summaries are (almost) meaningless.

Apply this to the selected statistics from our simple example:

ln|, 1 1

summary (statsl, c( 'mean', 'se', 'median'))

## run.scenarios(urepl = 50, scenarios = scenl, trapset = trapsl,

## fit = TRUE, seed = 345)

##

## Replicates 50

## Started 19:07:47 04 Dec 2014
## Run time 1.795 minutes

## Output class selectedstatistics
##

## $constant

## value

## trapsindex 1

## noccasions 3

## nrepeats 1

## g0 0.2

## sigma 25

## detectfn

## recapfactor
## popindex

## detindex

## fitindex

## maskindex
##

)
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## $varying
## scenario D

## 1 5
## 2 10
##

## $detectors
## trapsindex trapsname

## 1 trapsl

##

## OUTPUT

##

## $1

## D =5

## n mean se median
## estimate 50 5.23767 0.24994 5.04535
## 1lcl 50 2.70152 0.16476 2.50031
## ucl 50 10.28534 0.37589 10.01498
## RB 50 0.04753 0.04999 0.00907
## RSE 50 0.36890 0.00962 0.36154
## COV 50 0.92000 0.03876 1.00000
##

## $2

## D = 10

## n mean se median
## estimate 50 9.58795 0.36972 9.86434
## 1lcl 50 5.86410 0.27453 5.91509
## ucl 50 15.75842 0.47775 16.14298
## RB 50 -0.04121 0.03697 -0.01357
## RSE 50 0.26727 0.00668 0.25726
## COV 50 0.92000 0.03876 1.00000

Plot method

Use the plot method to visualize the distributions of ‘selectedstatistics’ that you have simulated. You may plot
either (i) histograms of the selected statistics (type = "hist") or (ii) the estimate and confidence interval
for each replicate (type = "CI"). One histogram is plotted for each combination of scenario and statistic —
you may want to select a subset of scenarios and statistics, and use the graphics options mfcol or mfrow to
control the layout. For type = "CI" the statistics must include ‘estimate’; ‘lcl’ and ‘ucl’ (or ‘beta’, ‘lcl’ and
‘ucl’ if outputtype = "coef").

par (mfrow = c(2,2))

plot(statsl, type = "hist", statistic = "estimate")
plot(statsl, type = "CI")
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Fig. 3. Plot method applied to a 2-scenario ‘selectedstatistics’ object with type = "hist" (top) and type
= "CI" (bottom)

Additional topics

Parallel processing

Setting ncores > 1 causes run.scenarios() to run separate scenarios on separate cores. This uses the
R package parallel. Technically, it relies on Rscript, and communication between the master and worker
processes is via sockets. As stated in the R parallel documentation “Users of Windows and Mac OS X may
expect pop-up dialog boxes from the firewall asking if an R process should accept incoming connections”. It
appears to be safe to accept these.

Use parallel::detectCores() to get an idea of how many cores are available on your machine; this may
(in Windows) include virtual cores over and above the number of physical cores. If you use the maximum
available cores for run.scenarios() then expect any other processes on the machine to slow down!

Running one scenario per core is suboptimal if scenarios differ widely in how long they take to run: the
system waits for the slowest. There is no way around this limitation in secrdesign.

Random number generation for multiple cores uses the “L’Ecuyer-CMRG”" random number generator as
described in 7RNG.
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Shortcut evaluation of precision

The asymptotic variance (and hence RSE) of a maximum likelihood estimate is typically obtained from the
curvature of the likelihood computed numerically at the fitted value of the parameter(s) (i.e., at the MLE).
Fitting SECR models is slow. An alternative estimate of the RSE that is sufficient for most purposes may be
got from the curvature of the likelihood computed at the known ‘true’ value(s) of the parameter(s). This is
much faster as it does not require the model to be fitted.

secr.fit may be ‘tricked’ into providing this variance estimate by setting method = "none" and providing
the true values as the start vector. run.scenarios() makes this easy by assuming that if you specify
method = "none" you wish to use start = "true". However, this works only when there is a 1:1 relationship
between ‘beta’ and ‘real’ parameters; it does not work when ‘recapfactor’ is specified.

sims2 <- run.scenarios(nrepl = 50, trapset = trapsl, scenarios = scenl,
fit = TRUE, fit.args = list(method = "none"))

summary (sims2)

## run.scenarios(nrepl = 50, scenarios = scenl, trapset = trapsl,

#it fit = TRUE, fit.args = list(method = "none"))
##

## Replicates 50

## Started 19:09:35 04 Dec 2014
## Run time 0.378 minutes

## Output class selectedstatistics
#i#

## $constant

## value

## trapsindex 1

## noccasions 3

## nrepeats 1

## g0 0.2

## sigma 25

## detectfn

## recapfactor
## popindex

## detindex

## fitindex

## maskindex

##

## $varying

## scenario D

L )

## 1 5
## 2 10
##

## $detectors

## trapsindex trapsname
## 1 trapsl
##

## $fit.args

## fitindex method

## 1 none

##

## OUTPUT
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##

## $1

## D=5

## n mean se
## estimate 50 5.00000 0.00000
## SE.estimate 49 1.88876 0.04280
## 1cl 49 2.46033 0.03457
## ucl 49 10.27008 0.16263
## RB 0 NA NA
## RSE 49 0.37775 0.00856
## COV 0 NA NA
##

## $2

## D = 10

## n mean se
## estimate 50 10.00000 0.00000
## SE.estimate 50 2.66698 0.05948
## 1cl 50 6.00324 0.06291
## ucl 50 16.75599 0.19230
## RB 0 NA NA
## RSE 50 0.26670 0.00595
## COV 0 NA NA

Each estimate of RSE is essentially the same as before (see summary(stats1) in Summary method), but the
run time is reduced by nearly 80%. Note the true value of density appears as a constant ‘estimate’ in the
summary. Care is needed with this method as its performance in extreme cases has not been investigated
fully.

Non-uniform populations

The simulated population by default has a uniform (homogeneous) Poisson distribution. To generate
and sample from a spatially inhomogeneous population we use the ‘IHP’ option for argument model2D in
secr: :sim.popn. This involves three steps:

1. Create a habitat mask object with the desired extent.

2. Add to the mask a covariates dataframe with one or more columns defining pixel-specific densities.

3. In run.scenarios() specify a list of pop.args including model2D = "IHP" and D = "XX" where XX
is the name of the particular mask covariate you wish to use for density, and name your mask in the
‘maskset’ argument.

A full demonstration is given in the Appendix (Non-uniform possums).

To visualize simulated populations you should set savepopn = TRUE in det.args and later extract the popn
attribute from the capthist object (for example, with a custom extractfn).

To compare several inhomogeneous distributions, specify several pop.args lists and use the popindex argument
in make.scenarios (). The distribution may be varied simply by using the sim.popn() argument D to select
different covariates of one mask.

The columns ‘nrepeats’ and ‘D’ in the scenarios argument of run.scenarios are ignored when model2D =
"TIHP". ‘D’ is replaced by the average density over the mask, which is used as the ‘true’ value of density in
computing RB, RSE etc. in summaries. For stratified analyses you will have to define your own extractfn.
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Linear habitat

secrdesign may be used to simulate sampling of populations in linear habitats as implemented in R package
secrlinear. The procedure is similar to that for non-uniform (inhomogeneous Poisson) populations as
described in the previous section: one or more masks must be provided, but in this case they will be of type
‘linearmask’.

The steps are:

1. Create linear habitat mask objects with the desired extent.

2. Create detector layouts and a scenario dataframe as usual.

3. Add a ‘maskindex’ column to the scenarios dataframe identifying which mask is to be used in each
scenario (may be omitted for a single mask).

4. In run.scenarios() specify your mask(s) in the maskset argument.

Density may be specified in the scenario dataframe as a constant number of animals per km, and in this case
the ‘nrepeats’ column is respected.

Density also may be modelled as inhomogeneous, i.e. varying along the length of the linear mask. The
mechanism for this is like that for two dimensions: use a list of pop.args including model2D = "linear" and
D = "XX" where XX is the name of the particular mask covariate you wish to use for density. In this case,
the columns ‘nrepeats’ and ‘D’ in the scenarios dataframe are ignored, as for the ‘THP’ option.

With a linear mask, run.scenarios defaults to secrlinear: :networkdistance for the distance function
(secr.fit argument details$userdist).

Splitting data generation and model fitting

Each new detector layout or new model specification (in a fit.args list) defines a new scenario. The
default procedure is to generate new data (both animal locations and simulated detection histories) for
each scenario. To compare different models applied to the same dataset, save raw data from an initial call
to run.scenarios() with fit = FALSE, extractfn = identity, and separately fit a list of models with
fit.models. You can also peek at the raw data with the summary method.

scen3 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps3 <- make.grid()

raw3 <- run.scenarios(nrepl = 50, trapset = traps3, scenarios =
scen3, fit = FALSE, extractfn = identity)

summary (raw3)

## fit and summarise models

sims3 <- fit.models(raw3, fit.args = list(list(model = g0~1),
list(model = g0~T)), fit = TRUE, ncores = 4)

summary (sims3)

Here, scen3 describes two scenarios, and in the call to fit.models each of these is split into two new
scenarios, one for each component of fit.args.

The arguments ‘scen’ and ‘repl’ of fit.models let you select particular scenarios and replicates for fitting
(secrdesign > 2.3.0).

It is not possible within secrdesign precisely to evaluate the application to the same animal distribution
(population) of differing detector layouts or specifications for the fitted model (cf Fewster and Buckland
2004). Comparisons inevitably include variance from the varying number and placement of animals, and the
sampling process; this variance may be reduced by fixing the number of individuals (pop.args = list(Ndist
= "fixed")).
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Populations with sub-classes or multiple sessions

Simulation of structured populations is introduced in secrdesign 2.2.0 and is still experimental.

The ‘groups’ argument of make.scenarios replicates rows so that within a scenario there is one row for each
group. Group-specific parameter values are inserted by the user.

Rows sharing the same scenario number are recognised by run.scenarios as subclasses (groups). Each
subclass is generated as a separate capthist object. The argument multisession determines whether the
capthist objects corresponding to subclasses are pooled for analysis (using secr: :rbind.capthist) or treated
as multiple distinct sessions (using secr: :MS.capthist).

The original sub-class of each individual is recorded as an individual covariate named “group”. This is a
factor. It may ignored in the fitted model, or used in such secr.fit arguments as ‘groups’ and ‘hcov’, or
included in models directly as an individual covariate when CL = TRUE. (If the output from predict.secr is
not a single dataframe then you will have to write a custom extractfn).

An example is given in the Appendix (Grouped populations).

Limitations, tips and troubleshooting

secrdesign has some limitations (Surprise!).

1. A progress message is output only on the completion of each scenario, which can be annoying, and when
using multiple cores even this message is lost. It is strongly recommended that you start by generating
summaries of raw data only (run.scenarios() with fit = FALSE), and confirm that your scenarios
are realistic by reviewing the simulated number of detected individuals, total number of detections, etc.
If these are inadequate or unrealistically large then there’s no point going on. Then, try fitting with
just a few replicates on one core to be sure you have specified the model you intended and to assess the
likely run time. Only then submit a run with a large number of replicates on multiple cores.

2. Only 2-parameter detection functions are allowed for data generation. This excludes the hazard-rate
function, the cumulative gamma, and some others.

3. The default extractfn does does not handle models that produce more than one estimates table per
replicate (e.g., finite mixture models). A custom extractfn is needed; it should either produce a
numeric vector of ‘selected statistics’ or mimic single-dataframe output from predict ().

4. The function secr: :sim.capthist that generates detection histories for secrdesign has limited capac-
ity for simulating temporal, behavioural or other heterogeneity in detection probability. Heterogeneity
may be simulated as discrete subclasses (see preceding section). Only a simple permanent learned
response is allowed in run.scenarios (‘recapfactor’).

5. As noted before, the same mask is used for generating populations and fitting models. It would be
possible to replace the maskset component of a ‘rawdata’ object before running fit.models, but this
is not recommended.

6. It is easy to forget the random number seed. Consider replacing the default value.

7. The method for fitting a fixed-N model (distribution = binomial) is somewhat fragile: it can fail
when given a start value for D that is less than the minimum density observed (i.e. the number of distinct
individuals divided by the mask area). This can easily happen when a population is simulated with
pop.args = list(Ndist = "poisson") (the default) and sampled with high detection probability,
but secr.fit is called with (distribution = "binomial"). The solution is to use pop.args =
list(Ndist = "fixed").

8. If your summaries do not include enough significant digits, increase the ‘dec’ argument of
summary.selectedstatistics!
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Appendix. Examples

Here we give some annotated examples of simulation code and selected output. Running this code with
reduced nrepl, and viewing the output, will give you an idea of how secrdesign works.

Multiple grids, varying number of occasions
This is the example from the main text, slightly extended

traps4 <- list(grid6x6 = make.grid(6,6),
grid8x9 = make.grid(8,9),
grid12x12 = make.grid(12,12))
scend <- make.scenarios (trapsindex = 1:3, noccasions = c(8,4,2), D = 5,
g0 = 0.2, sigma = c(20,30), crosstraps = FALSE)

sims4 <- run.scenarios(nrepl = 500, trapset = traps4, scenarios =
scend4, fit = FALSE, ncores = 3)

class(sims4) ## just peeking

## [1] "selectedstatistics" "secrdesign" "list"

find.stats(sims4)  ## just peeking

## [1] llnH Ilndetll llnmovll Ildpall

summary (sims4)

## run.scenarios(nrepl = 500, scenarios = scen4, trapset = traps4,
## fit = FALSE, ncores = 3)

##

## Replicates 500

## Started 19:15:01 04 Dec 2014

## Run time 0.34 minutes

## Output class selectedstatistics

#i#

## $constant
#i#t

## nrepeats
## D

## g0 0.
## detectfn

## recapfactor

## popindex

## detindex

## fitindex

#i#

## $varying

## scenario trapsindex noccasions sigma maskindex
#i# 1 1 8 20 1

<
)
'_l
c
®

P P, R, P, ONO -
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

D O WN

$detectors
trapsindex
1
2
3

OUTPUT

$1

trapsindex =

n
n 500 14.
ndet 500 50.
nmov 500 30.
dpa 500 2.

$2

trapsindex
n

n 500 21.

ndet 500 48.

nmov 500 23.

dpa 500 2.

$3
trapsindex
n
n 500 32
ndet 500 46.
nmov 500 12.
dpa 500 1.

$4

trapsindex =

n
n 500 23.
ndet 500 92.
nmov 500 62.
dpa 500 3.

$5

trapsindex
n

n 500 31.

ndet 500 82.

nmov 500 47.

dpa 500 2.

WN P WN

trapsname
grid6x6
grid8x9
gridi12x12

1, noccasions
mean se
37800 0.17151
54600 0.68825
78200 0.48020
78482 0.01952

= 2, noccasions
mean se
34200 0.20958
20000 0.52306
54200 0.30967
04497 0.00915

= 3, noccasions
mean se

.40400 0.25352

90400 0.38394
86000 0.15695
39677 0.00382

1, noccasions
mean se
19000 0.20912
08600 0.97648
30600 0.75562
32677 0.01948

= 2, noccasions
mean se
64800 0.23747
59400 0.67822
16400 0.44615
42241 0.00874

N D 00N D

20
20
30
30
30

sigma

sigma

sigma

sigma

sigma

20,

20,

20,

30,

30,
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## $6

## trapsindex = 3, noccasions = 2, sigma = 30, maskindex = 6
## n mean se

## n 500 45.41000 0.29922

## ndet 500 73.90200 0.50501

## nmov 500 26.76800 0.23381

## dpa 500 1.58971 0.00347

par (mfrow=c(4,3))

plot(sims4, statistic = "n", breaks = seq(0,80,5)) ## animals
plot(sims4, statistic = "nmov", breaks = seq(0,140,5)) ## movements
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Fig. 4. Numbers of individuals (n) and movements (nmov) from six scenarios differing in trap number,
number of sampling occasions and scale of movement.

Learned trap response

Here we assess the bias in D caused by ignoring a learned trap response.
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## set up and run simulations
trapsb <- list(grid6x6 = make.grid(6,6),
grid10x10 = make.grid(10,10))
scenb <- make.scenarios (trapsindex = 1:2, noccasions = 5, D = 5,
g0 = 0.2, sigma = 25, recapfactor = c(0.5, 1, 2), fitindex = 1:2)
sims5 <- run.scenarios(nrepl = 500, trapset = trapsb, scenarios =
scenb, fit = TRUE, fit.args = list(list(model = g0 ~ 1),
list(model = g0 ~ b)), ncores = 6)

## select statistics and throw out any replicates with SE > 100

## (there is one -- see reduced n in output for scenario 11)

statsb5 <- select.stats(simsb)

statsb <- validate(statsb5, "SE.estimate", c(0,100), "all")

sumb <- summary(statsb, fields = c("n","mean","se","lcl","ucl", "median"))

## plot
plot(c(0.5,6.5), c(-0.2,0.4), type = "n", xlab = "Scenario", ylab = "RB(D-hat)")
for (i in 1:12) {
xv <- if (i<=6) i else (i-6)+0.05
segments (xv, sumb5$0UTPUT[[i]] ["RB","1c1"], xv, sumb$0UTPUT[[i]]["RB","ucl"])
ptcol <- if (i<=6) "white" else "black"
points(xv, sumb$0UTPUT[[i]] ["RB","mean"], pch = 21, bg = ptcol)

}
abline(h = 0, col="red")
text(c(1.5,3.5,5.5), rep(0.38,3), paste("recapfactor", c(0.5,1,2), sep = " = "))
=+ _|
= recapfactor = 0.5 recapfactor = 1 recapfactor = 2
7
=1
(]
g

RB(D-hat)
0.1
|

-01 0.0
|
T
g -
<
— .

-0.2

Scenario
Fig. 5 Relative bias of SECR density estimate from null model (filled circles) and g0~b model (open circles)
when data were generated with negative, zero, or positive learned response.
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## look at extended output
sumb

## run.scenarios(nrepl = 500, scenarios = scenb, trapset = traps5,

#i# fit = TRUE, fit.args = list(list(model = g0 ~ 1), list(model = g0 ~
##t b)), ncores = 6)

#it

## Replicates 500

## Started 19:15:21 04 Dec 2014
## Run time 104.767 minutes

## Output class selectedstatistics
#i#t

## $constant

## value

## noccasions 5

## nrepeats 1

## D 5

## g0 0.2

## sigma 25

## detectfn
## popindex
## detindex
#it

## $varying
## scenario trapsindex recapfactor fitindex maskindex
## 1 1 0.5 1
#i#
#it
#i#t
#i#
##
#i#
#i#
#it
#i#
#i#
##
#i#
## $detectors

## trapsindex trapsname

## 1 grid6x6

## 2 grid10x10

#i#

## $fit.args

## fitindex model

#i# 1 ~g01

## 2 ~g0b

#i#

## OUTPUT

#it

## $1

## trapsindex = 1, recapfactor = 0.5, fitindex = 1, maskindex =1
## n mean se 1cl ucl median
## estimate 500 6.41255 0.08204 6.25175 6.57334 6.25433
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

SE.estimate
1cl

ucl

RB

RSE

cov

$2

trapsindex

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$3

trapsindex =

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$4

trapsindex =

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$5

trapsindex

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$6

trapsindex =

500
500
500
500
500
500

O OO WK

.99650
.55072
.67837
.28251
.32141
.86000

O O O O O o

.02054
.05517
.12692
.01641
.00251
.01553

O OO - WK

.96623
.44258
.42960
.25035
.31649
.82956

.03676
.65885
.92714
.31467
.32633
.89044

O OO WN

= 2, recapfactor = 0.5, fitindex =1,

500
500
500
500
500
500
500

500
500
500
500
500
500
500

500
500
500
500
500
500
500

n

n

n

O O O W+~ O,

0 N = D

o

~N W O

o

. 72766
.02213
.05010
.10669
.14553
.18094
.88000

mean

O O O O O o o

mean
.96161
.47525
.81512
.79952
.00768
.30992
.95000

mean
.96749
.88098
.52016
.01611
.00650
.18008
.96000

Se

.04459
.00456
.03642
.05348
.00892
.00069
.01455

O O O O O o o

O O O O O oo

1, recapfactor =1

s
.06381
.01175
.04459
.08750
.01276
.00240
.00976

s
.03917
.00375
.03224
.04641
.00783
.00073
.00877

5
1
3
8
0
0
0

B

e

e

.64026 5
.01319 1
.97872 4
.00187 8.
.12805 0
.179568 0
.85149 0

1cl

.81506
.03107
.12148

.16301
.18229
.90851

ucl

21152

= O O W+ o,

.93299
.36304
.32535
.25087
.31316
.00000

, O O Fr WK

maskindex
median

.66648
.01752
.00269
.03134
.13330
.17943
.00000

fitindex = 1, maskindex =

0 N = D

o

o W O Wb

o O

1lcl

.83654
.45223
LT2772
.62803
.03269
.30621
.93088

2, recapfactor = 1, fitindex =

1lcl

.89071
.87364
.45698
.92515
.02186
.17866
.94281

= 1, recapfactor = 2, fitindex

500
500
500
500
500
500
500

n

n

NN =D

o

mean
.42837
.29956
.53232
.80193
.11433
.30702
.94400

mean

O O O O O oo

s
.06842
.00981
.04180
.07721
.01168
.00243
.01029

)

e

e

NN =

o

1lcl

.31386
.28034
.45039
.65061
.13723
.30225
.92383

2, recapfactor = 2, fitindex

1cl

ucl
5.08669
1.49828
2.90251
8.97102
0.01734
0.31463
0.96912

ucl
5.04426
0.88832
3.58334
7.10708
0.00885
0.18151
0.97719

median
.98843
.47518
.78540
.84495
-0.00231
0.29930
1.00000

0 N = D

1, maskindex =

median
.92346
.88014
.47659
.97002
-0.01531
.17812
1.00000

D W O P

o

= 1, maskindex =

uc
.54287
.31878
.61425
.95325
-0.09143
.31178
0.96417

~N N e

o

1 median
.41579
.30119
.49668
.80782
-0.11684
.29720
1.00000

NN e

(@]

= 1, maskindex =

uc
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$7

trapsindex =

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$8

trapsindex =

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$9

trapsindex

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$10
trapsindex

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$11

trapsindex =

500
500
500
500
500
500
500

n
500
500
500
500
500
500
500

n
500
500
500
500
500
500
500

= 1, recapfactor
mean

n
500
500
500
500
500
500
500

= 2, recapfactor
mean

n
500
500
500
500
500
500
500

O OO OWN O

1

D W O P

o O

.62434
.81600
.28267
.52046
.07513
.17943
.93200

mean

.22167
. 74583
. 78488
.94459
.04433
.34976
.94200

~N W O

o O

ON -~ O

O O O

~N W O

o O

.98864
.92341
.48357
.15203
.00227
.18824
.94600

.10488
. 72420
.78061
.08840
.02098
.34471
.95800

.98399
.90665
.50121
.10126
.00320
.18461
.95000

O O O O O oo

O O O O O oo

1, recapfactor

.03824
.00362
.03149
.04528
.00765
.00076
.01127

se

.07578
.02123
.05062
.12380
.01516
.00350
.01046

2, recapfactor
mean

O O O O O oo O O O O O oo

O O O O O oo

s
.04090
.00434
.03322
.04916
.00818
.00084
.01012

s
.06876
.08918
.04719
.61405
.01375
.01301
.00898

s
.03952
.00427
.03202
.04781
.00790
.00076
.00976

O OO OVONF—, O,

0.5,

e

e

e

.54939
.80891
.22094
.43172
.09012
.17795
.90991

o W O b

o O

0.5, fitindex

1cl
.07315
.70423
.68566
.70195
.01463
.34290
.92149

N~ O

1

o

O O O

fitinde

1cl
.90848
.91490
.41845
.05567
.01830
.18659
.92617

~N W O W

o

o
O OO NWOoOwm

1, fitindex

1cl
.97011
.54942
.68812
.88488
.00598
.31922
.94040

0 N = b

o

1, fitindex

1cl
.90652
.89827
.43845
.00755
.01870
.18313
.93088

~N W O

o

o
O OO NWOoOwm

1, recapfactor = 2, fitindex =

27

.6992
.8230
. 3444
.6092

D W O P

o O

.1809
.9540

o

ucl

.37019
. 78744
.88410
.18723
.07404
.35661
.96251

x =

uc
.06880
.93192
.54868
.24838
.01376
.18989
.96583

.2396
.8989
.8731
.2919
.0479
.3702
.9756

O OO, N~ O

9
9
0
0

.06014 -

2
9

1

2, maskindex
ucl

6
9
1
3
3
1
0

.59226
.81839
.23926
.49095
.08155
.17822
.00000

O O W O B

= O

= 2, maskindex

median

5.18323
1.71095
2.70792
9.
0
0
1

75850

.03665
.33759
.00000

2, maskindex

median
.97724
.92743
.47396
.15163
.00455
.18550
.00000

~N W O

o O

median
.95098
.58177
.67837
.19703
.00980
.32122
.00000

©O© N - D

= O

= 2, maskindex =
ucl median
.06145 4.95613
.91502 0.90778
.56397 3.48533
.19497 7.08731
.01229 -0.00877
.18609 0.18262
.96912 1.00000

2, maskindex

1
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## n mean se 1cl ucl median

## estimate 499 5.08846 0.06975 4.95175 5.22517 5.08003

## SE.estimate 499 1.58825 0.01682 1.55528 1.62122 1.57657

## 1cl 499 2.81611 0.04749 2.72302 2.90920 2.80196

## ucl 499 9.28585 0.10583 9.07842 9.49327 9.22943

## RB 499 0.01769 0.01395 -0.00965 0.04503 0.01601

## RSE 499 0.32504 0.00269 0.31976 0.33031 0.31165

## COV 499 0.93587 0.01098 0.91436 0.95739 1.00000

##

## $12

## trapsindex = 2, recapfactor = 2, fitindex = 2, maskindex = 2
## n mean se 1cl ucl median
## estimate 500 4.87325 0.04075 4.79337 4.95313 4.82339
## SE.estimate 500 0.89038 0.00427 0.88201 0.89876 0.88879
## 1cl 500 3.41845 0.03312 3.35353 3.48337 3.39162
## ucl 500 6.95444 0.04902 6.85836 7.05052 6.91494
## RB 500 -0.02535 0.00815 -0.04133 -0.00937 -0.03532
## RSE 500 0.18580 0.00080 0.18422 0.18737 0.18290
## COV 500 0.94800 0.00994 0.92852 0.96748 1.00000

Non-uniform possums

Code to illustrate the use of homogeneous and inhomogeneous density models.

## add covariates to builtin secr object possummask
## D1 is homogeneous density
## D2 is artificial SW - NE gradient in density

xy <- apply(possummask,1,sum) / 500
covariates(possummask) [, "D1"] <- 2
covariates(possummask) [, "D2"] <- xy - mean(xy) + 2.5

## Note that this object already had a covariates dataframe
## —- if it didn't we would use
## covariates(possummask) <- data.frame ( D1 = ..., D2 = ...)

## specify scenarios
## anticipate two different sets of arguments for sim.popn

## with popindex = 1:2

scen6 <- make.scenarios (g0 = 0.2, sigma = 45, noccasions = 5,
popindex = 1:2)

## specify alternate models for distribution of animals

poplist <- list(list(model2D
list (model2D

|IIHP|I, D "Dl”),
|IIHP|I, D = ||D2||))

## run scenarios and summarise
## we use the trap layout from the builtin secr object possumCH

sims6 <- run.scenarios (500, scen6, traps(possumCH), possummask,
pop.args = poplist)
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summary (sims6)

## run.scenarios(nrepl = 50, scenarios = scen6, trapset = traps(possumCH),
#it maskset = possummask, pop.args = poplist)

#i#

## Replicates 50

## Started 21:00:10 04 Dec 2014

## Run time 0.081 minutes

## Output class selectedstatistics

#i#

## $constant

## value

## trapsindex 1

## noccasions 5

## nrepeats 1

## g0 0.2

## sigma 45

## detectfn
## recapfactor
## detindex
## fitindex
## maskindex
##

## $varying
## scenario
#i# 1
## 2
##

## $detectors
## trapsindex trapsname

#i# 1 trapsl

##

## $pop.args

## popindex model2D D

## 1 IHP D1

## 2 IHP D2

#i#

## OUTPUT

##

## $1

## D = 2, popindex =1

#i# n mean se
## n 50 109.3200 1.33445
## ndet 50 267.6800 3.17894
## nmov 50 141.7400 1.89797
## dpa 50 2.1986 0.01287

e N i @)

popindex
1
2

o O O

2.
2.

##

## $2

## D = 2.5, popindex = 2

#it n mean se

## n 50 135.14000 1.54999
## ndet 50 325.94000 3.66555
## nmov 50 170.10000 2.23830
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## dpa 50 2.17208 0.01254

To visualize individual realisations of the distribution of animals, use fit = FALSE (the default), det.args
= list(savepopn = TRUE), and save the entire capthist object (extractfn = identity). Here we create a
single replicate.

sims6a <- run.scenarios (1, scen6, traps(possumCH), possummask,
pop.args = poplist, det.args = list(savepopn = TRUE),
extractfn = identity)

## sims6a$output is now a list (one component per scenario) of lists
## (one component per replicate) of simulated capthist objects, each
## with its 'popn' object embedded as an attribute

popl <- attr(sims6a$output[[1]1][[1]], "popn")

pop2 <- attr(sims6a$output[[2]][[1]], "popn")

par (mfrow = c(1,2), mar=c(1,1,1,6))

plot(possummask, covariate = "D1", dots = FALSE, breaks = 0:6)

plot (traps(possumCH), detpar = list(col = 'green', pch = 15), add = TRUE)
plot(popl, frame = FALSE, add = TRUE, col = "blue", pch = 16, cex = 0.6)
plot(possummask, covariate = 'D2', dots = FALSE, breaks = 0:6)

plot(traps(possumCH), detpar = list(col = 'green', pch = 15), add = TRUE)
plot(pop2, frame = FALSE, add = TRUE, col = "blue", pch = 16, cex = 0.6)

## click on map to display height; Esc to exit
spotHeight (possummask, prefix = "D2")

popl <- attr(sims6a$output[[1]][[1]1], "popn")

pop2 <- attr(sims6a$output[[2]][[1]1], "popn")

png(file='d:/density secr 2.9/secrdesign/vignettes/secrdesign-fig6.png',
width=850, height=400)

par(mfrow = c(1,2), mar=c(1,1,1,6), cex=1.25)

plot (possummask, covariate = "D1", dots = FALSE, breaks = 0:6)

plot (traps(possumCH), detpar = list(col = 'green', pch = 15), add = TRUE)
plot(popl, frame = FALSE, add = TRUE, col = "blue", pch = 16, cex = 0.6)
plot(possummask, covariate = 'D2', dots = FALSE, breaks = 0:6)

plot(traps(possumCH), detpar = list(col = 'green', pch = 15), add = TRUE)
plot(pop2, frame = FALSE, add = TRUE, col = "blue", pch = 16, cex = 0.6)

dev.off ()
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Fig. 6. Simulated homogeneous (left) and inhomogeneous (right) distributions of brushtail possums at
Waitarere, New Zealand. Traps in green (each hollow grid 180 m square).

Code for linear habitat

Code to illustrate the use of linear habitat models. This assumes you have the package secrlinear, which is
not yet on CRAN.

library(secrlinear)
library(secrdesign)

## create a habitat geometry

x <- seq(0, 4*pi, length = 200)

xy <- data.frame(x = x*100, y = sin(x)*300)
linmask <- read.linearmask(data = xy, spacing = 5)

## define two possible detector layouts

trpl <- make.line(linmask, detector = 'proximity', n = 80,
startbuffer = 200, endbuffer = 200, by = 30)
trp2 <- make.line(linmask, detector = 'proximity', n = 40,

startbuffer = 200, endbuffer = 200, by = 60)
trplist <- list(spacing30 = trpl, spacing60 = trp2)

## create a scenarios dataframe

scen7 <- make.scenarios(D = c(50,200), trapsindex = 1:2,
sigma = 25, g0 = 0.2)

## we specify a mask, rather than construct it 'on the fly',

## and must manually add column 'maskindex' to the scenarios

scen7$maskindex <- c(1,1)

## we will use a non-Euclidean distance function...
det.arg <- list(userdist = networkdistance)

## run the scenarios and summarise results
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sims7 <- run.scenarios(nrepl = 500, trapset = trplist,
maskset = linmask, det.args = list(det.arg),
scenarios = scen7, seed = 345, fit = FALSE)

summary (sims7)

## run.scenarios(nrepl = 50, scenarios = scen7, trapset = trplist,

## maskset = linmask, det.args = list(det.arg), fit = FALSE,
#i seed = 345)

##

## Replicates 50

## Started 21:00:16 04 Dec 2014
## Run time 0.222 minutes

## Output class selectedstatistics
##

## $constant

#it value

## noccasions 3

## nrepeats 1

## g0 0.2

## sigma 25

## detectfn

## recapfactor
## popindex

## detindex

## fitindex
## maskindex
#i#t

## $varying

## scenario trapsindex D

L L )

## 1 1 50
## 2 2 50
## 3 1 200
## 4 2 200
#

## $detectors
## trapsindex trapsname

## 1 spacing30
## 2 spacing60
##

## $det.args

## detindex userdist

## 1 userdistfn

##

## OUTPUT

##

## $1

## trapsindex = 1, D = 50
## n mean se
## n 50 93.04000 1.26973
## ndet 50 157.28000 2.65069
## nmov 50 42.60000 1.22724
## dpa 50 1.45729 0.01058
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##

#t $2
## trapsindex = 2, D = 50
## n mean se

## n 50 57.74000 1.03285
## ndet 50 73.90000 1.53443
## nmov 50 5.84000 0.38371
## dpa 50 1.09993 0.00604

##

## $3

## trapsindex = 1, D = 200
## n mean se

## n 50 358.18000 2.40487
## ndet 50 604.64000 5.02010
## nmov 50 165.08000 2.38188
## dpa 50 1.46062 0.00549

#it

## $4

## trapsindex = 2, D = 200
## n mean se

## n 50 234.34000 2.01780
## ndet 50 298.92000 2.88230
## nmov 50 24.14000 0.61545
## dpa 50 1.10295 0.00244

Grouped populations

This example demonstrates the simulation of a structured population - nominally females and males with a
2:1 sex ratio.

First we form a scenarios dataframe with 2 groups and two levels of ‘noccasions’, and manually adjust the
‘male’ parameter values:

scen8 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30, noccasions = c(4,8), groups = c('F','M'))
male <- scen8$group == 'M'

scen8$D [male] <- 4

scen8$g0[male] <- 0.2

scen8$sigmal[male] <- 40

scen8[,1:8]

##  scenario group trapsindex noccasions nrepeats D g0 sigma
## 1 1 F 1 4 180.3 30
## 2 1 M 1 4 140.2 40
## 3 2 F 1 8 180.3 30
## 4 2 M 1 8 140.2 40

Next we set up a trapping grid, a habitat mask, and a customized extract function for multi-class output
from a hybrid mixture model:

grid <- make.grid(8, 8, spacing = 30)

mask <- make.mask(grid, buffer = 160, type = 'trapbuffer')

## extracts total density and proportion from output for the first group (F)
exfn <- function(x) {
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if (inherits(x, 'secr') & !is.null(x$fit)) {
pred <- predict(x)
pred[[1]11[c('D"', 'pmix'),]

+

else data.frame()

It is desirable to check the raw simulations. We specify the mask, rather than relying on one constructed
automatically, to ensure the same mask is used for both females and males.

## raw8 <- run.scenarios(20, scen8, trapset = list(grid), fit = FALSE, maskset = list(mask))
summary (raw8)

## run.scenarios(nrepl = 20, scenarios = scen8, trapset = list(grid),

## maskset = list(mask), fit = FALSE)
#i#

## Replicates 20

## Started 22:17:42 10 Jan 2015

## Run time 0.032 minutes

## Output class selectedstatistics

#i#

## $constant

#it value

## trapsindex
## nrepeats

## detectfn

## recapfactor
## popindex

## detindex

## fitindex

## maskindex
#i#

## $varying

N = = e R = e

## scenario group noccasions D g0 sigma
## 1 F 48 0.3 30
## 1 M 440.2 40
## 2 F 8 8 0.3 30
## 2 M 84 0.2 40
##

## $detectors

## trapsindex trapsname
## 1 trapsl
#i#t

## OUTPUT

#it

## 31

## group = F, noccasions
## group = M, noccasions
#it n mean se
## F.n 20 75.20000 1.36034
## F.ndet 20 190.25000 3.88037
## F.nmov 20 99.45000 2.54277
## F.dpa 20 2.22321 0.02309

4, D=8, g0 = 0.3, sigma = 30 +
4, D = 0.2, sigma = 40

S
09

o
1

H
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## M.n 20 46.85000 1.36358

## M.ndet 20 118.20000 3.97995

## M.nmov 20 65.80000 2.65924

## M.dpa 20 2.35099 0.03109

##

## $2

## group = F, noccasions = 8, D =8, g0 = 0.3, sigma = 30 +
## group = M, noccasions = 8, D 0.2, sigma = 40
## n mean se

N
o

o
1]

## F.n 20 87.45000 2.67392
## F.ndet 20 401.20000 12.42379
## F.nmov 20 270.85000 9.20505
## F.dpa 20 3.48190 0.04598
## M.n 20 53.25000 1.38007
## M.ndet 20 226.80000 7.18646
## M.nmov 20 158.30000 5.61253
## M.dpa 20 3.55734 0.05052

Now fit the models and check the summary output for density (‘D’) and sex ratio (proportion female ‘pmix’)
without repeating the header information.

sims8 <- run.scenarios(20, scen8, trapset = list(grid), fit = TRUE, extractfn = exfn,

fit.args = list(model = 1list(gO~h2, sigma~h2), hcov = 'group'),
maskset = list(mask))

summary (select.stats(sims8, 'D'))$0UTPUT

## $°1°

## n mean se
## estimate 20 11.92890 0.21816
## SE.estimate 20 1.16438 0.01198
## 1lcl 20 9.85650 0.19577
## ucl 20 14.43775 0.24149
## RB 20 -0.00593 0.01818
## RSE 20 0.09789 0.00083
## COV 20 1.00000 0.00000
##

## $°2°

## n mean se
## estimate 20 12.31550 0.20505
## SE.estimate 20 1.07385 0.00994
## 1lcl 20 10.38437 0.18631
## ucl 20 14.60624 0.22443
## RB 20 0.02629 0.01709
## RSE 20 0.08740 0.00067
## COV 20 1.00000 0.00000

summary (select.stats(sims8, 'pmix'))$0UTPUT

## Warning: assuming first scenario row corresponds to requested pmix

## Warning: assuming first scenario row corresponds to requested pmix
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$1°

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

$2°

estimate
SE.estimate
1cl

ucl

RB

RSE

cov

n
20
20
20
20
20
20
20

20
20
20
20
20
20
20

_ O O O O O O

O O O O

o

mean

.67768
.04492
.58408
. 75874
.01652
.06669
.00000

mean
.65850
.04035
.57562
. 73268
.01225
.06151
.00000

se

.00994
.00047
.01010
.00908
.01491
.00155
.00000

O OO OO oo

se
.00730
.00041
.00765
.00662
.01095
.00120
.00000
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