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This document is a very brief introduction to sound analysis principles. It is mainly written for
students starting with bioacoustics. The content should be updated regularly. Demonstrations
are based on the package seewave.
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Figure 1: Digital sound is a discrete process along a time scale: the same sound sampled at two
different rates: 44.1 kHz (above) and 22.05 kHz (bottom) respectively.

1 Digitization

1.1 Sampling

Digital recording is not a continuous but a discrete process of data acquisition. Sound is recorded
through regular samples. These samples are taken at a specified rate, named the sampling
frequency or sampling rate f given in Hz or kHz. The most common rate is 44,100 Hz = 44.1
kHz but lower rate can be used for low frequency sound (e.g. 22.05 kHz) or higher rate can be
used for high frequency sound (up to 192 kHz).
Figure 1 shows 5 ms of a pure tone sound (440 Hz) sampled at 44.1 kHz and 22.05 kHz re-
spectively. The discretization of sound digitization should not be underestimated as a too low
sampling rate can lead to frequency artefacts.

1.2 Quantisation

Another important parameter of digitization is the process of quantisation that consists in as-
signing a numerical value to each sample according to its amplitude. These numerical values are
attributed according to a bit scale. A quantisation of 8 bit will assign amplitude values along a
scale of 28 = 256 states around 0 (zero). Most recording systems use a 216 = 65536 bit system.
Quantisation can be seen as a rounding process. A high bit quantisation will produce values close
to reality, i. e. values rounded to a high number of significant digits, when a low bit quantisation
will produce values far from reality, i. e. values rounded a low number of significants digits.
Low quantisation can lead to impaired quality signal.
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Figure 2: Digital sound is a discrete process along amplitude scale: a 3 bit (= 23 = 8) quanti-
sation (grey bars) gives a rough representation of a continuous sine wave (red line).

1.3 File format

Wihtin R, digitized sound can be stored in three categories of files:

� uncompressed format (.wav): the full information is stored in a heavy file.

� lossy compressed format (.mp3): the information is reduced. Time, amplitude and fre-
quency parameters can be impaired.

� losslessly compressed format (.flac): the full information is stored in a reduced size file.

All these formats generate binary files, sound being encoded into a succession of 0 and 1. When
importing these formats into R through tuneR the data are transformed into a decimal format.
This implies an important increase in data size.

2 Amplitude envelope

The amplitude envelope or amplitude contour is the profile of sound energy over time. The
envelope can be expressed along a relative or an absolute energy scale. There are two ways to
obtain a relative amplitude envelope (see Figure 3):

� by computing the absolute value of the waveform,

� by computing the Hilbert transform of the waveform.

An example of the two envelopes types is shown in the figure 3 for the song of the bird Zonotrichia
capensis (Figure 4) included in the tico data.
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Figure 3: Two ways to compute the amplitude envelope of a sound: the absolute value or the
Hilbert transform of the time wave.

Figure 4: The rufous-collared sparrow Zonotrichia capensis also named tico-tico in Portuguese.
Picture by Ladislav Nagy, Wikimedia Commons.
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Figure 5: Use of the amplitude envelope to automatically measure the temporal pattern of a
sound.
timer(tico,f=22050,threshold=5,msmooth=c(50,0))

The envelope can then be used to measure the duration of the different temporal parts of the
sound as shown in figure 5 using the function timer() or to analyse the amplitude modulation
rates with the function ama().

3 Discrete-time Fourier Transform (DTFT)

3.1 Definitions and principle

Start first with some terminology:

Fourier transform (FT) This is a reversible mathematical transform named after the French
mathematician Joseph Fourier (1768-1830) (Figure 6). The transform decomposes a time
series into a sum of finite series of sine or cosine functions.

Fast Fourier Transform (FFT) This is an algorithm to compute quickly the FT.

Discrete-time Fourier transform (DTFT) This is a specific form of the FT applied to a
time wave, typically a sound. Each sine / cosine function has a specified frequency and
a relative amplitude. These two parameters are used to build the frequency spectrum of
the original time wave. The DTFT is then a way to switch from the time domain to the
frequency domain.

The signal s depicted in the figure 7 was made by the addition of three original waves with three
different carrier frequencies ωi: ω1 = 1 kHz, ω2 = 2 kHz, and ω3 = 3 kHz. The waves were
added in phase (Φ = 0) but with three differrent relative amplitudes : a1 = 1, a2 = 0.5, and
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Figure 6: Joseph Fourier around 1823. Engraving by Jules Boilly (Public Domain)

a3 = 0.25). The carrier frequencies ωi and the relative amplitude of each sine function can be
plotted in X-Y graph as shown in figure 8. This graph is a frequency spectrum.

3.2 Complete sound

The number of sine functions n is determined by the number of samples N of the original time
wave following n = 0.5 × N . If the DTFT is computed on tico data, which includes 39,578
samples, the DTFT will decompose the sound into 0.5× 39578 = 19789 sine functions. The first
sine function will have a frequency w1 = fs/N = 22050/39578 = 0.557 Hz (Figure 10). This is
equivalent to the frequency resolution ∆f of the decomposition.

3.3 Sound section

Such a high frequency resolution is often not required, if not irrelevant. In addition, computing
the FFT of the whole sound might not be appropriate if there is frequency modulation along
time, i. e. the frequency of the sound is not constant along the time scale.
A first solution is to compute the DTFT locally, on a specific sound section. The size of this
section, or window, can be set up in seconds or in number of samples, a more accurate solution.
We can, for instance, compute the DTFT in the middle of the third note produced by the tico
bird that is at 1.1 s (Figure 10). The length of the FFT is controlled with the argument wl for
window length. If we choose a window size of 512 samples, we will end up with a decomposition
into 0.5 × 512 = 256 sine functions with a frequency precision ∆f = 22050/512 = 43.07 Hz.
Increasing the window size will increase frequency resolution but the decomposition will be less
accurate in terms of time as more signal will be selected. Inversely, reducing the window size
will be more specific in terms of time (position) but the frequency resolution will decrease. This
trade-off is an example of the uncertainty or Heisenberg principle that stipulates that there is a
limit in the precision of pairs of parameters, here the time and frequency parameters.
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Figure 7: A time wave s sampled at 8000 Hz for 0.05 s.
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Figure 8: Decomposition of the time wave s into three sine functions. See figure 7.
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Figure 9: Frequency spectrum of the signal s. See figures 7 and 8.
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Figure 10: Three categories of frequency spectra computed on tico : (1 ) the spectrum of
complete sound, (2 ) the spectrum computed at 1.1 s with a 512 samples window, and (3 ) the
mean spectrum computed with the STFT (see section 4).
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Figure 11: Three different Fourier window shapes. Try example(ftwindow) for other shapes.

3.3.1 Window shape

When computing the DTFT, the shape of analysis window is by default a rectangle. However
this shape is not always appropriate as it induces artefacts like side frequency lobes. A way
to avoid this is to multiply the original window with a function of the same length with a
particular shape. This shape can be rectangular – in that case nothing is changed to the original
signal – triangular (Bartlett window), or sinusoidal (Blackman, Hamming, flat top, and Hanning
windows) (see figure 11 for three examples of window shapes and figure 12 for a test on a simple
signal).
The default window shape used in seewave is the Hanning window but other windows could be
more appropriate depending on main signal features.

4 Short-time Fourier Transform (STFT)

4.1 Principle

Computing the FFT on the whole sound or a single section might not be informative enough.
An intuitive solution is to compute the DTFT on successive sections along the signal. A window
is then slided along the signal and a DTFT is computed at each slide or jump. This is what the
short-time Fourier transform (STFT) does.
A good way to understand how it works is to use the function dynspec(). The successive DTFT
can be tracked when moving along the signal with a sliding cursor. Here is an example with a
DTFT window of 1024 samples:

> dynspec(tico, wl=1024, osc=TRUE)

Basically the STFT returns a matrix of values where columns are the successive spectra along
time. This can be summarized as a anp matrix : with aij the Fourier coefficients, n the number
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Figure 12: Using different DTFT window shapes can lead to different spectral profiles. The
frequency spectrum of the signal s (see figure 7) was computed with three different window
shapes. Side lobes differ between the three spectra

of frequency ω (window size / 2) and p the number of Fourier windows computed along the
signal:



t1 . . . tj . . . tp

ω1 a11 . . . a1j . . . a1p
...

...
. . .

...
. . .

...
ωi ai1 . . . aij . . . aip
...

...
. . .

...
. . .

...
ωn an1 . . . . . . . . . anp


This matrix is nice but a plot of it would even be better. There are three ways to friendly
visualize this matrix:

� a waterfall plot, see the function wf(),

� a density plot, or spectrogram, see the function spectro().

� a 3D plot, or 3D-spectrogram, see the function spectro3D(),

4.2 Spectrogram

4.2.1 3D in a 2D plot

The density plot option, or spectrogram, is the most popular representation used in bioacous-
tics. It has the main advantage not to be based on a 3D representation that is not appropriate
for human eye inspection. The principle is quite simple: the successive DTFT are plotted against
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Figure 13: STFT on tico song showing 77 successive FFT windows containing 512 samples
each.

time with the relative amplitude of each sine function of each DTFT being depicted in reference
to a colour scale. The usual way is to use a dB scale for amplitudes with negative dB values
refering to a maximum of 0 dB.
If we keep the tico example, applying a STFT with a sliding window of 512 samples will result
in the computation of 39578/512 = 77 FFTs. The spectrogram will therefore be made of 77
sections (columns) as shown in figure 13.

4.2.2 Overlap

The temporal and the frequency resolutions of the spectrogram are linked, with ∆f = ∆−1
t .

In the latter case, the frequency resolution is 22050/512 = 43.06 Hz and the time resolution
is 512/22050 = 0.0232s. As mentionned above, increasing the size of the window will increase
frequency resolution but decrease time resolution.
However, there is a trick to counteract this two-dimension precision limit. In the first example,
the DTFT window was coarsely jumping from a position to another but we can make the jump
slightly better. The solution is to simply allow an overlap between successive windows. This
overlap is usually set up in percentage: the default value is 0% as in figure 13. A percentage
of 50% will double the number of DTFTs, hence increasing the time resolution by a factor of
2 (now 153 FFTs) when the frequency resolution is not reduced. The overlap parameter is set
up with the argument ovlp of the function spectro()(see figure 14). A value of 100% is of
course a non-sense as the sliding window will stay on the spot. Increasing the overlap inscrease
computing time as more FFT are computed. We advice to keep reasonable values for computing
efficiency.
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Figure 14: STFT on tico song showing the 50% overlapping FFT windows. Each of the 144
FFTS contains 512 samples.

4.2.3 Values

The spectrogram is a graphical function but the values along the three scales can be saved. The
value of spectro() is a list containing three components:

� $time or [[1]] returns the values of the time axis,

� $frequency or [[2]] returns the values of the frequency axis,

� $amp or [[3]] returns the amplitude values of the successive FFT decompositions or
spectra.

These components can be used to plot the spectrogram manually (Figure 15). The successive
spectra computed by the successive DTFT can also be picked up and plot as the function spec()

would do (Figure 16).

4.3 Mean spectrum

The columns of the STFT matrix can be averaged giving the so-called mean or average spectrum
as shown in the figure 10. The frequency resolution and the shape of the mean spectrum will of
course change when changing the window size (wl) and overlap (ovlp) arguments.
The function to compute the mean spectrum is meanspec().
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Figure 15: Redrawing the graphical output of the function spectro() with the na-
tive filled.contour() function, with the command: filled.contour(x=spectro[[1]],

y=spectro[[2]], z=t(spectro[[3]])).
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Figure 16: One of the dB spectra computed by the STFT.
plot(x=spectro[[2]], y=spectro[[3]][,15], type="o", xlab="Frequency (kHz)",

ylab="Relative amplitude (dB)")
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Figure 17: Zero-crossing: principle and interpolation to reduce innacurracy of measurement.
The upper panel shows a 440 Hz signal sampled at 8000 Hz. The sampling is too low to measure
properly the period betwee successive cycles. The lower pannel plots the same wave with ×10
interpolation factor. New samples are added, it is now possible to measure the periodicty of the
wave.

5 Instantaneous frequency

5.1 Zero-crossing

The zero-crossing is a rather simple technique which consists in measuring successive time in-
tervals at which the wave crosses the zero amplitude line. This gives a measure of the period T
of a full cycle and the instantaneous frequency is obtained by simply computing f = T−1. The
signal has to be quite periodic to make the method reliable.
The main problem in zero crossing procedure is linked to the discrete process of sound sampling.
The signal to be analysed might not always have values equal or very close to zero. This makes
the zero-crossing results quite approximative. An example of this issue is illustrated in the
upper panel of the figure 17. It is therefore sometimes necessary to oversample the signal by
interpolation. This process adds values closer to zero and then increase the accuracy of the
measure as shown in the lower panel of the figure 17. An example of such measure on the usual
tico song in the figure 18.

5.2 Hilbert transform

The Hilbert transform is a decomposition of a signal x(t) into the amplitude envelope and the
instantaneous frequency. More specifically, the amplitude envelope is the modulus of the analytic
signal, defined as z(t) = x(t) + iy(t) where y(t) is the Hilbert transform, and the instantaneous
frequency is the derivative of the phase of z(t) with respect to time.
The Hilbert transform can be thus used to track both amplitude and frequency modulations.
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Figure 18: Zero-crossing: measuring the instantaneous frequency of a note the tico song without
(upper panel) and with interpolation (bottom panel).

The amplitude enveloppe is obtained with the function env() and the instantaneous frequency
is obtained with the function ifreq().

5.3 Cepstral transform

The Cepstral transform is the inverse Fourier transform of the logarithm of the spectrum. The
real cepstrum (an anagram of spectrum) is the real part of the Cestral transform. The scale
of the independent variable (usually the y-axis) of the cepstrum is named quefrequency. The
quefrequency scale is not intuitive but can be transformed in frequency (Hz). The cepstrum is
useful for detecting the fundamental frequency of an harmonic series, it corresponds to the first
peak of the cepstrum as shown in the figure 19. Note that this dectection will work properly with
harmonic signals only. The function cepstro() is short-term version of the Cepstral function:
successive cepstrum are computed along the signal with a sliding window in a similar way as the
STFT (see section 4).

6 Other transforms

There are several other options to analyse a signal. Among others, we could list the following
ones that are not included in seewave:

� Mel-frequency cepstral transform, see the function melfcc() of the package tuneR [not
tested]

� Wavelet transform, see the packages biwavelet, rwt, wavelets, waveslim, wavethresh
and wmtsa [not tested].

� Gabor transform – not yet implemented in R.
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Figure 19: A cepstral analysis on a Vanellus vanellus call (data peewit) with the following call:
ceps(peewit,at=0.4,wl=1024, col=2).

� Wigner-Ville transform – not yet implemented in R.
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