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1. Introduction

The simplest possible model for serum antibody decay is an exponential decay function (see
Appendix). This is the default longitudinal model used in seroincidence package. Various modifi-
cations can be made, however, to allow for different interpretations of low antibody concentrations
in cross-sectional data. The following three approaches are implemented in the current version of
the package:

1. Exponential decay: seroconversion is instantaneous, and is followed by exponential decrease
to zero (see Appendix for more information).

2. Exponential decay with left censoring: seroconversion is instantaneous, and it is followed
by exponential decay, but antibody concentrations below a given (fixed) level are treated as
censored (see Appendix for more information). This implies that observations below censoring
level are considered to have been generated by seroconversions from at least a given time
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in the past (corresponding to the censoring level). In simple terms: for very low antibody
concentrations we can only conclude that seroconversion occurred long ago, but not precisely
how long.

3. Exponential decay with nonzero baseline: seroconversion is again instantaneous, and is again
followed by exponential decay, but decay now is not towards zero but instead, approaches
some baseline antibody concentration that may be different for any individual (see Appendix
for more information). Low antibody concentrations in the cross-sectional sample now may
correspond to baseline levels, in which case seroconversion would have occurred an infinite
period ago.

Because of their different interpretations of low cross-sectional serum antibody concentrations, both
alternatives (left censoring and decay to baseline) lead to decreased estimates of seroincidence,
compared to the default model.

Finally, note that the methods described in the Appendix allow for arbitrary antibody decay
patterns, so that adaptations can be made to accommodate any longitudinal model for the shape of
the decaying arm of the seroresponse.

2. Influence of censoring on seroincidence

In case serum antibody data are known to be censored, a cutoff level can be defined in the
seroincidence calculator script as a list, with separate values for each of the three antibody classes
(IgG, IgM, and/or IgA).

(a) Same cutoff (b) Different cutoffs

Figure 1: Influence of cutoff levels on seroincidence estimates for a cross-sectional sample of
Campylobacter antibodies. (a) Identical cutoffs for all three antibody types; (b) Different cutoffs for
IgG, IgM and IgA.
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(a) Same cutoff (b) Different cutoffs

Figure 2: Influence of cutoff levels on seroincidence estimates for a cross-sectional sample of
Salmonella antibodies (mixed ELISA). (a) Identical cutoffs for all three antibody types; (b) Different
cutoffs for IgG, IgM and IgA.

Figures 1 and 2 show the change in seroincidence estimate, for a given set of cross-sectional antibody
data (Campylobacter and Salmonella), with increasing cutoff levels. Cutoffs need not be identical
for IgG, IgM and IgA antibodies, as illustrated in these graphs.

3. Checks using the longitudinal data

The longitudinal data may be used to obtain a crude estimate of bias in the estimated incidences
(Figure 3a, 3e).

It is seen that for samples taken 100–250 days post symptom onset, the estimated incidences appear
unbiased (the 95% interval includes 0). Increasing the cutoff (here applied identical values for all
three antibody classes) causes underestimation of the incidence (Figures 3b,c,d and 3f,g,h). The
high degree of variation in antibody levels in late samples (more than 100 days post symptom onset)
renders estimation problematic.
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(a) Cutoff 0.0 (b) Cutoff 0.5 (c) Cutoff 1.0 (d) Cutoff 2.0

(e) Cutoff 0.0 (f) Cutoff 0.5 (g) Cutoff 1.0 (h) Cutoff 2.0

Figure 3: Estimated incidences for longitudinal sera at different times since onset of illness symp-
toms. delta(incid) = difference between estimated incidence and 365/(time since onset). Top:
Campylobacter, Delft ELISA, Bottom: Campylobacter, SSI ELISA.

Appendices

This is a slightly modified description from (Teunis et al. 2012), extended with adaptations for
censoring and elevated baseline levels.

A.1. Characteristics of the serum antibody response

The longitudinal model used for describing serum antibody responses has been published (J. Simonsen
et al. 2009, Teunis et al. (2012)). As longitudinal data may include early samples taken shortly after
infection, possibly during the initial increase in antibody concentrations (during seroconversion) the
longitudinal model includes the rising phase of the seroresponse. This avoids misspecification of the
peak antibody level, resulting in estimates for the (joint distribution of) peak levels, time to peak,
and decay rates of the serum antibody concentration (Teunis et al. 2012, Versteegh et al. (2005)).

However, seroconversion usually is rapid: the increase in antibody levels is orders of magnitude
faster than the subsequent decrease. For seroconversion rate calculations we ignore the time to reach
peak levels. For simplicity it will be assumed that the antibody response decays exponentially but
this is not an essential assumption and it can be relaxed to any monotonically decreasing function
of time. So, the antibody response y to incidence at t = 0 is an instantaneous increase to peak level
(A) followed by an exponential decrease (with rate k):

y = Ae−kt
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A.2. Random sampling of randomly repeating responses

In a cross-sectional sample of responses, each subject will be sampled at a random time within its
current inter-event interval ∆t (interval, for short). The within–interval sampling distribution is
uniform:

uf (τ |∆t) =
[0 ≤ τ < ∆t]

∆t
(1)

The subscript f is introduced to show that this distribution is fundamental to sampling from
the period between events that are separated by a constant time interval ∆t. As the intervals
∆t generally will vary, the within–interval sampling distribution and the distribution of intervals
combine to a population distribution of backward recurrence times. The backward recurrence
time distribution can be translated into a corresponding distribution of response values (antibody
concentrations), due to the monotonicity of the response.

The intervals ∆t are supposed to vary randomly with distribution p(∆t). This introduces a subtle
question about the probability of sampling the response within an infinitesimal range of intervals
[∆t, ∆t+d∆t]. One would be inclined to assume that the probability is given only by the probability
density p(∆t), but one should keep in mind that responses with longer intervals are more likely to
be sampled than those with shorter intervals. Obviously, the probability of the range of sampling
intervals [∆t, ∆t + d∆t] should be proportional to the interval ∆t itself (size biased sampling, (Feller
1968, Higgins (2008), Scalia Tomba et al. (2010))). Then, the probability of sampling a response
within an infinitesimal range of intervals [∆t, ∆t + d∆t] is

p(∆t)∆t

∆tp

d∆t

Here ∆tp is the expected interval length from the distribution p. We define the incidence as its
reciprocal 1/∆tp.

Combining this probability with the uniform distribution of sampling time within the interval ∆t
leads to a population distribution of time since last event (backward recurrence time)

u(τ) =
∫

∞

∆t=0
uf (τ |∆t)

p(∆t)∆t

∆tp

d∆t

=
1

∆tp

∫

∞

∆t=τ
p(∆t)d∆t =

1 − P (τ)

∆tp

where P is the cumulative distribution of p. In going from the first to the second equality we used
the fact that ∆t should exceed τ (equation (1)). Note that the distribution u(τ) is monotonically
non-increasing.

A.3. Delta distribution

If p(∆t) is the delta-distribution p(∆t) = δ(∆t − ∆t∗) representing identical intervals, then the
uniform distribution uf (τ |∆t∗) is regained: for the delta distribution p(∆t) = δ(∆t − ∆t∗) the
expected value is ∆tp = ∆t∗. It follows that
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u(τ |∆t∗) =
1

∆t∗

∫

∞

τ
δ(∆t − ∆t∗)d∆t =

[0 ≤ τ < ∆t∗]
∆t∗

A.4. Distribution of response values given the distribution of backward recur-

rence times

Given incidence at τ = 0, the response decays as y(τ) = Ae−kτ , with τ backward recurrence time.
Consider

P (y′ ≤ y) = P
(

Ae−kτ ′

≤ Ae−kτ
)

[y ≤ A] = P (τ ≤ τ ′)[y ≤ A]

= (1 − U(τ)) [y ≤ A] = (1 − U(log(A/y)/k)) [y ≤ A] (2)

Differentiating this expression leads to

ρ(y) =
d
dy

P (y′ ≤ y) = −u (log(A/y)/k)
(

1
k

)(

−1
y

)

[y ≤ A]

=
[y ≤ A]

ky
u (log(A/y)/k) (3)

Given the antibody response y with respect to time of incidence, ρ(y) is the corresponding density
for sampled response values.

For the nth moment of the backward recurrence time one derives

E(τn) =
∫

∞

τ=0
τnu(τ)dτ =

∫

∞

τ=0

(

τn 1

∆tp

∫

∞

∆t=τ
p(∆t)d∆t

)

dτ

=
1

∆tp

∫

∞

∆t=0
p(∆t)

(

∫ ∆t

τ=0
τndτ

)

d∆t

=
1

∆tp

∫

∞

∆t=0
p(∆t)

(∆t)n+1

n + 1
d∆t =

(∆t)n+1
p

(n + 1)∆tp

A.5. Family of Gamma distributions

The distribution of intervals p(∆t) may have any form. Let the family of Γ(λ, m) distributions be
given:

pm(∆t|λ) =
λm+1∆tm

m!
e−λ∆t

From

∫

∞

x=0
xm+1e−xdx = (m + 1)!
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one easily derives that ∆tp = (m + 1)/λ.

We shall need the cumulative distribution

Pm(τ |λ) =
∫ τ

∆t=0
pm(∆t|λ)d∆t = 1 −

∫

∞

∆t=τ
pm(∆t|λ)d∆t

= 1 −
Γ(m + 1, λτ)

m!
(4)

where Γ(m + 1, λτ) denotes the (upper) incomplete gamma function (not to be confused with the
gamma distribution).

Note: working out the integral

Pm(τ |λ) =
∫ τ

∆t=0
pm(∆t|λ)d∆t,

it is straightforward to show that

Γ(m + 1, λτ) =
m!
λ

m
∑

j=0

pj(τ |λ) (5)

For the distribution of backward recurrence times one finds

um(τ |λ) =
λ

m + 1

∫

∞

∆t=τ
pm(∆t|λ)d∆t =

λ

(m + 1)!
Γ(m + 1, λτ) (6)

when m = 0

u0(τ |λ) = λΓ(1, λτ) = p0(τ |λ),

the famous property of the Poisson process.

A.6. Heterogeneity in serum antibody responses

Incorporation of responses that also vary in amplitude A and decay rate k can be easily described
with a joint density g(A, k). Of course, such heterogeneity changes the population based distribution
of y to

ρ(y) =
1
y

∫

∞

k=0

∫

∞

A=y

1
k

u

(

log(A/y)
k

)

g(A, k)dAdk

instead of corresponding equation (3). Note that the factor [y ≤ A] in equation (3) forces the lower
limit y in the integration over A. In case the peak antibody levels A and antibody decay rates k
are available as a Monte Carlo sample {An, kn} of their joint distribution the integration can be
approximated by
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ρ(y) =
1
y

1
N

N
∑

n=1

1
kn

u

(

log(An/y)
kn

)

[y ≤ An] (7)

where N is the size of the Monte-Carlo sample, maintaining any correlation between peak levels An

and decay rates kn. Assuming e.g. that infections occur with Gamma distributed intervals with rate
λ and shape factor m:

ρ(y|λ, m) =
1

(m + 1)N

N
∑

n=1

(

λ

knAn

(

y

An

)

−1+λ/kn

×
m
∑

j=0

(λ/kn log(An/y))j

j!
[y ≤ An]





For a cross-sectional sample {Y1, Y2, . . . , YNc
} a likelihood

ℓ(λ, m) =
Nc
∏

i=1

ρ(Yi|λ, m)

can be calculated to allow estimation of the parameters (λ, m) of the process generating infections.
The corresponding incidence is the average rate of infections λ/(m + 1).

A.7. Censored observations

In case observations are censored at yc such that an observed Y = max(Y, yc), then for yc < Y the
density ρ(y) as in eq. (3) holds, but the likelihood of any Y ≤ yc can be calculated

ℓ(λ, m|y ≤ yc) =
∫ yc

z=0
ρ(z|λ, m)dz = R(yc|λ, m)

and the likelihood function for a cross-sectional sample {Y1, Y2, . . . , YNc
} becomes

ℓ(λ, m) =
Nc
∏

i=1

(ρ(Yi|λ, m)[yc < Yi] × R(yc|λ, m)[Yi ≤ yc])

We need the cumulative distribution R(y) as given by eq. (2)

R(y) = 1 − U





log
(

A
min(y,A)

)

k



 = 1 − U

(

lm(y, A)
k

)

(8)

with obvious definition of lm(y, A).

For the family of gamma distributions for the intervals ∆t, eq. (8) leads to
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Rm(y) = 1 − Um

(

lm(y, A)
k

|λ

)

Substituting eq. (5) into eq. (6), and using the cumulative distribution Pj

Rm(y) = 1 −
1

m + 1

m
∑

j=0

Pj

(

lm(y, A)
k

|λ

)

which can also be expressed in terms of incomplete Gamma functions, using eq. (4)

Rm(y) = 1 −
1

m + 1

m
∑

j=0

1 −
Γ
(

j + 1, λ lm(y,A)
k

)

j!

or, expanding lm

R(y) =
1

m + 1

m
∑

j=0

1
j!

Γ
(

j + 1,
λ

k
log

(

A

min(y, A)

))

The latter form is useful for numeric calculations as there is a reliable and efficient implementation
available in R.

A.8. Nonzero baseline

The procedure outlined in (Teunis et al. 2012) is valid for any monotonically non-increasing serum
antibody response. If for instance, after seroconversion, antibody levels decrease to some baseline
level greater than zero (however long ago seroconversion has occurred), the antibody response is

y = y0 + Ae−kt

Such responses have been assumed for back-calculations (J. Simonsen et al. 2009).

Now the distribution of response values given the distribution of the backward recurrence times
becomes

P (y′ ≤ y) = P
(

y0 + Ae−kτ ′

≤ y0 + Ae−kτ
)

[y0 < y ≤ A]

= P (τ ≤ τ ′)[y0 < y ≤ A] = (1 − U(τ)) [y0 < y ≤ A]

=
(

1 − U

(

1
k

log
(

A

y − y0

)))

[y0 < y ≤ A]

Differentiation produces the density

ρ(y) =
d
dy

P (y′ ≤ y) =
1

k(y − y0)
u

(

1
k

log
(

A

y − y0

))
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Including heterogeneity in A, k and y0 via their joint distribution

ρ(y) =
∫

∞

k=0

∫

∞

A=y

∫ y

y0=0

1
k(y − y0)

u

(

1
k

log
(

A

y − y0

))

g(A, K, y0)dy0dAdk

or, when a Monte-Carlo sample of {An, kn, y0,n} triplets is available

ρ(y) =
1
N

N
∑

n=1

u
(

1
kn

log
(

An

y−y0,n

))

kn(y − y0,n)
[y0,n < y < An]

For the gamma family of distributions for ∆t,

ρ(y) =
1

N(m + 1)

N
∑

n=1

(

λ

knAn

(

y − y0,n

An

)

−1+λ/kn

×
m
∑

j=0

1
j!

(

λ

kn
log

(

An

y − y0,n

))j

[y0,n < y ≤ An]





For the Poisson process (m = 0) this reduces to

ρ(y) =
1
N

N
∑

n=1

λ

knAn

(

y − y0,n

An

)

−1+λ/kn

[y0,n < y ≤ An]
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