Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. http:/ /www.jstatsoft.org/

Getting Rid of the Loops in Statistical Simulations:
The R Package simTool

Marsel Scheer

Abstract

The simTool package is designed for statistical simulations that have two components:
One component generates the data and the other one analyzes the data. The main aims
of the simTool package are the reduction of the administrative source code (mainly loops
and management code for the results) and a simple applicability of the package that allows
the user to quickly learn how to work with the simTool package. Parallel and distributed
computing is also supported. Finally, convenient functions are provided to summarize the
simulation results.

Keywords: R, statistical simulations, parallel computing.

1. Introduction

In statistics there is a broad range of applications for simulation studies. Often they are
conducted to assess the performance, robustness or the small sample behavior of a statis-
tical method or simply compare different statistical methods. In the past, the author has
implemented many small, sometimes quick and dirty, simulation studies and a few rather
large (computationally intensive) studies. Basically, the task was to investigate or to compare
different statistical methods under different distributional settings. After implementing the
statistical methods and the functions for the data generation the most tedious and annoying
parts are the construction of the loops and the organization of the result object. The concern
of the simTool package is that annoying part. Actually, we only want to specify how the
datasets have to be generated and analyzed. Calling the functions to generate and analyze
the data and afterwards store the results is completely handled by the simTool package. To be
more precise, suppose we have k functions, g1, ..., g that generate some data and ¢ functions,
fi,--., fe that analyze the data. The core of simTool is the following “pseudo code”:

http://www.jstatsoft.org/

2 simTool : Getting Rid of the Loops

init result object

for g in {g1,...,gx}
data = g()
for £ in {f1,..., fe}

append f(data) to the result object

Thus, the general workflow is to define the sets {g1,...,gx} and {f1,..., fe}, which is aided by
the simTool package, and simTool takes care of the rest. Quite often the first reaction about
this core functionality was doubting its usefulness, because it seems that one only saves two
for-loops. But in general (without the simTool package), every parameter that is varied in
a simulation study, for instance the variance in a normal model, introduces its own for-loop.
Hence, changing the set of parameters usually requires some kind of adaption of the for-loops
or the management of the result objects has to be revised. Also, often another debugging
cycle is needed and probably the code that summarizes the results has to be adapted. The
author’s experience is that changing the set of parameters happens with probability one, even
one year or later after the simulation study was conducted. Utilizing the simTool package
no adapting, debugging or any kind of extra work is usually necessary after changing the
set of parameters. One solely has to be sure that the set {g1,...,9x} and {f1,..., f¢} are
correct and work properly together. A nice side effect is that the two sets {gi,...,gx} and
{f1,..., fe} are much easier to read and understand than a source code full of for-loops and
temporary objects that disguise the content of the simulation study. Figure 1 illustrates how
the simTool package could be embedded or utilized within a simulation study.

/ simTool AN
expandGrid() evalGrids() as.data.frame()
Specifying parameter Perfoming the simula- Converting the results . s e
Data . constellations for the tion study. Optionally into a sgmndardized Visualizing,
generating data generation and :> in a parallel or :> data.frame. |:>exporﬁng to
and analyziation distributed manner. LaTex
5 oo
analyzing
functions
\\\ /
i

Figure 1: General workflow for the simTool package.

The outline of this publication is as follows. Section 2 compares the simTool package with
packages hosted on CRAN that facilitate simulation studies. Very easy and self-explanatory
examples that illustrate the workflow are presented in Section 3. In Section 4 the package is
explained and discussed in detail. The practical usefulness of the simTool package is illustrated
in Section 6 and 7 by reproducing simulation studies that were recently published in the
Journal of Statistical Software. Finally, we state our concluding remarks in Section 8.

Journal of Statistical Software 3

The simTool package is hosted on CRAN and the latest development version can be installed
by calling devtools::install_github("MarselScheer/simTool"). Bugs, questions, fea-
ture requests and so on can be made through GitHub, where the package is also hosted or of
course by simply contacting the author via the e-mail address stated in the affiliation.

2. Similar packages

A few packages can be found on CRAN that facilitate simulation studies. We briefly compare
these packages with the simTool package.

In 2010, within the mutoss package the author already provided functions to facilitate sim-
ulation studies that have also the two components: data generation and data analyzation.
But these functions are tailored to simulation studies in the context of multiple hypothe-
ses testing, cf. Blanchard, Dickhaus, Hack, Konietschke, Rohmeyer, Rosenblatt, Scheer, and
Werft (2014) and Blanchard, Dickhaus, Hack, Konietschke, Rohmeyer, Rosenblatt, Scheer,
and Werft (2010) and does not support parallel or distributed computing. Whereas the sim-
Tool package may serve in much more general situations. However, the author believes that
the simTool package is easier and more intuitive to handle. This enhancements are mainly a
result of additional years of experience with R and simulation studies.

A further R-package is harvestr, cf. Redd (2014). Unfortunately, neither the examples nor the
vignette of the harvestr package give us sufficient insight into the harvestr package. Hence,
we no further comment this package.

Another R-package is simFrame. In Alfons, Templ, and Filzmoser (2010) the authors write
themselves: The package simFrame is intended to be as general as possible, but has initially
been developed for close-to-reality simulation studies in survey statistics. Moreover, it is
focused on simulations involving typical data problems such as outliers and missing values.
Therefore, certain proportions of the data may be contaminated or set as missing in order
to investigate the quality and behavior of, e.g., robust estimators or imputation methods. In
the author’s opinion the simFrame package is rather hard to learn. Hence, it is not easy for
the author to compare the simFrame package with the simTool package, but the simFrame
package seems not to fit the needs of the author. For instance, it seems that it is only possible
to specify one fixed data generating function and one fixed data analyzing function without
any options to control these functions by varying parameters. For example, reproducing the
simulation studies presented in the Sections 6 and 7 with the simFrame package seems not
to be very intuitive and easy. Furthermore, our experience is that on the one hand it is
sometimes handy to preserve the generated data, which is not supported by the simFrame
package. On the other hand, if the simulation study is very memory consuming, it may be
necessary to discard the generated data and summarize the results over the replications as
soon as possible to spare memory. This seems also not to be supported by the simFrame
package.

Finally, the ezsim package Chan (2014) is simple to learn and easy to handle. Similar to the
simTool package, one can specify a data generating function and an estimator function. The
parameter parameter_def controls the parameter for the data generating function. However,
it is not as flexible as the simTool package. For instance, ezsim seems not to allow to vary
parameters of the estimator function. It is only possible to specify one data generating
function and control it by varying parameters. Hence, if one wants to use rnorm and rexp for

https://github.com/MarselScheer/simTool

4 simTool : Getting Rid of the Loops

the data generation one has to write a wrapper function. But even with the wrapper function
the handling may become cumbersome, because only a few argument names of rnorm and
rexp coincide. Finally, preserving the generated data or discarding the generated data and
summarizing the results over the replications as soon as possible to spare memory is not
possible with the ezsim package.

3. A few simple examples

Before we start with the details, we give a few examples of increasing complexity. From a
statistical point of view the examples are senseless. The point here is the self-explanatory
character of the examples. For illustration purpose, the functions chosen for generating and
analyzing the data are very elementary. More examples can be found in the vignette of this
package, just call vignette("simTool") from the R-console. A reproduction of published
simulation studies can be found in the Sections 6 and 7.

First, we define a set of data generating functions represented by a data.frame:

print (dg <- expandGrid(fun="rexp", n=10))

fun n
1 rexp 10

Next, we define a set of analyzing functions:
print (pg <- expandGrid(proc="min"))

proc
1 min

Finally, we conduct the simulation study, i.e. generate 10 exponential distributed random
variables by default with mean 1 and calculate the minimum of the sample. This is done 2
times.

set.seed(1234)
eg <- evalGrids(dg, pg, replications=2)

[1] "Estimated replications per hour: 83653708"

as.data.frame (eg)

i j fun n proc replication Vi
111 rexp 10 min 1 0.06769
211 rexp 10 min 2 0.11797

Now, we extend the set of analyzing functions and repeat the simulation study.

Journal of Statistical Software

pg <- expandGrid(proc=c("min", "max"))
set.seed(1234)

eg <- evalGrids(dg, pg, replications=2)

[1] "Estimated replications per hour: 54609383"

print (df <- as.data.frame(eg))

i j fun =n proc replication Vi
111 rexp 10 min 1 0.06769
211 rexp 10 min 2 0.11797
31 2 rexp 10 max 1 1.34852
4 1 2 rexp 10 max 2 2.40319

Note that the name attribute of the objects returned by the functions min and max is NULL.
Hence, the resulting data.frame contains the column V1 otherwise the name attribute of the
returned object will be used. We now gradually increase the complexity briefly commenting
the code.

Additionally, we define the function minmax for analyzing the data, which returns the mini-
mum and maximum as a vector with a name attribute.

minmax = function(x) c(min=min(x), max=max(x))
pg <- expandGrid(proc=c("min", "max", "minmax"))
set.seed(1234)

eg <- evalGrids(dg, pg, replications=2)

[1] "Estimated replications per hour: 60157348"

print (df <- as.data.frame(eg))

i j fun n proc replication Vi min max
111 rexp 10 min 1 0.06769 NA NA
211 rexp 10 min 2 0.11797 NA NA
31 2 rexp 10 max 1 1.34852 NA NA
4 1 2 rexp 10 max 2 2.40319 NA NA
51 3 rexp 10 minmax 1 NA 0.06769 1.349
6 1 3 rexp 10 minmax 2 NA 0.11797 2.403

Now, we add a further data generating function

dg <- expandGrid(fun=c("rexp", "rnorm"), n=10)
set.seed(1234)

eg <- evalGrids(dg, pg, replications=2)

[1] "Estimated replications per hour: 32647555"

6 simTool : Getting Rid of the Loops

print(df <- as.data.frame(eg))

ij fun n proc replication Vi min max
1 11 rexp 10 min 1 0.06769 NA NA
2 11 rexp 10 min 2 0.11797 NA NA
3 12 rexp 10 max 1 1.34852 NA NA
4 1 2 rexp 10 max 2 2.40319 NA NA
5 1 3 rexp 10 minmax 1 NA 0.06769 1.349
6 1 3 rexp 10 minmax 2 NA 0.11797 2.403
7 2 1 rnorm 10 min 1 -2.09496 NA NA
8 2 1 rnorm 10 min 2 -1.88456 NA NA
9 2 2 rnorm 10 max 1 1.29298 NA NA
10 2 2 rnorm 10 max 2 1.15447 NA NA
11 2 3 rnorm 10 minmax 1 NA -2.09496 1.293
12 2 3 rnorm 10 minmax 2 NA -1.88456 1.154

Calculating the mean over the 2 replications can be simply done by

set.seed(1234)
eg <- evalGrids(dg, pg, replications=2, summary.fun=mean)

[1] "Estimated replications per hour: 67490"

print (df <- as.data.frame(eg))

ij fun n proc value V1 min max
111 rexp 10 min (all) 0.09283 NA NA
212 rexp 10 max (all) 1.87586 NA NA
313 rexp 10 minmax (all) NA 0.09283 1.876
4 2 1 rnorm 10 min (all) -1.98976 NA NA
5 2 2 rnorm 10 max (all) 1.22373 NA NA
6 2 3 rnorm 10 minmax (all) NA -1.98976 1.224

One can easily conduct the simulation study in a parallel manner.

setting the seed by set.seed has no effect on the simulation
set.seed(1234)

increasing the replications, because 2 replications can not be

distributed on 4 CPUs.

eg <- evalGrids(dg, pg, replications=20, summary.fun=mean, ncpus=4)

[1] "Estimated replications per hour: 232449"

print (df <- as.data.frame(eg))

Journal of Statistical Software 7

ij fun n proc value V1 min max
111 rexp 10 min (all) 0.1219 NA NA
212 rexp 10 max (all) 2.7546 NA NA
313 rexp 10 minmax (all) NA 0.1219 2.755
4 2 1 rnorm 10 min (all) -1.2280 NA NA
5 2 2 rnorm 10 max (all) 1.5582 NA NA
6 2 3 rnorm 10 minmax (all) NA -1.2280 1.558

Since the simulation is conducted in a parallel manner, the seed must be specified by the
parameter clusterSeed of evalGrids, which by default equals rep(12345, 6). For more
details see the following section.

4. Package description

The package consists only of 3 functions:

e expandGrid: Convenient function to define the sets {g1,...,gx} and {f1,..., fe}
e evalGrids: The workhorse that conducts the simulation study
e as.data.frame.evalGrid: Convenient function to summarize the results as a data.frame

Usually they are also called in that order. We will now discuss all 3 functions. Again as
in the last section we use dg for the data.frame representing the data generating functions
{g91,...,9r} and pg for the data.frame representing the functions {fi,..., f¢} for analyzing
the data.

4.1. Defining the sets for data generation and data evaluation

The function evalGrids that conducts the simulation expects two data.frames, say dg
and pg. evalGrids will interpret these data.frames row-wise. The first column in both
data.frames must contain the character names of the functions to be called and the other
columns are the parameters that are passed to the function specified in the first column. If one
of the other parameters is NA, then this parameter is not passed to the specified function. The
following data.frame may be used as a representation of the set of data generating functions

{91, g}

library("plyr")

print(dg <- rbind.fill(
expandGrid (fun=c("rnorm"), n=c(10,20), mean=1:2),
expandGrid (fun="rexp", n=10, rate=1:2)))

fun n mean rate
rnorm 10 1 NA
rnorm 20 1 NA
rnorm 10 2 NA
rnorm 20 2 NA
rexp 10 NA 1
rexp 10 NA

D O WN -

8 simTool : Getting Rid of the Loops

From a technical point of view, this data.frame will be automatically converted to 4 R-
functions that generate normally distributed random variables of sample size 10 or 20 with
mean 1 or 2 and 2 R-functions that generate exponentially distributed random variables of
sample size 10 with mean 1 or 1/2. The function expandGrid is a very simple wrapper of the
function expand.grid from the base package and is only a convenient function that of course
may be replaced by the users favorite choice.

As already mentioned, pg the data.frame for the functions that analyze the generated data
must follow the same rules as dg. The first column specifies the function to be called, the
other columns determine parameters that are passed to the function, and NA is ignored. For
instance, this data.frame

print (pg <- expandGrid(proc="mean", trim=c(0, 0.1)))

proc trim
1 mean 0.0
2 mean 0.1

will be automatically converted to 2 R-functions. One function is the regular arithmetic mean
and the other a trimmed mean with trim parameter set to 0.1. At this point we should clarify
which parameter will be used for the generated data. Different functions may have different
parameter names for the dataset, e.g. x is the argument for the data for the functions mean,
median, ecdf, etc. and data is the argument for the function 1m, glm, and so on. The simTool
package passes the generated data to the first argument that is not specified by default and
not specified by a column from pg. This may seem odd at the first glance, but after one
year of development and practical working with the simTool package this seems to be a good
choice in most cases. Hence, if this automatism fails, at least at the moment, one has to
write a wrapper function to correct this. In such a case, the author would reserve the first
argument of the wrapper function for the generated data. This was not necessary in any of
the simulation studies the author has made with the simTool package. If the experience will
show that such a wrapper function is often necessary a solution will be developed to get rid
of such annoying necessity.

4.2. Conducting a simulation study

The workhorse evalGrids has the following simplified pseudo code:

1 convert dg to R-functions {¢1,...,9x}

2 convert pg to R-functions {fi,..., fe}

3 1init result object

4 append dg and pg to the result object

5 t1 = current.time()

6 for g in {g1,...,9k}

7 for r in 1l:replications (optionally in a parallel/distributed manner)
8 data = g()

9 for £ in {fi1,..., fe}

10 append f(data) to the result object

11 optionally append data to the result object

Journal of Statistical Software 9

12 optionally summarize the results over all replications, but
separately for fi,...,fs
13 optionally save the result object to HDD

14 t2 = current.time()
15 Estimate the number of replications per hour from tl and t2

In order to discuss the result object we define very simple data.frames dg and pg.

dg <- expandGrid(fun="rexp", n=c(5, 10))

pg <- expandGrid(proc="mean", trim=c(0.1,0.2))
set.seed(1234)

eg <- evalGrids(dg, pg, replications=10)

[1] "Estimated replications per hour: 16202912"

evalGrids returns a list of class evalGrid. For documentation purpose of the simu-
lation study the elements call, dataGrid, procGrid, summary.fun, est.reps.per.hour,
sessionInfo contain the function call, dg, pg, the functions that were used in command
12 (in the pseudo code at the beginning of this section) to summarize the results over all
replications, the estimated number of replications that will be computable in one hour,
and the list returned by utils::sessionInfo, respectively. The most interesting ele-
ment is simulation, which itself is a list. simulation[[i]] [[r]]$data contains the data
generated by the parameter constellation of the ith row in dg in the rth replication and
simulation[[i]] [[r]]$results[[j]1] contains the object returned by the function and pa-
rameter constellation of the jth row in pg applied to the element simulation[[i]] [[r]]$data.
For example,

egl["simulation"]] [[2]][[5]]$data

[1] 2.14070 0.74931 0.34091 0.41084 0.62809 0.12774 0.85323 0.08172
[9] 0.83608 0.73992

contains the dataset that was generated by
eg$dataGrid[2,]

fun n
2 rexp 10

in the 5th replication and
egl["simulation"]] [[2]][[5]]$results[[1]]
[1] 0.5858

is the object returned by

10 simTool : Getting Rid of the Loops

eg$procGrid[1,]

proc trim
1 mean 0.1

Hence, we can simply reproduce this result by
with(egl[["simulation"]] [[2]][[5]], mean(data, trim=0.1))
[1] 0.5858

Now, we discuss all arguments one by one, except envir because this parameter is only
interesting in a few special cases. For this parameter we refer to the vignette.

args (evalGrids)

function (dataGrid, procGrid = expandGrid(proc = "length"), replications = 1,
discardGeneratedData = FALSE, progress = FALSE, summary.fun = NULL,
ncpus = 1L, cluster = NULL, clusterSeed = rep(12345, 6),
clusterLibraries = NULL, clusterGlobalObjects = NULL, fallback = NULL,
envir = globalenv())

NULL

The first three arguments should be clear by now. By default evalGrids saves ANY dataset
generated by {g1, ..., gr} and ALL result objects returned by the functions { fi,..., f¢}. This
can be very memory consuming. For instance, if replications=100, k£ = 6, and ¢ = 3, then
evalGrids will save all 100 - 6 generated datasets and all 100 - 6 - 3 result objects. Setting
discardGeneratedData=TRUE a generated dataset is discarded right after every function con-
tained in {f1,..., f¢} has been applied to that dataset, confer command 11 in the pseudo
code. Further, memory can be saved by summarizing the result objects through the param-
eter summary.fun. Passing a vector of univariate functions, e.g. mean, sd, median, etc., to
summary.fun the objects returned by {f1,..., f¢} are summarized (over the replications and
for each combination of g; (i = 1,...,k) and f; (j = 1,...,¢) separately) by the functions
specified in summary.fun as soon as possible, confer command 12 in the pseudo code. This
also automatically discards the generated datasets and all result objects created in command
10. A progress text bar in the console can be activated through progress=TRUE. It is updated,
even under parallel computations, as the for-loop in command 6 chooses the next element.
A cluster created with the parallel package can be passed to the parameter cluster. It will
then be automatically used to distribute the replications over the cluster, confer command 6.
In this case the random number generator proposed in L'Ecuyer (1999) is used. Reproducible
results can be obtained by specifying clusterSeed. The seed must be a vector of 6 (signed)
integer values. For further details confer the documentation of the parameter clusterSeed.
By specifying an integer for ncpus a cluster on the local machine is created for the user
and passed to the argument cluster of evalGrids. The parameter clusterLibraries and
clusterGlobalObjects can be used to load libraries on the cluster and to transfer R-objects
to the cluster that are necessary for the simulation. For instance, if the simulation study uses

Journal of Statistical Software

the boot package and an object O from the global environment, then the cluster has to load
the boot package and the object O must be transferred to the global environment of the clus-
ter. Finally, the parameter fallback is for all users who are afraid of loosing results by server
crashes, power black outs, and so on. Passing a character to fallback will cause evalGrids
to save the results every time the for-loop in command 6 chooses the next element. Loading
this file with the load function creates an R-object of class evalGrid called fallBack0Obj.
A nice side effect is that one can load this object before the simulation study is finished and
examine the results so far produced.

4.3. Converting results to a readable table

11

If all result objects (returned by f1, ..., fi) can be automatically transformed into a data.frame,

then simple calling as.data.frame on an R-object of class evalGrid returns a data.frame.

head (df<-as.data.frame(eg))

i j fun n proc trim replication Vi
111 rexp 5 mean 0.1 1 0.6484
211 rexp 5 mean 0.1 2 0.4462
311 rexp 5mean 0.1 3 1.2922
4 11 rexp 5 mean 0.1 4 0.7101
51 1 rexp 5 mean 0.1 5 1.5454
6 11 rexp 5 mean 0.1 6 0.4850
tail(df)

i j fun n proc trim replication Vi
35 2 2 rexp 10 mean 0.2 5 0.6175
36 2 2 rexp 10 mean 0.2 6 1.3181
37 2 2 rexp 10 mean 0.2 7 0.6129
38 2 2 rexp 10 mean 0.2 8 1.5209
39 2 2 rexp 10 mean 0.2 9 0.8398
40 2 2 rexp 10 mean 0.2 10 0.5799

The first two columns indicate which row of dg and pg were the basis for obtaining the results
displayed in the last columns. From there on the column names of df consist of the column
names of dg followed by the column names of pg and the last column names are the name
attribute of the result objects. If a result object does not have a name attribute, the results
are displayed under V1, V2, and so one, as in our example.

As one can see, the results of every single replication are contained in the df. The column
replication states in which replication the result was produced. Together with the column
i it is very easy to extract the corresponding dataset that leads to the result. For instance,

egl["simulation"]][[2]][[10]][["data"]]

[1] 2.22616 0.83566 0.83674 0.55118 0.55822 0.29806 1.58251 0.09399
[9] 0.04293 0.39925

12 simTool : Getting Rid of the Loops

leads to the last line in df by calculating the trimmed mean with trim=0.2.

The parameter summary.fun works just the same way it works within evalGrids. It summa-
rizes the results over the replications but separately for all combinations of data generating
and data analyzing functions.

as.data.frame(eg, summary.fun=c(mean, sd))

i j fun =n proc trim value Vli_mean V1_sd
111 rexp 5 mean 0.1 (all) 1.0227 0.4895
212 rexp 5 mean 0.2 (all) 0.9129 0.4575
3 2 1 rexp 10 mean 0.1 (all) 0.9429 0.3549
4 2 2 rexp 10 mean 0.2 (all) 0.8712 0.3526

Of course, if the results were already summarized by evalGrid a simple call of as.data.frame
is enough to display the summarized results. Sometimes, the object returned by the data an-
alyzing functions can not be automatically coerced into a data.frame. For this purpose it is
possible to preprocess the result objects contained in the evalGrid-object by a function spec-
ified by the parameter convert.result.fun in order to convert the object to a data.frame
and optionally summarize these further with the functions specified by summary.fun. How
this works can be seen in Section 7 or by simply executing:

example (as.data.frame.evalGrid)

5. Reproducing published simulations

The applicability of the simTool package is illustrated by reproducing two simulation studies
that were recently published in the Journal of Statistical Software. Searching the publication
for newest to oldest we found Ritter, Jewell, and Hubbard (2014) and Jamshidian, Jalal, and
Jansen (2014). We choose these two publications solely for one reason. The simulation studies
presented there were easily reproducible by simply installing the corresponding packages from
CRAN and running the source code from the supplementary.

Discussing these packages is beyond of the scope of this publication. Instead, we present and
discuss the original source code and then show how the simulation studies can be conducted
with the simTool package.

6. MissMech package

6.1. Original source code

The following source code (lines 131 till 167 from v56i06.R) is the basis for Table 1 in Jamshid-
ian et al. (2014) and can be found in the corresponding supplementary.

#-—- R code for Table 1 simulation results
To reach the results in Table 1, uncomment the appropriate line and set

Journal of Statistical Software 13

the distribution parameters

library("MissMech")

set.seed(1010)

n <- 300

p <-5

pctmiss <- 0.2

pval_Hw <- c()

pval_Non <- c()

pval_HwComp <- c()

pval_NonComp <- c()

df.t <- 3

shape.g <- 2

rep <- 1000/100

for (k in 1:rep){
y <- matrix(rnorm(n * p), nrow = n)
#y <- matrix(rt(n * p, df.t), nrow = n)
#y <- matrix(rgamma(n * p, shape.g, 1) , nrow = n)
#y <- matrix(runif(n * p) , nrow = n)

ycomp <- 'y

missing <- matrix(runif(n * p), nrow = n) < pctmiss

y[missing] <- NA

out <- TestMCARNormality(data = y, del.lesscases = 6, imputation.number =
method = "Auto", imputation.method = "Dist.Free", nrep = 10000,
n.min = 30, seed = NA, alpha = 0.05, imputed.data = NA)

ycomp <- ycomp [sort (out$caseorder),]

out.comp <- TestMCARNormality(data = out$analyzed.data, del.lesscases = 6,

imputation.number = 1, method = "Auto", imputation.method = "Dist.Free',
nrep = 10000, n.min = 30, seed = NA, alpha = 0.05, imputed.data = ycomp)

pval_Hw <- c(out$pvalcomb, pval_Hw)
pval_Non <- c(out$pnormality, pval_Non)
pval_HwComp <- c(out.comp$pvalcomb, pval_HwComp)
pval_NonComp <- c(out.comp$pnormality, pval_NonComp)
}
c(sum(pval_Hw < 0.05) / k, sum(pval_Non < 0.05) / k,
sum(pval_HwComp < 0.05) / k, sum(pval_NonComp < 0.05) / k)

It seems that the source code was developed for one particular scenario with one distribution
function and one parameter constellation. Afterwards, further parameter constellations and
distribution functions were introduced without revising the source code. The author has done
simulation studies in such a manner not only once and such an approach has some drawbacks:

1. Reproducing the results is cumbersome, especially for many different parameter con-
stellations.

2. Temporary objects or variables that are only important under specific circumstances,
e.g. shape.g, distract the reader from the important source code.

14 simTool : Getting Rid of the Loops

3. Extending and adapting the simulation study is cumbersome and error-prone, especially
if this had to be done by a third person.
4. Transferring the results into the publication is error-prone.

Among other things, these reasons cause the author to develop the simTool package.

6.2. Reproduction by the simTool package
First define the functions that generate the data.

library("MissMech")
createMatrices = function(vec, n, p, pctmiss){
completeMatrix = matrix(vec, nrow=n)
incompleteMatrix = completeMatrix
incompleteMatrix[matrix(runif(n * p), nrow = n) < pctmiss] = NA
list(completeMatrix=completeMatrix, incompleteMatrix=incompleteMatrix)
}
matrix.rnorm = function(n, p, pctmiss) {
createMatrices (rnorm(n*p), n, p, pctmiss)
}
matrix.rt = function(n, p, df, pctmiss){
createMatrices(rt (n*p, df=df), n, p, pctmiss)
}
matrix.rgamma = function(n, p, shape, pctmiss){
createMatrices (rgamma(n*p, shape=shape), n, p, pctmiss)
}
matrix.runif = function(n, p, pctmiss){
createMatrices (runif (n*p), n, p, pctmiss)

}

Furthermore, we need the functions that analyze the generated data. The requirements of this
particular simulation does not fit perfectly into the approach of the simTool package. The
function MissMech: :TestMCARNormality has a parameter seed and in order to reproduce
Table 1 we need to set seed=NA. But with the simTool package it is not possible to pass NA
to the parameter seed. Hence, a wrapper function is needed that sets seed=NA if seed is
missing.

calcPValues = function(
data, del.lesscases = 6, imputation.number = 1,
method = "Auto", imputation.method = "Dist.Free", nrep = 10000,
n.min = 30, seed, alpha = 0.05){

if (missing(seed))
seed = NA

out <- TestMCARNormality(
data = data$incompleteMatrix, del.lesscases = del.lesscases,

Journal of Statistical Software 15

imputation.number = imputation.number, method = method,
imputation.method = imputation.method, nrep = nrep,
n.min = n.min, seed = seed, alpha = alpha, imputed.data = NA)

out.comp <- TestMCARNormality(
data = out$analyzed.data,
del.lesscases = del.lesscases, imputation.number = imputation.number,
method = method, imputation.method = imputation.method,
nrep = nrep, n.min = n.min, seed = seed, alpha = alpha,
imputed.data = data$completeMatrix[sort(out$caseorder),])

c(pval_Hw = out$pvalcomb, pval_Non = out$pnormality,
pval_HwComp = out.comp$pvalcomb, pval_NonComp = out.comp$pnormality)
}

Note that this source code is more intelligible than the original source code merely by concen-
trating on the data generation and analyzation and the objects necessary for the particular
situation. Now, as we have data generating and analyzing functions at hand we can reproduce
Table 1 from Jamshidian et al. (2014). But first, we exactly reproduce the 7th row of Table
1 in Jamshidian et al. (2014).

dg = expandGrid(fun="matrix.runif", n=300, p=5, pctmiss=0.2)
pg <- expandGrid(proc="calcPValues", del.lesscases = 6,

imputation.number = 1, method = "Auto",
imputation.method = "Dist.Free", nrep = 10000,
n.min = 30, alpha = 0.05)

set.seed(1010)
eg = evalGrids(dg, pg, replications=1000)

[1] "Estimated replications per hour: 1563"

as.data.frame(eg, summary.fun=function(x) round(100#*mean(x<0.05),1))[,c("fun",
"pval_Hw", "pval_Non", "pval_ HwComp", "pval_NonComp")]

fun pval_Hw pval_Non pval_HwComp pval_NonComp
1 matrix.runif 95 9.8 96.4 8.9

By the nature of the original source code in Section 6.1, exact reproduction of all results
is clumsy, because one has to specify only one data generating function at once as shown
above. However, since we will use 4 CPUs we can not make use of the seed chosen in
Jamshidian et al. (2014). Thus, our results are only qualitative the same. Furthermore, the
calculations require the library MissMech and the data generating function createMatrices,
matrix.rnorm, etc. we have defined in the global environment. As mentioned in Section 4
by specifying ncpus larger than one a cluster is created for the user. In order to be able to
conduct the simulation in a parallel manner these functions must be transferred to the cluster
and the library MissMech must be loaded on the cluster. The parameters clusterLibraries
and clusterGlobalObjects serve exactly this purpose.

16 simTool : Getting Rid of the Loops

dg = rbind.fill(
expandGrid (fun="matrix.rnorm", n=300, p=5),
expandGrid (fun="matrix.rt", n=300, p=5, df=c(3,5,7,9,20)),
expandGrid (fun="matrix.runif", n=300, p=5),
expandGrid (fun="matrix.rgamma", n=300, p=5, shape=c(2,5,10))
)

print(dg <- cbind(dg, pctmiss=0.2))

fun n p df shape pctmiss
1 matrix.rnorm 300 5 NA NA 0.2
2 matrix.rt 300 5 3 NA 0.2
3 matrix.rt 300 5 5 NA 0.2
4 matrix.rt 300 5 7 NA 0.2
5 matrix.rt 300 5 9 NA 0.2
6 matrix.rt 300 5 20 NA 0.2
7 matrix.runif 300 5 NA NA 0.2
8 matrix.rgamma 300 5 NA 2 0.2
9 matrix.rgamma 300 5 NA 5 0.2
10 matrix.rgamma 300 5 NA 10 0.2

pg is already defined correctly

eg = evalGrids(
dg, pg, replications=1000,
discardGeneratedData=TRUE, ncpus=4,
clusterLibraries="MissMech",
clusterGlobalObjects=c("createMatrices", unique(dg[, "fun"])))

[1] "Estimated replications per hour: 463"
Obtaining Table 1 from Jamshidian et al. (2014) from our evalGrid-object is very simply.

tablel = as.data.frame(eg, summary.fun=function(x) round(100#*mean(x<0.05), 1))
tablel[,c("fun", "df", "shape", "pval_Hw", "pval_Non", "pval_HwComp",
"pval_NonComp")]

fun df shape pval_Hw pval_Non pval_HwComp pval_NonComp

1 matrix.rnorm NA NA 4.5 6.9 5.4 6.6
2 matrix.rt 3 NA 100.0 12.4 100.0 11.8
3 matrix.rt 5 NA 88.6 8.4 91.2 8.1
4 matrix.rt 7 NA 55.1 8.1 57.4 7.6
5 matrix.rt 9 NA 35.6 7.8 35.4 6.7
6 matrix.rt 20 NA 13.0 6.7 10.5 6.5
7 matrix.runif NA NA 95.2 13.0 95.8 9.2
8 matrix.rgamma NA 2 88.9 21.3 91.3 18.7
9 matrix.rgamma NA 5 27.7 12.0 29.6 11.1
10 matrix.rgamma NA 10 11.9 10.6 13.6 10.5

Journal of Statistical Software 17

Although this is not part of Jamshidian et al. (2014) we illustrate that other representation,
for instance as plots of the empirical cumulative distribution functions of the p-values, are
also easy to create.

df = as.data.frame(eg)
library("reshape")
mdf = melt(df, measure.vars = c("pval_Hw", "pval_Non", "pval_HwComp",
"pval_NonComp"))
mdf = subset(mdf, mdf[, "fun"]=="matrix.rgamma")
library("ggplot2")
ggplot (mdf, aes(x=value, colour=as.factor(shape))) +
stat_ecdf () +
geom_abline(slope=1, linetype="dashed") +
facet_wrap(“variable)

pval_Hw pval_Non

as.factor(shape)
2

—5
10

7. multiPIM package

7.1. Original source code

We reproduce now Figure 1 from Ritter et al. (2014). The original source code for that Figure
1 can be found in v57i08.R in lines 39 till 174. Lines 39 till 119 code the actual simulation
study and are partly displayed in the following code chunk:

18 simTool : Getting Rid of the Loops

for(a in length(ms):1) { ## do the big ns first
cat ("\n#RAH IR IR HRAH AR ### \nStarting on n =",
nslal], "\n#t##HHHARRRRHHBHEHEHRTR TR \n\n ")
W <- gen.W(ns[al, num.covs, sigma)
A <- gen.A(W)
Y <- gen.Y(4, W, error.sd)
for(b in 1:length(estimators)) {
multiPIM.objects[[al][[b]] <-
multiPIM(Y, A, W, estimator = estimators[b],
g.method = "main.terms.logistic", ## will be ignored for g-comp

(.method = "main.terms.linear",
return.final.models = FALSE)
param.estimates[a, b] <- multiPIM.objects[[a]][[b]]$param.estimates[1]
}
}

The original source code before these two for-loops is concerned only with the initialization of
the result object multiPIM.objects and definition of ns, gen.W, and so on. Again, extending
the simulation study, for instance by varying error.sd or conducting more than one repli-
cation is error-prone and would also require to revise the original source code that creates
Figure 1.

7.2. Reproduction by the simTool package

Again we start with the function that generates the data. The following three functions are
copied from the supplementary of Ritter et al. (2014)

function to generate W as multivariate normal
gen.W <- function(n, Sigma) {
p = nrow(Sigma)
W <- data.frame(mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma))
names (W) <- paste("w", 1:p, sep = "")
return (W)

}

function to generate A based on covs (W)
gen.A <- function(W) {

A.probs <- plogis(0.2*rowSums(as.matrix(W)))

A <- data.frame(al = rbinom(nrow(W), 1, A.probs))
}

function to generate Y based on A and W
gen.Y <- function(A, W, error.sd) {
Y <- data.frame(yl = W[,1]*W[,2] + W[,3]*W[,4]
+ rowSums (as.matrix(W)~2) * A[[1]]
+ rnorm(arow(W), 0, error.sd))

Journal of Statistical Software 19

In order to utilize the simTool package two wrapper functions are needed. The function
multiPIM: :multiPIM that calculates the estimates expects 3 datasets W, A, and Y. Since
evalGrid always passes only one dataset, we need a wrapper function that returns W, A, and
Y at once and a wrapper function that passes the 3 datasets to multiPIM: :multiPIM.

YAW = function(n, num.covs, covar, error.sd){
sigma <- matrix(covar, num.covs, num.covs)
diag(sigma) <- 1
W = gen.W(n, sigma)

A = gen.A(W)
list(W = W,
A=A,

Y

gen.Y(A, W, error.sd))
}

est.fun = function(data, estimator, g.method, Q.method){
multiPIM(data[["Y"]], data[["A"]], data[["W"]], estimator = estimator,
g.method = g.method,
.method = .method,
return.final.models = FALSE)

We now reproduce all results necessary for Figure 1 from Ritter et al. (2014).

library ("multiPIM")
library("MASS")

set.seed(23)
dg = expandGrid(
fun="YAW",
n=round (100* (2500~ (1/99)) ~(99:0)),
num.covs = 4, covar=0.2, error.sd=2)
pg = expandGrid(
proc="est.fun", estimator=c("TMLE", "G-COMP"),
g.method="main.terms.logistic",
@.method="main.terms.linear")
eg = evalGrids(dg, pg, discardGeneratedData = TRUE, replications = 1)

[1] "Estimated replications per hour: 50"

The object returned by multiPIM can not be automatically coerced into a data.frame. Hence,
an appropriate function is passed to the argument convert.result.fun of as.data.frame.evalGrid.

df = as.data.frame(eg, convert.result.fun = function(result)
c(estimate=result[["param.estimates"]][1]))

20 simTool : Getting Rid of the Loops

We use ggplot2 for the visualization, but obtain a qualitative reproduction of Figure 1 in
Ritter et al. (2014)

ggplot (df, aes(y=estimate, x=n, colour=estimator)) + geom_line() +
geom_point () + ylim(min(df$estimate), max(df$estimate)) +
theme (legend.position=c(0.85,0.85)) +
ylab("Parameter estimate") + xlab("Sample size (log scaling)") +
scale_x_logl10(breaks=c(100%¥10°(0:3), 250%10°(0:3), 500%10°(0:2)))

-1.25-
estimator
G-COMP
-1.50 - —— TMLE
9
g -175- '
g I 4
L | \\[\
g
Q-200-
£ Al WN\/"\MM«.
<
o
-2.25-
-2.50 -

I I I I I I I I I I I
100 250 500 1000 2500 5000 10000 25000 50000100000 250000
Sample size (log scaling)

From the call of evalGrids it is obvious that the replication equals only 1. It is very natural
to increase the number of replications and to plot the mean of the estimates. Extending the
original source code in this way requires some work and probably one or more debugging
cycles. Utilizing the simTool package this is quite easy as we now show. We simple set
replications=400. Furthermore, since we do not have any memory issues with this simu-
lation we keep all individual results and summarize the data by setting summary.fun=mean
within as.data.frame.evalGrid instead of evalGrids. Again, we use parallel computations.
Hence, the libraries multiPIM and MASS must be loaded on the cluster and the functions
YAW, gen.A, gen.W, and gen.Y must be transferred to the cluster.

eg = evalGrids(dg, pg, discardGeneratedData = TRUE, replications = 400, ncpus=4,
clusterLibraries=c("multiPIM", "MASS"),
clusterGlobalObjects=c("YAW", "gen.A", "gen.W", "gen.Y"))

[1] "Estimated replications per hour: 151"

Calculating both the mean and the standard deviation is very easy and enables us to easily
create a plot that is more informative than the original one. Note, we do not want to discuss
the statistical issue of constructing confidence intervals for the estimator. This extended plot
is solely an illustration of how easy and flexible the simTool package is.

Journal of Statistical Software

df = as.data.frame(eg, convert.result.fun = function(result)
c(estimate=result[["param.estimates"]][1]),
summary.fun=c(mean, sd, length))

df$lower = with(df, estimate_mean - 1.96*estimate_sd/sqrt(estimate_length))
df$upper = with(df, estimate_mean + 1.96*estimate_sd/sqrt(estimate_length))
library("ggplot2")
ggplot (df, aes(y=estimate_mean, x=n, colour=estimator)) + geom_line() +
geom_ribbon (aes(ymin=lower, ymax=upper, fill=estimator), alpha=0.2) +
ylim(min(df$lower), max(df$upper)) +
theme (legend.position=c(0.85,0.85)) +
ylab("Parameter estimate") + xlab("Sample size (log scaling)") +
scale_x_log10(breaks=c(100%¥10~(0:3), 250%10°(0:3), 500%10°(0:2)))

estimator
G-COMP

4| TMLE

|
=
©

|

Parameter estimate

|
N
o

1

1 1 1 1 1 1 1 1 1 1 1
100 250 500 1000 2500 5000 10000 25000 50000100000 250000
Sample size (log scaling)

Note, instead of calculating the mean and the lower and upper bound by hand, the simTool
package provides the convenient function meanAndNormCI.

8. Concluding remarks

A simulation study usually involve source code that is not directly connected to it, e.g. loops
for the varying variables or organization of the result objects. The presented package dis-
engages the researcher from such administrative source code, so the programmer can keep
focused on the important aspects, i.e. the functions that generate and analyze the data. In
order to conduct a simulation study the researcher has only to specify how the datasets have
to be generated and analyzed in form of two data.frames, which also gives a nice overview
of the defined simulation study. It is possible to keep the generated datasets and all indi-
vidual result objects or simply the individual result objects or even only a summary of the

22 simTool : Getting Rid of the Loops

result objects. Keeping all information is handy for debugging or inspection of unusual or
unexpected results, while discarding as many as possible may be necessary for very memory
consuming simulation studies. Parallelizing the replications is very simple by solely specifying
the number of CPUs. For researchers familiar with the parallel package it is even possible
to distribute the simulation studies over many computers by simply passing the cluster to
the workhorse function evalGrids. In sum, the simTool package is a flexible tool for small
or large and memory consuming simulation studies. It is very easy to learn and intuitive to
handle.

9. Session info

sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
[56] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] splines parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] MASS_7.3-29 multiPIM_1.4-1 rpart_4.1-5 polspline_1.1.9
[6] penalized_0.9-42 survival_2.37-7 lars_1.2 MissMech_1.0.1
[9] plyr_1.8.1 simTool_1.0.1 knitr_1.6

loaded via a namespace (and not attached):

[1] colorspace_1.2-4 digest_0.6.4 evaluate_0.5.5 formatR_0.10
[5] ggplot2_1.0.0 grid_3.0.2 gtable_0.1.2 htmltools_0.2.4
[9] munsell _0.4.2 proto_0.3-10 Rcpp_0.11.2 reshape_0.8.5
[13] reshape2_1.4 rmarkdown_0.2.59 rticles_1.0 scales_0.2.4
[17] stringr_0.6.2 tools_3.0.2 yaml_2.1.13

References

Alfons A, Templ M, Filzmoser P (2010). “An Object-Oriented Framework for Statistical
Simulation: The R Package simFrame.” Journal of Statistical Software, 37(3), 1-36. ISSN
1548-7660. URL http://www. jstatsoft.org/v37/103.

http://www.jstatsoft.org/v37/i03

Journal of Statistical Software 23

Blanchard G, Dickhaus T, Hack N, Konietschke F, Rohmeyer K, Rosenblatt J, Scheer
M, Werft W (2010). “muTOSS - Multiple hypothesis testing in an open software sys-
tem.” JMLR: Workshop and Conference Proceedings, 11, 12-29. URL http://jmlr.org/
proceedings/papers/vil/blanchard10a/blanchardi0a.pdf.

Blanchard G, Dickhaus T, Hack N, Konietschke F, Rohmeyer K, Rosenblatt J, Scheer M,
Werft W (2014). mutoss: Unified multiple testing procedures. R package version 0.1-8,
URL http://CRAN.R-project.org/package=mutoss.

Chan TJ (2014). ezsim: provide an easy to use framework to conduct simulation. R package
version 0.5-5, URL http://CRAN.R-project.org/package=ezsim.

Jamshidian M, Jalal S, Jansen C (2014). “MissMech: An R Package for Testing Homoscedas-
ticity, Multivariate Normality, and Missing Completely at Random (MCAR).” Journal of
Statistical Software, 56(6). ISSN 1548-7660. URL http://www.jstatsoft.org/v56/i06.

L’Ecuyer P (1999). “Good Parameters and Implementations for Combined Multiple Recursive
Random Number Generators.” Operations Research, 47(1), 159-164. doi:10.1287/opre.
47.1.159. http://pubsonline.informs.org/doi/pdf/10.1287/opre.47.1.159, URL
http://pubsonline.informs.org/doi/abs/10.1287/opre.47.1.159.

Redd A (2014). harvestr: A Parallel Simulation Framework. R package version 0.6.0, URL
http://CRAN.R-project.org/package=harvestr.

Ritter SJ, Jewell NP, Hubbard AE (2014). “R Package multiPIM: A Causal Inference Ap-
proach to Variable Importance Analysis.” Journal of Statistical Software, 57(8). ISSN
1548-7660. URL http://www.jstatsoft.org/v57/1i08.

Affiliation:
Marsel Scheer

50968 Cologne
E-mail: scheer@freescience.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume VYV, Issue 11 Submitted: yyyy-mm-dd

MMMMMM YYYY Accepted: yyyy-mm-dd

http://jmlr.org/proceedings/papers/v11/blanchard10a/blanchard10a.pdf
http://jmlr.org/proceedings/papers/v11/blanchard10a/blanchard10a.pdf
http://CRAN.R-project.org/package=mutoss
http://CRAN.R-project.org/package=ezsim
http://www.jstatsoft.org/v56/i06
http://dx.doi.org/10.1287/opre.47.1.159
http://dx.doi.org/10.1287/opre.47.1.159
http://pubsonline.informs.org/doi/pdf/10.1287/opre.47.1.159
http://pubsonline.informs.org/doi/abs/10.1287/opre.47.1.159
http://CRAN.R-project.org/package=harvestr
http://www.jstatsoft.org/v57/i08
mailto:scheer@freescience.de
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Similar packages
	A few simple examples
	Package description
	Defining the sets for data generation and data evaluation
	Conducting a simulation study
	Converting results to a readable table

	Reproducing published simulations
	MissMech package
	Original source code
	Reproduction by the simTool package

	multiPIM package
	Original source code
	Reproduction by the simTool package

	Concluding remarks
	Session info

