
Some Examples of sivipm Use

J.P. Gauchi and A. Bouvier

INRA, UR1404
F78352 Jouy en Josas Cedex

France

April 13, 2015

Contents

1 Brief description of the sivipm package 2

2 Data 2
2.1 Example of a raw dataset: cornell0 2
2.2 Example of a transformed dataset: XY180 4

3 Polynomial 4
3.1 When the provided data are “raw” data 4

3.1.1 Polynomial described by a character vector 4
3.1.2 Polynomial of standard type 5

3.2 When the provided data are transformed data 5
3.2.1 Polynomial described by a character vector 6
3.2.2 Polynomial of a standard type 6

4 Polynomials handling 7
4.1 Binding polynomials . 7
4.2 Removing monomials from a polynomial 8

5 Calculations 8
5.1 Individual and total sensitivity indices, significant components . 8
5.2 Add an alea in the computation of the total sensitivity indices . 11
5.3 Ask for more results . 13
5.4 Computation Y by Y . 14
5.5 When there are missing values 14
5.6 When there is no polynomial description 14
5.7 Confidence intervals for the total sensitivity indices by a boot-

strap method . 15

6 References 16

1

1 Brief description of the sivipm package

The sivipm R package computes total and individual sensitivity indices, signif-
icant components, and confidence intervals for the total sensitivity indices. The
total and individual sensitivity indices are calculated using a method based on
the VIP of the PLS regression, proposed by J.P. Gauchi ([Gauchi et all (2010)],
[Gauchi (2012)], [Gauchi (2015)]). The significant components are calculated by
the SIMCA software ([SIMCA Software]) rule and by the Lazraq & Cléroux test
([Lazraq and Cléroux (2001)]). The confidence intervals for the total sensitivity
indices are determined by the bootstrap method.

Some examples of use are given hrere. Complete description of the syntax
of the sivipm functions is available through the help functions of the package.

2 Data

The observed inputs and outputs must be stored in data-frames.

Input dataset may be,

� either, raw dataset. The number of columns is then the number of X-
inputs,

� or transformed dataset. The number of columns is then the number of
monomials in the polynomial. Each column is the value of a monomial
calculated on non provided X-inputs.

Output dataset, or response variable, must be stored in a data-frame with
one or several columns. The response can be uni or multivariate.

Missing values are accepted. However, if there are missing values and the
response is multivariate, then it is not possible to compute the significant com-
ponents.

Categorical variables must be transformed into indicator variables before
processing analysis:

� if the variable has more than 2 categories, it must be split into as many
0/1 indicator variables as distinct categories;

� if it has two categories, set −1 on the lines corresponding to the first
category, +1 on the lines corresponding to the second one (or vice versa);

� if it has one category only, the dataset is then not accepted.

The function factorsplit can be used to do this transformation: it creates a
data-frame where the factors are split or changed into numeric variables.

2.1 Example of a raw dataset: cornell0

cornell0 is an example of raw dataset. The data-frame contains seven input
variables, followed by one response variable ([Kettaneh-Wold (1992)]).

2

Distillation Reformat NaphthaT NaphthaC Polymer Alkylat Gasoline Y
0.00 0.23 0.00 0.00 0.00 0.74 0.03 98.7
0.00 0.10 0.00 0.00 0.12 0.74 0.04 97.8
0.00 0.00 0.00 0.10 0.12 0.74 0.04 96.6
0.00 0.49 0.00 0.00 0.12 0.37 0.02 92.0
0.00 0.00 0.00 0.62 0.12 0.18 0.08 86.6
0.00 0.62 0.00 0.00 0.00 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0.00 0.00 0.08 81.9
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0.00 0.06 0.08 82.4
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0.00 0.00 0.06 81.4
0.00 0.00 0.00 0.55 0.00 0.37 0.08 88.1

3

Creation of the input data-frame, XCornell0, and the output data-frame, YCornell0:

> library(sivipm)

> XCornell0 <- cornell0[,1:7] # inputs

> YCornell0 <- as.data.frame(cornell0[,8]) # output

> dimnames(YCornell0)[[2]] <- "Y"

2.2 Example of a transformed dataset: XY180

XY180 is an example of transformed dataset1. The data-frame contains 160
columns. The first ones are the values of 158 monomials calculated on 18 inputs
and the two last are the response variables.

> X180 <- XY180[,1:158]

> Y180 <- XY180[, 159:160]

> dimnames(Y180)[[2]]=c("Y1", "Y2")

3 Polynomial

The polynomial can be described,

� either, by a character vector,

� or be chosen among a list of standard types.

Note. The first monomials must always be the X-input variables.

From the input data-frame and its polynomial description, an object of class
polyX2 has to be created before processing the calculations. The following
sections illustrate the way of creating a polyX object.

3.1 When the provided data are “raw” data

3.1.1 Polynomial described by a character vector

The polynomial can be described by a character vector, whose each element
codes a monomial. The variables are identified either by their names or by their
numbers. The character “*” (asterisk) denotes interaction between variables.

For example, we create the following polynomial of maximal degree equal to 3:

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x1*x3 + x2*x2 +
x2*x4 + x3*x4 + x5*x5 + x6*x6 + x7*x7*x7

where xi is the X-input number i.
It is described by the following character vector, where the variables are identi-
fied by their numbers:

1This dataset is provided by S. Lefebvre (ONERA, Palaiseau, France) and described
in [Gauchi (2015)].

2polyX: class which contains the polynomial description in a list structure and in an indi-
cator matrix, and the transformed data, calculated on the raw data, if necessary.

4

> monomials <- c("1","2","3", "4","5", "6", "7",

+ "1*3", "2*2", "2*4", "3*4", "5*5",

+ "6*6", "7*7*7")

We could have identified the variables by their names as well:

> monomialsbis <- c("Distillation","Reformat","NaphthaT", "NaphthaC",

+ "Polymer", "Alkylat", "Gasoline",

+ "Distillation*NaphthaT", "Reformat*Reformat",

+ "Reformat*NaphthaC", "NaphthaT*NaphthaC",

+ "Polymer*Polymer", "Alkylat*Alkylat",

+ "Gasoline*Gasoline*Gasoline")

The function vect2polyX creates the polyX object:

> PCornell0 <- vect2polyX (XCornell0, monomials)

3.1.2 Polynomial of standard type

The function crpolyX can be used to generated three types of standard poly-
nomials:

� full: complete polynomial with all the terms of degree less or equal to
the maximal degree. Example with 2 variables and degree 3:
x1 + x2 + x1

2 + x2 ∗ x1 + x2
2 + x1

3 + x2 ∗ x1
2 + x2

2 ∗ x1 + x2
3

� power: only power terms of degree less or equal to the maximal degree.
Example with 2 variables and degree 3: x1 + x2 + x1

2 + x2
2 + x1

3 + x2
3

� interact: only interactions of degree less or equal to the maximal degree.
Example with 2 variables and degree 3: x1+x2+x2∗x1+x2∗x1

2+x2
2∗x1

Note. The first monomials are always the X-input variables.

For example, we create a polynomial composed with the power terms of degree
less or equal to 2 on the 3 first variables of XCornell0:

> PCornell0bis <- crpolyX(XCornell0[,1:3], 2, type="power")

> options(width=60) # set display width to avoid line truncation

> PCornell0bis

Polynome description:
Distillation + Reformat + NaphthaT + Distillation*Distillation +
Reformat*Reformat + NaphthaT*NaphthaT
Polynome description using variable numbers:
1 + 2 + 3 + 1*1 + 2*2 + 3*3
Number of observations: 12

3.2 When the provided data are transformed data

The functions which create a polyX object from transformed data and, respec-
tively from a character vector, and from a standard type of polynomial, are
vect2PolyXT, and crpolyXT.

5

3.2.1 Polynomial described by a character vector

The transformed data-frame X180 (see Section 2.2) is the result of the calculation
of 158 monomials on 18 X-inputs.

1. The polynomial is described by a character vector. Here, the variables are
identified by their numbers:

> Pexp <- as.character(1:18)

> for (i in 1:13) {

+ Pexp <- c(Pexp, paste(i,"*",i, sep=""))

+ }

> for (i in 1:13) {

+ Pexp <- c(Pexp, paste(i,"*",i, "*",i, sep=""))

+ }

> for (i in 1:12) {

+ for (j in (i+1):13) {

+ Pexp <- c(Pexp, paste(i,"*",j, sep=""))

+ }

+ }

> for (i in 1:18) {

+ if (i != 15)

+ Pexp <- c(Pexp, paste("15*",i,sep=""))

+ }

> for (i in 16:18) {

+ for (j in 9:11) {

+ Pexp <- c(Pexp, paste(i, "*", j,sep=""))

+ }

+ }

> Pexp <- c(Pexp, c("13*16"), c("13*17"), c("13*18"),

+ c("14*16"), c("14*17"), c("14*18"),

+ c("14*9"), c("14*10"), c("12*14"), c("2*14"))

2. We create the polyX object, by using the vect2polyXT function. The
names of the 18 inputs must be explicitely provided, because, unlike the
raw data case, they cannot be deduced from the column names of the
input data-frame.

> varnames180 <- c("ALTI", "MACH", "POWERS", "EAI", "CAP",

+ "YAW", "ROLL", "PITCH", "VIS", "RH",

+ "TA", "HBASE", "HOUR", "MODEL", "CLOUDS",

+ "IHAZE1","IHAZE2", "IHAZE3")

> PX180 <- vect2polyXT(varnames180, X180, Pexp)

3.2.2 Polynomial of a standard type

For illustrative purpose, we suppose that the data-frame X180 is the result of the
calculation of a polynomial of maximal degree 2 made up of the power terms. As
this polynomial has 36 monomials only, the extra columns of X180 are ignored.

> PX180b <- crpolyXT(varnames180, X180, 2, type="power")

> summary(PX180b)

6

Number of observations: 180
Polynome degree: 2
Number of monomials: 36
Number of variables: 18
Polynome description:
ALTI + MACH + POWERS + EAI + CAP + YAW + ROLL + PITCH + VIS +
RH + TA + HBASE + HOUR + MODEL + CLOUDS + IHAZE1 + IHAZE2 +
IHAZE3 + ALTI*ALTI + MACH*MACH + POWERS*POWERS + EAI*EAI + CAP*CAP +
YAW*YAW + ROLL*ROLL + PITCH*PITCH + VIS*VIS + RH*RH + TA*TA +
HBASE*HBASE + HOUR*HOUR + MODEL*MODEL + CLOUDS*CLOUDS + IHAZE1*IHAZE1 +
IHAZE2*IHAZE2 + IHAZE3*IHAZE3
Polynome description using variable numbers:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +
15 + 16 + 17 + 18 + 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 + 7*7 +
8*8 + 9*9 + 10*10 + 11*11 + 12*12 + 13*13 + 14*14 + 15*15 +
16*16 + 17*17 + 18*18

4 Polynomials handling

4.1 Binding polynomials

To put together the monomials of several polynomials calculated on the same
dataset of inputs, use the bind method.

Example with the dataset XCornell0:

1. Creation of the first polynomial: a polynomial of degree 2, with the
power terms only, calculated on the variables 3 and 4 of the data-frame
XCornell0.

> P1 <- crpolyX(XCornell0[, 3:4], 2, type="power")

> print(P1)

Polynome description:
NaphthaT + NaphthaC + NaphthaT*NaphthaT + NaphthaC*NaphthaC
Polynome description using variable numbers:
1 + 2 + 1*1 + 2*2
Number of observations: 12

2. Creation of the second polynomial: interaction only.

> P2 <- vect2polyX(XCornell0[, 3:4], c("1", "2", "1*2"))

> print(P2)

Polynome description:
NaphthaT + NaphthaC + NaphthaT*NaphthaC
Polynome description using variable numbers:
1 + 2 + 1*2
Number of observations: 12

3. Put together the monomials of these two polynomials:

7

> P3 <- bind(P1, P2)

> print(P3)

Polynome description:
NaphthaT + NaphthaC + NaphthaT*NaphthaT + NaphthaC*NaphthaC +
NaphthaT*NaphthaC
Polynome description using variable numbers:
1 + 2 + 1*1 + 2*2 + 1*2
Number of observations: 12

Note. The duplicated monomials are removed.

4.2 Removing monomials from a polynomial

The function takeoff removes monomials from a polyX object.

Example:

> X <- cornell0[,1:3]

> monos <- c("Distillation","Reformat","NaphthaT",

+ "Distillation*Reformat","Reformat*Reformat")

> P <- vect2polyX (X, monos)

> # Remove the last two monomials:

> P2 <- takeoff(P, c(4,5))

> print(P2)

Polynome description:
Distillation + Reformat + NaphthaT
Polynome description using variable numbers:
1 + 2 + 3
Number of observations: 12

Same where the monomials to suppress are expressed in character strings:

> P2 <- takeoff(P, c("Distillation*Reformat","Reformat*Reformat"))

Note. Taking off the monomials equal to the X-inputs, is not accepted.

5 Calculations

5.1 Individual and total sensitivity indices, significant com-
ponents

The function sivipm is the main function of the package. It calculates the
individual and total sensitivity indices and the significant components. Its ar-
guments are the response data-frame and the polyX object. Its options are:

� nc, the number of components (2 by default);

� options, a vector to limit what is returned. Valid values are:

– "fo.isivip", to return first order individual sensitivity indices,

8

– "tsivip", to return total sensitivity indices,

– "simca" and "lazraq", to return the significant components calcu-
lated by the SIMCA software rule ([SIMCA Software]) and by the
Lazraq and Cléroux test ([Lazraq and Cléroux (2001)]), respectively.
Threshold of these tests is 0.05.

(all is returned by default);

� graph, for drawing a graph of the total sensitivity indices (FALSE by
default);

� alea to insert a random variable (FALSE by default) (see Section 5.2);

� output to return intermediate results (none by default) (see Section 5.3).

The returned value is a list whose components depend on what has been re-
quired:

� When the vector options includes “fo.isivip”:

– fo.isivip, first order individual sensitivity indices.

� When the vector options includes “tsivip”:

– tsivip, the total sensitivity indices,

– percentage, the sorted percentages of total sensitivity indices.

� When the vector options includes “simca” or “lazraq”:

– simca.signifcomponents or lazraq.signifcomponents, boolean
vectors whose values are TRUE for the significant components.

� When the option alea is set (see Section 5.2):

– monosignif, a boolean vector whose values are TRUE for the signif-
icant monomials,

– correlalea, the correlation between the outputs and the random
variable.

� When the option output is set:

– output, a list of intermediate results (see Section 5.3).

Example with the response dataset YCornell0 (see Section 2.1) and the polyX
object PCornell0 (see Section 3.1.1):

> sivipm(YCornell0, PCornell0, nc=10, graph= TRUE)

$fo.isivip
Distillation Reformat NaphthaT NaphthaC
0.0935179735 0.0006690142 0.0936659204 0.0666229905

Polymer Alkylat Gasoline
0.0325265346 0.1294409978 0.0732672626

9

$tsivip
Distillation Reformat NaphthaT NaphthaC
0.17366732 0.10664095 0.26149630 0.24027001

Polymer Alkylat Gasoline
0.07884904 0.25375385 0.14440597

$percentage
NaphthaT Alkylat NaphthaC Distillation
20.768783 20.153855 19.082930 13.793154
Gasoline Reformat Polymer
11.469134 8.469728 6.262416

$simca.signifcomponents
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

$lazraq.signifcomponents
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

10

NaphthaT

Alkylat

NaphthaC

Distillation

Gasoline

Reformat

Polymer

TSIVIP (%)

0.00 0.05 0.10 0.15 0.20 0.25

First order ISIVIP

0.
10

0.
15

0.
20

0.
25

number of components

T
S

IV
IP

1 2 3 4 5 6 7 8 9 10

5.2 Add an alea in the computation of the total sensitivity
indices

When the option alea is set, a uniform random variable is inserted into the
computation of the total sensitivity indices. Comparison can then be made of
its indices with the ones of the other variables. The non significant monomials,
— those for which the individual sensitivity indices is less or equal than the
one of the random variable — are excluded from the total sensitivity indices
calculation. The correlation between the outputs and the random variable is
returned.

11

Example with the response dataset YCornell0 (see Section 2.1) and the polyX
object PCornell0 (see Section 3.1.1):

> set.seed(403)

> res <- sivipm(YCornell0, PCornell0, nc=2, alea=TRUE,

+ graph=TRUE, options=c("fo.isivip","tsivip"))

> res

$fo.isivip
Distillation Reformat NaphthaT NaphthaC
0.0935179735 0.0006690142 0.0936659204 0.0666229905

Polymer Alkylat Gasoline
0.0325265346 0.1294409978 0.0732672626

$tsivip
Distillation Reformat NaphthaT NaphthaC
0.17393473 0.09843718 0.26116685 0.24042730

Polymer Alkylat Gasoline
0.07773183 0.25353931 0.14399843

$percentage
NaphthaT Alkylat NaphthaC Distillation
20.906132 20.295555 19.245952 13.923293
Gasoline Reformat Polymer
11.526923 7.879793 6.222351

$monosignif
Distillation Reformat

TRUE FALSE
NaphthaT NaphthaC

TRUE TRUE
Polymer Alkylat

TRUE TRUE
Gasoline Distillation*NaphthaT

TRUE TRUE
Reformat*Reformat Reformat*NaphthaC

TRUE TRUE
NaphthaT*NaphthaC Polymer*Polymer

TRUE TRUE
Alkylat*Alkylat Gasoline*Gasoline*Gasoline

TRUE TRUE

$correlalea
Y

[1,] -0.2123951

12

NaphthaT

Alkylat

NaphthaC

Distillation

Gasoline

Reformat

Polymer

TSIVIP (%)

0.00 0.05 0.10 0.15 0.20 0.25

First order ISIVIP

5.3 Ask for more results

The expert user can require additional results by setting the option output.
Detailed explanations of these results can be found in [Gauchi et all (2010)],
[Gauchi (2012)] and [Gauchi (2015)].
output is a character vector whose valid values are:

� isivip: to return all the individual sensitivity indices

� betaNat: to return betaNat (natural β) and betaNat0 (β coefficient)

� VIP: to return VIP and VIPind

� RSS: to return RSS

� PRESS: to return PRSS

� Q2: to return Q2 and Q2cum

� PLS: to return PLS results: mweights, weights, x.scores, x.loadings,
y.scores, y.loadings, cor.tx, cor.ty, expvar, X.hat, Y.hat

Example with the response dataset YCornell0 (see Section 2.1) and the polyX
object PCornell0 (see Section 3.1.1).

> res <- sivipm(YCornell0, PCornell0, nc=2, output= c("betaNat", "PLS"))

> names(res)

13

[1] "fo.isivip" "tsivip"
[3] "percentage" "simca.signifcomponents"
[5] "lazraq.signifcomponents" "output"

> names(res$output)

[1] "betaNat" "betaNat0" "PLS"

5.4 Computation Y by Y

To compute the total sensitivity indices for each response variable successively,
use the R function apply.
Example with the two-columns data-frame Y180:

> l180 <- apply(Y180, 2, sivipm, PX180, nc=2, options="tsivip")

> names(l180)

[1] "Y1" "Y2"

> names(l180$Y1)

[1] "tsivip" "percentage"

> names(l180$Y2)

[1] "tsivip" "percentage"

5.5 When there are missing values

When there are missing values, the option simca which rules the calculation
of significant components by the SIMCA software rule ([SIMCA Software]) is
ignored.
The option lazraq is active if the response is univariate only.

To illustrate this case, we created the data-frame cornell1 from cornell0 by
introducing some missing values. We calculate the significant components:

> X <- cornell1[,1:7]

> Y <-as.data.frame(cornell1[,8])

> polyXm <- vect2polyX (X, monomials)

> sivipm(Y, polyXm, nc=8, options="lazraq")

$lazraq.signifcomponents
t1 t2 t3 t4 t5 t6 t7 t8

TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

5.6 When there is no polynomial description

The polynomial description is only required to calculate the total sensitivity
indices. It can be omitted to compute the individual sensitivity indices of each
column of the input dataset, and the significant components.
For example, we calculate the first order individual sensitivity indices of all
the columns of the transformed dataset XY180, without having to describe the
polynomial:

14

> b <- new("polyX", dataX.exp=X180)

> res <- sivipm(Y180, b, nc=2, options="fo.isivip")

> names(res)

[1] "fo.isivip"

5.7 Confidence intervals for the total sensitivity indices
by a bootstrap method

The function sivipboot calculates confidence intervals for the total sensitivity
indices. Its arguments are the response data-frame, the polyX object, and the
number of bootstrap loops. Its options are nc, the required number of compo-
nents (2 by default), alpha, the test threshold (0.05 by default), and graph for
a boxplot of the results.
In the following example, confidence intervals are calculated in ten bootstrap
loops:

> sivipboot(YCornell0, PCornell0, B=10 , nc=4, alpha=0.05, graph=TRUE)

IC.inf IC.sup
Distillation 0.147709256 0.1854368
Reformat 0.082951362 0.1900557
NaphthaT 0.221228476 0.2764461
NaphthaC 0.181112141 0.2577898
Polymer 0.005790846 0.1385232
Alkylat 0.217641106 0.3093869
Gasoline 0.113681952 0.1927613

●

●

P
ol

ym
er

R
ef

or
m

at

G
as

ol
in

e

D
is

til
la

tio
n

A
lk

yl
at

N
ap

ht
ha

C

N
ap

ht
ha

T

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

15

6 References

[Gauchi et all (2010)] Gauchi, J.-P. and Lehuta, S. and MahÃ©vas, S. 2010.
Optimal sensitivity analysis under constraints: Application to fisheries. In
Procedia - Social and Behavioral Sciences, vol. 2. Elsevier, pp. 7658-7659.
Sixth International Conference on Sensitivity Analysis of Model Output
(Milan, Italy), 19-22 July; co-organized by the ELEUSI research center
of Bocconi University and by the Joint Research Center of the European
Commission.

[Gauchi (2012)] Gauchi, J.-P. 2012. Global Sensitivity Analysis: The SIVIP
method (SAS/IML language). Rapport technique 2012-3. INRA, UR1404,
F-78350 Jouy-en-Josas, France.

[Gauchi (2015)] Gauchi, J.-P. 2015. A practical method of global sensitivity
analysis under constraints. Rapport technique 2015-1. INRA, UR1404, F-
78350 Jouy-en-Josas, France.

[Kettaneh-Wold (1992)] Kettaneh-Wold, N. 1992. Analysis of mixture data with
partial least squares. Chemometrics and Intelligent Laboratory Systems.
Vol. 14, pp. 57-69.

[Lazraq and Cléroux (2001)] Lazraq, A. and Cléroux, R. 2001. The PLS multi-
variate regression model: testing the significance of successive PLS compo-
nents. Journal of Chemometrics. Vol. 15(6), pp 523-536.

[SIMCA Software] SIMCA Software. http://www.umetrics.com/products/
simca.

[Tenenhaus (1998)] Tenenhaus M. 1998. La régression PLS. Théorie et pratique.
Ed. TECHNIP. Paris.

16

http://www.umetrics.com/products/simca
http://www.umetrics.com/products/simca

	Brief description of the sivipm package
	Data
	Example of a raw dataset: cornell0
	Example of a transformed dataset: XY180

	Polynomial
	When the provided data are ``raw'' data
	Polynomial described by a character vector
	Polynomial of standard type

	When the provided data are transformed data
	Polynomial described by a character vector
	Polynomial of a standard type

	Polynomials handling
	Binding polynomials
	Removing monomials from a polynomial

	Calculations
	Individual and total sensitivity indices, significant components
	Add an alea in the computation of the total sensitivity indices
	Ask for more results
	Computation Y by Y
	When there are missing values
	When there is no polynomial description
	Confidence intervals for the total sensitivity indices by a bootstrap method

	 References

