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Abstract

The R package spikeSlabGAM implements Bayesian variable selection, model choice,
and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and
Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates
and their interactions, (2) to determine whether linear or more flexible functional forms are
required to model the effects of the respective covariates, and (3) to estimate their shapes.
Selection and regularization of the model terms is based on a novel spike-and-slab-type
prior on coefficient groups associated with parametric and semi-parametric effects.
Note 1 : An earlier version of this introduction to spikeSlabGAM has been published as
Fabian Scheipl (2011). spikeSlabGAM: Bayesian Variable Selection, Model Choice and
Regularization for Generalized Additive Mixed Models in R. Journal of Statistical Soft-
ware, 43(14), 1–24.
Note 2 : To respect resource limitations on the CRAN servers, this vignette uses only two
processes for parallelized MCMC sampling. To increase the number of cores and speed
up computations significantly, change cores=2 in the options() statement in the setup
R-chunk at the very beginning of UsingSpikeSlabGAM.Rnw to a higher value.

Keywords:˜MCMC, P-splines, spike-and-slab prior, normal-inverse-gamma.

1. Introduction

In data sets with many potential predictors, choosing an appropriate subset of covariates and
their interactions at the same time as determining whether linear or more flexible functional
forms are required to model the relationships between covariates and the response is a chal-
lenging and important task. From a Bayesian perspective, it can be translated into a question
of estimating marginal posterior probabilities of whether a variable should be in the model
and in what form (i.e., linear or smooth; as a main effect and/or as an effect modifier).

We introduce the R (R Development Core Team 2010) package spikeSlabGAM which imple-
ments fully Bayesian variable selection and model choice with a spike-and-slab prior structure
that expands the approach in Ishwaran and Rao (2005) to select or deselect single coefficients
as well as blocks of coefficients associated with specific model terms. The spike-and-slab priors
we use are bimodal priors for the hyper-variances of the regression coefficients which result
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in a two component mixture of a narrow spike around zero and a slab with wide support for
the marginal prior of the coefficients themselves. The posterior mixture weights for the spike
component for a specific coefficient or coefficient batch can be interpreted as the posterior
probability of its exclusion from the model.

The coefficient batches selected or deselected in this fashion can be associated with a wide
variety of model terms such as simple linear terms, factor variables, basis expansions for the
modeling of smooth curves or surfaces, intrinsically Gaussian Markov random fields (IGMRF),
random effects, and all their interactions. spikeSlabGAM is able to deal with Gaussian, bi-
nomial and Poisson responses, and can be used to fit piecewise exponential models for time-
to-event data. For these response types, the package presented here implements regularized
estimation, term selection, model choice, and model averaging for a similarly broad class of
models as that available in mboost (Hothorn et˜al. 2010) or BayesX (Brezger et˜al. 2005). To
the best of our knowledge, it is the first implementation of a Bayesian model term selection
method that: (1) is able to fit models for non-Gaussian responses from the exponential family;
(2) selects and estimates many types of regularized effects with a (conditionally) Gaussian
prior such as simple covariates (both metric and categorical), penalized splines (uni- or multi-
variate), random effects, spatial effects (kriging, IGMRF) and their interactions; (3) and can
distinguish between smooth nonlinear and linear effects. The approach scales reasonably well
to datasets with thousands of observations and a few hundred coefficients and is available in
documented open source software.

Bayesian function selection, similar to the frequentist COSSO procedure (Lin and Zhang
2006), is usually based on decomposing the additive model in the spirit of a smoothing spline
ANOVA (Wahba et˜al. 1995). Wood et˜al. (2002) and Yau et˜al. (2003) describe procedures
for Gaussian and latent Gaussian models using a data-based prior that requires two MCMC
runs, a pilot run to obtain a data-based prior for the slab part and a second one to estimate
parameters and select model components. A more general approach that also allows for
flexible modeling of the dispersion in double exponential regression models is described in
Cottet et˜al. (2008), but no implementation is available. Reich et˜al. (2009) also use the
smoothing spline ANOVA framework and perform variable and function selection via SSVS
for Gaussian responses. Frühwirth-Schnatter and Wagner (2010) discuss various spike-and-
slab prior variants for the selection of random intercepts for Gaussian and latent Gaussian
models.

The remainder of this paper is structured as follows: Section 2 gives some background on
the two main ideas used in spikeSlabGAM. 2.1 introduces the necessary notation for the
generalized additive mixed model and 2.2 fills in some details on the spike-and-slab prior.
Section 3 relates details of the implementation: how the design matrices for the model terms
are constructed (Section 3.1) and how the MCMC sampler works (Section 3.2). Section 4
explains how to specify, visualize and interpret models fitted with spikeSlabGAM and contains
an application to the Pima Indian Diabetes dataset.
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2. Background

2.1. Generalized additive mixed models

The generalized additive mixed model (GAMM) is a broad model class that forms a subset
of structured additive regression (Fahrmeir et˜al. 2004). In a GAMM, the distribution of the
responses y given a set of covariates xj (j = 1, . . . , p) belongs to an exponential family, i.e.,

π(y|x, φ) = c(y, φ) exp

(

yθ − b(θ)

φ

)

,

with θ,φ,b(·) and c(·) determined by the type of distribution. The conditional expected value
of the response E(y|x1, . . . ,xp) = h(η) is determined by the additive predictor η and a fixed
response function h(·).

The additive predictor

η = ηo +Xuβu +

p
∑

j=1

fj(x) (1)

has three parts: a fixed and known offset ηo, a linear predictor Xuβu for model terms
that are not under selection with coefficients βu associated with a very flat Gaussian prior
(this will typically include at least a global intercept term), and the model terms fj(x) =

(fj(x1), . . . , fj(xn))
⊤ (j = 1, . . . , p) that are each represented as linear combinations of dj

basis functions Bj(·) so that

fj(x) =

dj
∑

k=1

βjkBjk(x) = Bjβj , with Bjk(x) =
(

Bjk(x1), . . . , Bjk(xn)
⊤
)

and βj
prior
∼ peNMIG(v0, w, aτ , bτ ) for j = 1, . . . , p.

(2)

The peNMIG prior structure is explained in detail in Section 2.2.

Components fj(x) of the additive predictor represent a wide variety of model terms, such as
(1) linear terms (fj(x) = βjxj), (2) nominal or ordinal covariates (f(xji) = βx(k) iff xji = k,
i.e., if entry i in xj is k), (3) smooth functions of (one or more) continuous covariates (splines,
kriging effects, tensor product splines or varying coefficient terms, e.g., Wood (2006)), (4)
Markov random fields for discrete spatial covariates (e.g. Rue and Held 2005), (5) random
effects (subject-specific intercepts or slope), and (6) interactions between the different terms
(varying-coefficient models, effect modifiers, factor interactions). Estimates for semiparamet-
ric model terms and random effects are regularized in order to avoid overfitting and modeled
with appropriate shrinkage priors. These shrinkage or regularization priors are usually Gaus-
sian or can be parameterized as scale mixtures of Gaussians (e.g. Fahrmeir et˜al. 2010). The
peNMIG variable selection prior used in spikeSlabGAM can also be viewed as a scale mixture
of Gaussians.
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2.2. Stochastic search variable selection and spike-and-slab priors

While analyses can benefit immensely from a flexible and versatile array of potential model
terms, the large number of possible models in any given data situation calls for a principled
procedure that is able to select the covariates that are relevant for the modeling effort (i.e.,
variable selection) as well as to determine the shapes of their effects (e.g., smooth vs. linear)
and which interaction effects or effect modifiers need to be considered (i.e., model choice).
SSVS and spike-and-slab priors are Bayesian methods for these tasks that do not rely on the
often very difficult calculation of marginal likelihoods for large collections of complex models
(e.g. Han and Carlin 2001).

The basic idea of the SSVS approach (George and McCulloch 1993) is to introduce a binary
latent variable γj associated with the coefficients βj of each model term so that the contri-
bution of a model term to the predictor is forced to be zero – or at least negligibly small –
if γj is in one state and left unchanged if γj is in the other state. The posterior distribution
of γj can be interpreted as marginal posterior probabilities for exclusion or inclusion of the
respective model term. The posterior distribution of the vector γ = (γ1, . . . , γp)

⊤ can be in-
terpreted as posterior probabilities for the different models represented by the configurations
of γ. Another way to express this basic idea is to assume a spike-and-slab mixture prior for
each βj , with one component being a narrow spike around the origin that imposes very strong
shrinkage on the coefficients and the other component being a wide slab that imposes very
little shrinkage on the coefficients. The posterior weights for the spike and the slab can then
be interpreted analogously.

The flavor of spike-and-slab prior used in spikeSlabGAM is a further development based on
Ishwaran and Rao (2005): The basic prior structure, which we call a Normal - mixture of
inverse Gammas (NMIG) prior, uses a bimodal prior on the variance v2 of the coefficients
that results in a spike-and-slab type prior on the coefficients themselves. For a scalar β, the
prior structure is given by:

β|γ, τ2
prior
∼ N(0, v2) with v2 = τ2γ,

γ|w
prior
∼ wI1(γ) + (1− w)Iv0(γ),

τ2
prior
∼ Γ−1(aτ , bτ ),

and w
prior
∼ Beta(aw, bw).

(3)

Ix(y) denotes a function that is 1 in x and 0 everywhere else and v0 is some small positive
constant, so that the indicator γ is 1 with probability w and close to zero with probability
1 − w. This means that the effective prior variance v2 is very small if γ = v0 — this is the
spike part of the prior. The variance τ2 is sampled from an informative Inverse Gamma (Γ−1)
prior with density p(x|a, b) = ba

Γ(a)x
(a−1) exp

(

− b
x

)

.

This prior hierarchy has some advantages for selection of model terms for non-Gaussian data
since the selection (i.e., the sampling of indicator variables γ) occurs on the level of the
coefficient variance. This means that the likelihood itself is not in the Markov blanket of γ and
consequently does not occur in the full conditional densities (FCD) for the indicator variables,
so that the FCD for γ is available in closed form regardless of the likelihood. However, since
only the regression coefficients and not the data itself occur in the Markov blanket of γ,
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inclusion or exclusion of model terms is based on the magnitude of the coefficients β and not
on the magnitude of the effect Bβ itself. This means that design matrices have to be scaled
similarly across all model terms for the magnitude of the coefficients to be a good proxy for
the importance of the associated effect. In spikeSlabGAM, each term’s design matrix is scaled
to have a Frobenius norm of 0.5 to achieve this.

A parameter-expanded NMIG prior

While the conventional NMIG prior (3) works well for the selection of single coefficients, it is
unsuited for the simultaneous selection or deselection of coefficient vectors, such as coefficients
associated with spline basis functions or with the levels of a random intercept. In a nutshell,
the problem is that a small variance for a batch of coefficients implies small coefficient values
and small coefficient values in turn imply a small variance so that blockwise MCMC samplers
are unlikely to exit a basin of attraction around the origin. Gelman et˜al. (2008) analyze
this issue in the context of hierarchical models, where it is framed as a problematically strong
dependence between a block of coefficients and their associated hypervariance. A bimodal
prior for the variance, such as the NMIG prior, obviously exacerbates these difficulties as the
chain has to be able to switch between the different components of the mixture prior. The
problem is much less acute for coefficient batches with only a single or few entries since a small
batch contributes much less information to the full conditional of its variance parameter. The
sampler is then better able to switch between the less clearly separated basins of attraction
around the two modes corresponding to the spike and the slab (Scheipl 2010, Section 3.2).
In our context, “switching modes” means that entries in γ change their state from 1 to v0 or
vice versa. The practical importance for our aim is clear: Without fast and reliable mixing
of γ for coefficient batches with more than a few entries, the posterior distribution cannot be
used to define marginal probabilities of models or term inclusion. In previous approaches, this
problem has been circumvented by either relying on very low dimensional bases with only a
handful of basis functions (Reich et˜al. 2009; Cottet et˜al. 2008) or by sampling the indicators
from a partial conditional density, with coefficients and their hypervariances integrated out
(Yau et˜al. 2003).

A promising strategy to reduce the dependence between coefficient batches and their variance
parameter that neither limits the dimension of the base nor relies on repeated integration of
multivariate functions is the introduction of working parameters that are only partially iden-
tifiable along the lines of parameter expansion or marginal augmentation (Meng and van Dyk
1997; Gelman et˜al. 2008). The central idea implemented in spikeSlabGAM is a multiplica-
tive parameter expansion that improves the shrinkage properties of the resulting marginal
prior compared to NMIG (Scheipl 2010, Section 3.4) and enables simultaneous selection or
deselection of large coefficient batches.

Figure 1 shows the peNMIG prior hierarchy for a model with pmodel terms: We set βj = αjξj
with mutually independent αj and ξj for a coefficient batch βj with length dj and use a scalar

parameter αj
prior
∼ NMIG(v0, w, aτ , bτ ), where NMIG denotes the prior hierarchy given in (3).

Entries of the vector ξj are i. i. d. ξjk
prior
∼ N(mjk, 1) (k = 1, . . . , dj ; j = 1, . . . , p) with prior

means mjk either 1 or -1 with equal probability.
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peNMIG: Normal mixture of inverse Gammas with parameter expansion

j=1,...,p l=1,...,q

q=
∑p

j=1
dj

αj ∼ N(0, γjτ
2
j )

γj ∼wI1(γj)

+ (1− w)Ivo (γj)

v0 w ∼ Beta(aw, bw)

(aw, bw)

τ2j ∼ Γ−1(aτ , bτ )

(aτ , bτ )

β = blockdiag(ξ1, . . . , ξp)α

ξl ∼ N(ml, 1)

ml ∼
1
2
I1(ml)

+ 1
2
I
−1(ml)

Figure 1: Directed acyclic graph of the peNMIG prior structure. Ellipses are stochastic
nodes, rectangles are deterministic nodes. Single arrows are stochastic edges, double arrows
are deterministic edges.

We write

βj ∼ peNMIG(v0, w, aτ , bτ ) (4)

as shorthand for this parameter expanded NMIG prior. The effective dimension of each
coefficient batch associated with a specific γj and τ2j is then just one, since the Markov blankets
of both γj and τj now only contain the scalar parameter αj instead of the vector βj . This solves
the mixing problems for γ described above. The long vector ξ = (ξ⊤1 , . . . , ξ

⊤
p )

⊤ is decomposed
into subvectors ξj associated with the different coefficient batches and their respective entries
αj (j = 1, . . . , p) in α. The parameter w is a global parameter that influences all model
terms, it can be interpreted as the prior probability of a term being included in the model. The
parameter αj parameterizes the“importance”of the j-th model term, while ξj “distributes”αj

across the entries in the coefficient batch βj . Setting the conditional expectation E(ξjk|mjk) =
±1 shrinks |ξjk| towards 1, the multiplicative identity, so that the interpretation of αj as the
“importance” of the j-th coefficient batch can be maintained.

The marginal peNMIG prior, i.e., the prior for β integrated over the intermediate quantities α,
ξ, τ2, γ and w, combines an infinite spike at zero with heavy tails. This desirable combination
is similar to the properties of other recently proposed shrinkage priors such as the horseshoe
prior (Carvalho et˜al. 2010) and the normal-Jeffreys prior (Bae and Mallick 2004) for which
both robustness for large values of β and very efficient estimation of sparse coefficient vectors
have been shown (Polson and Scott 2010). The shape of the marginal peNMIG prior is fairly
close to the original spike-and-slab prior suggested by Mitchell and Beauchamp (1988), which
used a mixture of a point mass in zero and a uniform distribution on a finite interval, but
it has the benefit of (partially) conjugate and proper priors. A detailed derivation of the
properties of the peNMIG prior and an investigation of its sensitivity to hyperparameter
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settings is in Scheipl (2010), along with performance comparisons against mboost and other
approaches with regard to term selection, sparsity recovery, and estimation error for Gaussian,
binomial and Poisson responses on real and simulated data sets. The default settings for the
hyperparameters, validated through many simulations and data examples are aτ = 5, bτ =
25, v0 = 2.5 · 10−4. By default, we use a uniform prior on w, i.e., aw = bw = 1, and a very flat
Γ−1(10−4, 10−4) prior for the error variance in Gaussian models.

3. Implementation

3.1. Setting up the design

All of the terms implemented in spikeSlabGAM have the following structure: First, their
contribution to the predictor η is represented as a linear combination of basis functions, i.e.,
the term associated with covariate x is represented as f̃(x) =

∑K
k=1 δkB̃k(x) = B̃δ, where δ

is a vector of coefficients associated with the basis functions B̃k(·) (k = 1, . . . ,K) evaluated

in x. Second, δ has a (conditionally) multivariate Gaussian prior, i.e., δ|v2
prior
∼ N(0, v2P−),

with a fixed scaled precision matrix P that is often positive semi -definite. Table 1 gives an
overview of the model terms available in spikeSlabGAM and how they fit into this framework.

Formula (2) glosses over the fact that every coefficient batch associated with a specific term
will have some kind of prior dependency structure determined by P . Moreover, if P is only
positive semi -definite, the prior is partially improper. For example, the precision matrix
for a B-spline with second order difference penalty implies an improper flat prior on the
linear and constant components of the estimated function (Lang and Brezger 2004). The
precision matrix for an IGMRF of first order puts an improper flat prior on the mean level
of the IGMRF (Rue and Held 2005, ch. 3). These partially improper priors for splines and
IGMRFs are problematic for spikeSlabGAM’s purpose for two reasons: In the first place,
if e.g., coefficient vectors that parameterize linear functions are in the nullspace of the prior
precision matrix, the linear component of the function is estimated entirely unpenalized. This
means that it is unaffected by the variable selection property of the peNMIG prior and thus
always remains included in the model, but we need to be able to not only remove the entire
effect of a covariate (i.e., both its penalized and unpenalized parts) from the model, but also
be able to select or deselect its penalized and unpenalized parts separately. The second issue
is that, since the nullspaces of these precision matrices usually also contain coefficient vectors
that parameterize constant effects, terms in multivariate models are not identifiable, since
adding a constant to one term and subtracting it from another does not affect the posterior.

Two strategies to resolve these issues are implemented in spikeSlabGAM. Both involve two
steps: (1) Splitting terms with partially improper priors into two parts – one associated with
the improper/unpenalized part of the prior and one associated with the proper/penalized
part of the prior; and (2) absorbing the fixed prior correlation structure of the coefficients
implied by P into a transformed design matrix B associated with then a priori independent
coefficients β for the penalized part. Constant functions contained in the unpenalized part
of a term are subsumed into a global intercept. This removes the identifiability issue. The
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R-syntax Description B̃ P

lin(x, degree) linear/polynomial trend:
basis functions are or-
thogonal polynomials of
degree 1 to degree eval-
uated in x; defaults to
degree= 1

poly(x, degree) identity matrix

fct(x) factor: defaults to sum-
to-zero contrasts

depends on contrasts identity matrix

rnd(x, C) random intercept: de-
faults to i. i. d.; i.e., cor-
relation C = I

indicator variables for
each level of x

C−1

sm(x) univariate penalized
spline: defaults to cubic
B-splines with 2nd order
difference penalty

B-spline basis functions ∆d⊤∆d with ∆d the dth

diff. operator matrix

srf(xy) penalized surface estima-
tion on 2-D coordinates
xy: defaults to tensor
product cubic B-spline
with first order difference
penalties

(radial) basis functions
(thin plate / tensor prod-
uct B-spline)

depends on basis function

mrf(x, N) first order intrinsic
Gauss-Markov random
field: factor x defines the
grouping of observations,
N defines the neighbor-
hood structure of the
levels in x

indicator variables for re-
gions in x

precision matrix of MRF
defined by (weighted) ad-
jacency matrix N

Table 1: Term types in spikeSlabGAM. The semiparametric terms (sm(), srf(), mrf())
only parameterize the proper part of their respective regularization priors (see Section 3.1).
Unpenalized terms not associated with a peNMIG prior (i.e., the columns in Xu in (1)) are
specified with term type u().
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remainder of the unpenalized component enters the model in a separate term, e.g., P-splines
(term type sm(), see Table 1) leave polynomial functions of a certain order unpenalized and
these enter the model in a separate lin()-term.

Orthogonal decomposition The first strategy, used by default, employs a reduced rank
approximation of the implied covariance of f̃(x) to construct B, similar to the approaches
used in Reich et˜al. (2009) and Cottet et˜al. (2008):

Since f̃(x) = B̃δ
prior
∼ N(0, v2B̃P−B̃⊤), we can use the spectral decomposition B̃P−B̃⊤ =

UDU⊤ with orthonormal U and diagonal D with entries ≥ 0 to find an orthogonal basis

representation for COV
(

f̃(x)
)

. For B̃ with d̃ columns and full column rank and P with

rank d̃− nP , where nP is the dimension of the nullspace of P , all eigenvalues of COV
(

f̃(x)
)

except the first d̃ − nP are zero. Now write COV
(

f̃(x)
)

= [U+U0]
[

D+ 0
0 0

]

[U+U0]
⊤, where

U+ is a matrix of eigenvectors associated with the positive eigenvalues in D+, and U0 are the

eigenvectors associated with the zero eigenvalues. With B = U+D
1/2
+ and β

prior
∼ N(0, v2I),

f(x) = Bβ has a proper Gaussian distribution that is proportional to that of the partially
improper prior of f̃(x) (Rue and Held 2005, eq. (3.16)) and parameterizes only the penal-
ized/proper part of f̃(x), while the unpenalized part of the function is represented by U0.

In practice, it is unnecessary and impractically slow to compute all n eigenvectors and values
for a full spectral decomposition UDU⊤. Only the first d̃ − nP are needed for B, and of
those the first few typically represent most of the variability in f(x). spikeSlabGAM makes
use of a fast truncated bidiagonalization algorithm (Baglama and Reichel 2006) implemented

in irlba (Lewis 2009) to compute only the largest d̃−nP eigenvalues of COV
(

f̃(x)
)

and their

associated eigenvectors. Only the first d eigenvectors and -values whose sum represents at
least .995 of the sum of all eigenvalues are used to construct the reduced rank orthogonal
basis B with d columns. e.g., for a cubic P-spline with second order difference penalty and
20 basis functions (i.e., d̃ = 20 columns in B̃ and nP = 2), B will typically have only 8 to 12
columns.

“Mixed model”decomposition The second strategy reparameterizes via a decomposition
of the coefficient vector δ into an unpenalized part and a penalized part: δ = Xuβu +Xpβ,
where Xu is a basis of the nP -dimensional nullspace of P and Xp is a basis of its complement.
spikeSlabGAM uses a spectral decomposition of P with P = [Λ+Λ0]

[

Γ+ 0
0 0

]

[Λ+Λ0]
⊤, where

Λ+ is the matrix of eigenvectors associated with the positive eigenvalues in Γ+, and Λ0

are the eigenvectors associated with the zero eigenvalues. This decomposition yields Xu =

Λ0 and Xp = L(L⊤L)−1 with L = Λ+Γ
1/2
+ . The model term can then be expressed as

B̃δ = B̃(Xuβu +Xpβ) = Buβu +Bβ with Bu as the design matrix associated with the
unpenalized part and B as the design matrix associated with the penalized part of the term.
The prior for the coefficients associated with the penalized part after reparameterization is
then β ∼ N(0, v2I), while βu has a flat prior (c.f. Kneib 2006, ch. 5.1).
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Interactions Design matrices for interaction effects are constructed from tensor products
(i.e., column-wise Kronecker products) of the bases for the respective main effect terms. For
example, the complete interaction between two numeric covariates x1 and x2 with smooth
effects modeled as P-splines with second order difference penalty consists of the interactions
of their unpenalized parts (i.e., linear x1-linear x2), two varying-coefficient terms (i.e., smooth
x1× linear x2, linear x1× smooth x2) and a 2-D nonlinear effect (i.e., smooth x1× smooth
x2). By default, spikeSlabGAM uses a reduced rank representation of these tensor product
bases derived from their partial singular value decomposition as described above for the
“‘orthogonal” decomposition.

“Centering” the effects By default, spikeSlabGAM makes the estimated effects of all
terms orthogonal to the nullspace of their associated penalty and, for interaction terms,
against the corresponding main effects as in Yau et˜al. (2003). Every B is transformed
via B → B

(

I −Z(Z⊤Z)−1Z⊤
)

. For simple terms (i.e., fct(), lin(), rnd()), Z = 1 and
the projection above simply enforces a sum-to-zero constraint on the estimated effect. For
semi-parametric terms, Z is a basis of the nullspace of the implied prior on the effect. For
interactions between d main effects, Z = [1 B1 B2 . . .Bd], where B1, . . . ,Bd are the design
matrices of the involved main effects. This centering improves separability between main
effects and their interactions by removing any overlap of their respective column spaces. All
uncertainty about the mean response level is shifted into the global intercept. The projection
uses the QR decomposition of Z for speed and stability.

3.2. Markov chain Monte Carlo implementation

spikeSlabGAM uses the blockwise Gibbs sampler summarized in Algorithm 1 for MCMC
inference. The sampler cyclically updates the nodes in Figure 1. The FCD for α is based on
the “collapsed” design matrix Xα = X blockdiag(ξ1, . . . , ξp), while ξ is sampled based on a
“rescaled” design matrix Xξ = X blockdiag(1d1, . . . ,1dp)α, where 1d is a d× 1 vector of ones
and X = [Xu B1 . . .Bp] is the concatenation of the designs for the different model terms (see
(1)). The full conditionals for α and ξ for Gaussian responses are given by

α|· ∼ N(µα,Σα) with

Σα =

(

1

φ
X⊤

α Xα + diag
(

γτ 2
)−1

)−1

, µj =
1

φ
ΣαX

⊤
α y, and

ξ|· ∼ N(µξ,Σξ) with

Σξ =

(

1

φ
X⊤

ξ Xξ + I

)−1

; µj = Σξ

(

1

φ
X⊤

ξ y +m

)

.

(5)

For non-Gaussian responses, we use penalized iteratively re-weighted least squares (P-IWLS)
proposals (Lang and Brezger 2004) in a Metropolis-Hastings step to sample α and ξ, i.e.,
Gaussian proposals are drawn from the quadratic Taylor approximation of the logarithm of
the intractable FCD. Because of the prohibitive computational cost for large q and p (and low
acceptance rates for non-Gaussian response for high-dimensional IWLS proposals), neither α
nor ξ are updated all at once. Rather, both α and ξ are split into bα (bξ) update blocks that
are updated sequentially conditional on the states of all other parameters.
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Algorithm 1 MCMC sampler for peNMIG

Initialize τ 2(0),γ(0), φ(0), w(0) and β(0) (via IWLS for non-Gaussian response)

Compute α(0), ξ(0),X
(0)
α

for iterations t = 1, . . . , T do
for blocks b = 1, . . . , bα do

update α
(t)
b from its FCD (Gaussian case, see (5))/ via P-IWLS

set X
(t)
ξ = X blockdiag(1d1 , . . . ,1dp)α

(t)

update m
(t)
1 , ...,m

(t)
q from their FCD: P (m

(t)
l = 1|·) = 1

1+exp(−2ξ
(t)
l

)

for blocks b = 1, . . . , bξ do

update ξ
(t)
b from its FCD (Gaussian case, see (5))/ via P-IWLS

for model terms j = 1, . . . , p do

rescale ξ
(t)
j and α

(t)
j

set X
(t)
α = X blockdiag(ξ

(t)
1 , . . . , ξ

(t)
p )

update τ1
2(t), ..., τp

2(t) from their FCD: τ
2(t)
j |· ∼ Γ−1

(

aτ + 1/2, bτ +
α
2(t)
j

2γ
(t)
j

)

update γ1
(t), ..., γp

(t) from their FCD:
P (γ

(t)
j =1|·)

P (γ
(t)
j =v0|·)

= v
1/2
0 exp

(

(1−v0)
2v0

α
2(t)
j

τ
2(t)
j

)

update w(t) from its FCD: w(t)|· ∼ Beta
(

aw +
∑p

j I1(γ
(t)
j ), bw +

∑p
j Iv0(γ

(t)
j )

)

if y is Gaussian then

update φ(t) from its FCD: φ(t)|· ∼ Γ−1

(

aφ + n/2, bφ +
∑n

i (yi−η
(t)
i )2

2

)

By default, starting values β(0) are drawn randomly in three steps: First, 5 Fisher scoring
steps with fixed, large hypervariances are performed to reach a viable region of the parameter
space. Second, for each chain run in parallel, Gaussian noise is added to this preliminary β(0),
and third its constituting p subvectors are scaled with variance parameters γjτ

2
j (j = 1, . . . , p)

drawn from their priors. This means that, for each of the parallel chains, some of the p model
terms are set close to zero initially, and the remainder is in the vicinity of their respective ridge-

penalized MLEs. Starting values for α(0) and ξ(0) are then computed via α
(0)
j = d−1

j

∑dj
i |β

(0)
ji |

and ξ
(0)
j = β

(0)
j /α

(0)
j . Section 4 in Scheipl (2010) contains more details on the sampler.

4. Using spikeSlabGAM

4.1. Model specification and post-processing

spikeSlabGAM uses the standard R formula syntax to specify models, with a slight twist:
Every term in the model has to belong to one of the term types given in Table 1. If a model
formula contains“raw”terms not wrapped in one of these term type functions, the package will
try to guess appropriate term types: For example, the formula y ∼ x + f with a numeric
x and a factor f is expanded into y ∼ lin(x) + sm(x) + fct(f) since the default is to
model any numeric covariate as a smooth effect with a lin()-term parameterizing functions
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from the nullspace of its penalty and an sm()-term parameterizing the penalized part. The
model formula defines the candidate set of model terms that comprise the model of maximal
complexity under consideration. As of now, indicators γ are sampled without hierarchical
constraints, i.e., an interaction effect can be included in the model even if the associated main
effects or lower order interactions are not.

We generate some artificial data for a didactic example. We draw n = 200 observations from
the following data generating process:

❼ covariates sm1, sm2, noise2, noise3 are
i.i.d.
∼ U [0, 1],

❼ covariates f, noise4 are factors with 3 and 4 levels,

❼ covariates lin1, lin2, lin3 are
i.i.d.
∼ N(0, 1),

❼ covariate noise1 is collinear with sm1: noise1 = sm1+ e; ei
i.i.d.
∼ N(0, 1),

❼ η = f(sm1) + f(sm2, f) + 0.1 · lin1+ 0.2 · lin2+ 0.3 · lin3 (see Figures 4 and 5 for the
shapes of the nonlinear effects f(sm1) and f(sm2, f)),

❼ the response vector y = η+ sd(η)
snr

ǫ is generated under signal-to-noise ratio snr = 3 with
i.i.d. t5-distributed errors ǫi (i = 1, . . . , n).

R> set.seed(1312424)

R> n <- 200

R> snr <- 3

R> sm1 <- runif(n)

R> fsm1 <- dbeta(sm1, 7, 3)/2

R> sm2 <- runif(n, 0, 1)

R> f <- gl(3, n/3)

R> ff <- as.numeric(f)/2

R> fsm2f <- ff + ff * sm2 +

+ ((f == 1) * -dbeta(sm2, 6, 4) + (f == 2) * dbeta(sm2, 6, 9) +

+ (f == 3) * dbeta(sm2, 9, 6))/2

R> lin <- matrix(rnorm(n * 3), n, 3)

R> colnames(lin) <- paste("lin", 1:3, sep = "")

R> noise1 <- sm1 + rnorm(n)

R> noise2 <- runif(n)

R> noise3 <- runif(n)

R> noise4 <- sample(gl(4, n/4))

R> eta <- drop(fsm1 + fsm2f + lin %*% c(.1, .2, .3))

R> y <- eta + sd(eta)/snr * rt(n, df = 5)

R> d <- data.frame(y, sm1, sm2, f, lin, noise1, noise2, noise3, noise4)

We fit an additive model with all covariates as main effects and first-order interactions between
the first 4 as potential model terms:

R> f1 <- y ~ (sm1 + sm2 + f + lin1)^2 + lin2 +lin3 + noise1 + noise2 + noise3 + noise4

12



The function spikeSlabGAM sets up the design matrices, calls the sampler and returns the
results1:

R> m <- spikeSlabGAM(formula = f1, data = d)

The following output shows the first part of the summary of the fitted model. Note that the
numeric covariates have been split into lin()- and sm()-terms and that the factors have been
correctly identified as fct()-terms. The joint effect of the two numerical covariates sm1 and
sm2 has been decomposed into 8 components: the 4 marginal linear and smooth terms, their
linear-linear interaction, two “varying coefficient” terms (i.e., linear-smooth interactions) and
a smooth interaction surface. This decomposition can be helpful in constructing parsimonious
models. If such a decomposition into marginal and joint effects is irrelevant or inappropriate,
bivariate smooth terms can alternatively be specified with a srf()-term. Mean posterior

deviance is 1
T

∑T
t −2l(y|η(t), φ(t)), the average of twice the negative log-likelihood of the

observations over the saved MCMC iterations, the null deviance is twice the negative log-
likelihood of an intercept model without covariates.

R> summary(m)

Spike-and-Slab STAR for Gaussian data

Model:

y ~ ((lin(sm1) + sm(sm1)) + (lin(sm2) + sm(sm2)) + fct(f) + (lin(lin1) +

sm(lin1)))^2 + (lin(lin2) + sm(lin2)) + (lin(lin3) + sm(lin3)) +

(lin(noise1) + sm(noise1)) + (lin(noise2) + sm(noise2)) +

(lin(noise3) + sm(noise3)) + fct(noise4) - lin(sm1):sm(sm1) -

lin(sm2):sm(sm2) - lin(lin1):sm(lin1)

<environment: 0x6eabbd0>

200 observations; 257 coefficients in 37 model terms.

Prior:

a[tau] b[tau] v[0] a[w] b[w] a[sigma^2]

5.0e+00 2.5e+01 2.5e-04 1.0e+00 1.0e+00 1.0e-04

b[sigma^2]

1.0e-04

MCMC:

Saved 1500 samples from 3 chain(s), each ran 2500 iterations after a

burn-in of 100 ; Thinning: 5

Null deviance: 704

Mean posterior deviance: 285

Marginal posterior inclusion probabilities and term importance:

P(gamma=1) pi dim

u NA NA 1

lin(sm1) 1.000 0.096 1 ***
sm(sm1) 1.000 0.066 8 ***
lin(sm2) 0.998 0.029 1 ***

1Note that the number of available processes for the parallelized MCMC sampling is set to just 2 in this
vignette in order to comply with CRAN policies on resource usage – you can speed up the sampler by setting
options(cores = <how many processes you want>) before calling spikeSlabGAM
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sm(sm2) 0.973 0.015 8 ***
fct(f) 1.000 0.577 2 ***
lin(lin1) 0.079 -0.002 1

sm(lin1) 0.036 0.001 9

lin(lin2) 0.998 0.029 1 ***
sm(lin2) 0.075 0.001 9

lin(lin3) 1.000 0.043 1 ***
sm(lin3) 0.039 0.000 9

lin(noise1) 0.057 0.002 1

sm(noise1) 0.036 0.000 9

lin(noise2) 0.021 0.000 1

sm(noise2) 0.034 0.000 8

lin(noise3) 0.026 0.000 1

sm(noise3) 0.046 0.000 8

fct(noise4) 0.079 0.001 3

lin(sm1):lin(sm2) 0.021 0.000 1

lin(sm1):sm(sm2) 0.068 0.000 7

lin(sm1):fct(f) 0.106 -0.003 2

lin(sm1):lin(lin1) 0.022 0.000 1

lin(sm1):sm(lin1) 0.069 0.000 7

sm(sm1):lin(sm2) 0.039 0.000 7

sm(sm1):sm(sm2) 0.126 -0.001 27

sm(sm1):fct(f) 0.064 0.000 13

sm(sm1):lin(lin1) 0.057 0.000 7

sm(sm1):sm(lin1) 0.076 0.000 28

lin(sm2):fct(f) 1.000 0.054 2 ***
lin(sm2):lin(lin1) 0.022 0.000 1

lin(sm2):sm(lin1) 0.063 0.000 8

sm(sm2):fct(f) 1.000 0.090 13 ***
sm(sm2):lin(lin1) 0.056 0.000 7

sm(sm2):sm(lin1) 0.211 0.000 28

fct(f):lin(lin1) 0.106 0.000 2

fct(f):sm(lin1) 0.183 0.001 14

*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

In most applications, the primary focus will be on the marginal posterior inclusion probabil-
ities P(gamma = 1), given along with a measure of term importance pi and the size of the
associated coefficient batch dim. pi is defined as πj = η̄⊤

j η̄−1/η̄
T
−1η̄−1, where η̄j is the pos-

terior expectation of the linear predictor associated with the jth term, and η̄−1 is the linear
predictor minus the intercept. Since

∑p
j πj = 1, the pi values provide a rough percentage

decomposition of the sum of squares of the (non-constant) linear predictor (Gu 1992). Note
that they can assume negative values as well for terms whose contributions to the linear pre-
dictor η̄j are negatively correlated with the remainder of the (non-constant) linear predictor
η̄−1−η̄j . The summary shows that almost all true effects have a high posterior inclusion prob-
ability (i.e., lin() for lin2, lin3; lin(),sm() for sm1, sm2; fct(f); and the interaction
terms between sm2 and f). All the terms associated with noise variables and the superfluous
smooth terms for lin1, lin2, lin3 as well as the superfluous interaction terms have a very
low posterior inclusion probability. The small linear influence of lin1 has not been recovered.

Figure 2 shows an excerpt from the second part of the summary output, which summarizes the
posterior of the vector of inclusion indicators γ. The table shows the different configurations
of P (γj = 1) > .5, j = 1, . . . , p sorted by relative frequency, i.e., the models visited by the
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Posterior model probabilities (inclusion threshold = 0.5 ):

1 2 3 4 5 6 7 8

prob.: 0.289 0.048 0.046 0.023 0.02 0.019 0.016 0.015

lin(sm1) x x x x x x x x

sm(sm1) x x x x x x x x

lin(sm2) x x x x x x x x

sm(sm2) x x x x x x x x

fct(f) x x x x x x x x

lin(lin1) x

sm(lin1)

lin(lin2) x x x x x x x x

sm(lin2)

lin(lin3) x x x x x x x x

sm(lin3)

lin(noise1)

sm(noise1)

lin(noise2)

sm(noise2)

lin(noise3)

sm(noise3)

fct(noise4)

lin(sm1):lin(sm2)

lin(sm1):sm(sm2)

lin(sm1):fct(f) x

lin(sm1):lin(lin1)

lin(sm1):sm(lin1) x

sm(sm1):lin(sm2)

sm(sm1):sm(sm2) x

sm(sm1):fct(f)

sm(sm1):lin(lin1)

sm(sm1):sm(lin1)

lin(sm2):fct(f) x x x x x x x x

lin(sm2):lin(lin1)

lin(sm2):sm(lin1)

sm(sm2):fct(f) x x x x x x x x

sm(sm2):lin(lin1)

sm(sm2):sm(lin1) x

fct(f):lin(lin1) x

fct(f):sm(lin1) x

cumulative: 0.289 0.337 0.383 0.406 0.426 0.445 0.461 0.477

Figure 2: Excerpt of the second part of the output returned by summary.spikeSlabGAM,
which tabulates the configurations of P (γj = 1) > .5 with highest posterior probability. In
the example, the posterior is very concentrated in the true model without lin1, which has a
posterior probability of 0.29. The correct model that additionally includes lin1 (column 7)
has a posterior probability of about 0.016.
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sampler sorted by decreasing posterior support. For this simulated data, the posterior is
concentrated strongly on the (almost) true model missing the small linear effect of lin1.

4.2. Visualization

spikeSlabGAM offers automated visualizations for model terms and their interactions, imple-
mented with ggplot2 (Wickham 2009). By default, the posterior mean of the linear predictor
associated with each covariate (or combination of covariates if the model contains interac-
tions) along with (pointwise) 80% credible intervals is shown. Figure 3 shows the estimated
effects for m1.

Plots for specific terms can be requested with the label argument, Figures 4 and 5 show
code snippets and their output for f(sm1) and f(sm2, f). The fits are quite close to the truth
despite the heavy-tailed errors and the many noise terms included in the model2.

4.3. Assessing convergence

spikeSlabGAM uses the convergence diagnostics implemented in R2WinBUGS (Sturtz et˜al.

2005). The function ssGAM2Bugs() converts the posterior samples for a spikeSlabGAM-object
into a bugs-object, for which graphical and numerical convergence diagnostics are available via
plot and print. Note that not all cases of non-convergence should be considered problematic,
e.g., if one of the chains samples from a different part of the model space than the others, but
has converged on that part of the parameter space.

4.4. Pima indian diabetes

We use the time-honored Pima Indian Diabetes dataset as an example for real non-gaussian
data: This dataset from the UCI repository (Newman et˜al. 1998) is provided in package
mlbench (Leisch and Dimitriadou 2010) as PimaIndiansDiabetes2. We remove two columns
with a large number of missing values and use the complete measurements of the remaining
7 covariates and the response (diabetes Yes/No) for 524 women to estimate the model. We
set aside 200 observations as a test set:

R> data("PimaIndiansDiabetes2", package = "mlbench")

R> pimaDiab <- na.omit(PimaIndiansDiabetes2[, -c(4, 5)])

R> pimaDiab <- within(pimaDiab,{

+ diabetes <- 1*(diabetes == "pos")

+ })

R> set.seed(1109712439)

R> testInd <- sample(1:nrow(pimaDiab), 200)

R> pimaDiabTrain <- pimaDiab[-testInd,]

Note that spikeSlabGAM() always expects a dataset without any missing values and responses
between 0 and 1 for binomial models.

2 Full disclosure: The code used to render Figures 4 and 5 is a little more intricate than the code snippets
shown here, but the additional code only affects details (font and margin sizes and the arrangement of the
panels).
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R> plot(m)
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Figure 3: Posterior means and pointwise 80% credible intervals for m1. Interaction surfaces
of two numerical covariates are displayed as color coded contour plots, with regions in which
the credible interval does not overlap zero marked in blue (η < 0) or red (η > 0). Each panel
contains a marginal rug plot that shows where the observations are located. Note that the
default behavior of plot.spikeSlabGAM is to cumulate all terms associated with a covariate
or covariate combination. In this example, the joint effects of the first 4 covariates sm1, sm2,

f and lin1 and the sums of the lin- and sm-terms associated with lin2, lin3, noise1,

noise2 and noise3 are displayed. All effects of the noise variables are ≈ 0, note the different
scales on the vertical axes. Vertical axes can be forced to the same range by setting option
commonEtaScale.
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R> plot(m, labels = c("lin(sm1)", "sm(sm1)"), cumulative = FALSE)

R> trueFsm1 <-data.frame(truth = fsm1 - mean(fsm1), sm1 = sm1)

R> plot(m, labels = "sm(sm1)", ggElems = list(geom_line(aes(x = sm1, y = truth),

+ data = trueFsm1, linetype = 2)))
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Figure 4: Posterior means and pointwise 80% credible intervals for f(sm1) in m1. Left and
middle panel show the separate lin()- and sm()-terms returned by the first call to plot,
right panel shows their sum. True shape of f(sm1) added as a dashed line with the ggElems

option of plot.spikeSlabGAM.

R> trueFsm2f <-data.frame(truth = fsm2f - mean(fsm2f), sm2 = sm2, f = f)

R> plot(m, labels = "sm(sm2):fct(f)",

+ ggElems = list(geom_line(aes(x = sm2, y = truth, colour = f),

+ data = trueFsm2f, linetype = 2)))
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Figure 5: Posterior means and pointwise 80% credible intervals for f(sm2, f) in m1. True
shape of f(sm2|f) added as dashed line for each level of f.
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We increase the length of the burn-in phase for each chain from 100 to 500 iterations and run
8 parallel3 chains for an additive main effects model:

R> mcmc <- list(nChains = 8, chainLength = 1000, burnin = 500, thin = 5)

R> m0 <- spikeSlabGAM(diabetes ~ pregnant + glucose + pressure + mass + pedigree + age,

+ family = "binomial", data = pimaDiabTrain, mcmc = mcmc)

We compute the posterior predictive means for the test set, and request a summary of the
fitted model:

R> pr0 <- predict(m0, newdata = pimaDiab[testInd,])

R> print(summary(m0), printModels = FALSE)

Spike-and-Slab STAR for Binomial data

Model:

diabetes ~ (lin(pregnant) + sm(pregnant)) + (lin(glucose) + sm(glucose)) +

(lin(pressure) + sm(pressure)) + (lin(mass) + sm(mass)) +

(lin(pedigree) + sm(pedigree)) + (lin(age) + sm(age))

<environment: 0x8c38d30>

524 observations; 58 coefficients in 13 model terms.

Prior:

a[tau] b[tau] v[0] a[w] b[w]

5.0e+00 2.5e+01 2.5e-04 1.0e+00 1.0e+00

MCMC:

Saved 8000 samples from 8 chain(s), each ran 5000 iterations after a

burn-in of 500 ; Thinning: 5

P-IWLS acceptance rates: 0.93 for alpha; 0.64 for xi.

Null deviance: 676

Mean posterior deviance: 474

Marginal posterior inclusion probabilities and term importance:

P(gamma=1) pi dim

u NA NA 1

lin(pregnant) 0.058 0.004 1

sm(pregnant) 0.012 0.000 8

lin(glucose) 1.000 0.515 1 ***
sm(glucose) 0.042 0.000 9

lin(pressure) 0.012 0.000 1

sm(pressure) 0.011 0.000 9

lin(mass) 1.000 0.227 1 ***
sm(mass) 0.505 0.025 9 **
lin(pedigree) 0.030 0.001 1

sm(pedigree) 0.396 -0.001 8 *
lin(age) 0.540 0.040 1 **
sm(age) 0.962 0.189 8 ***

*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

spikeSlabGAM selects nonlinear effects for age and mass and a linear trend in glucose (and
with fairly weak support for a nonlinear effect of pedigree). mboost::gamboost ranks the

3on Windows, a parallel socket cluster is set up, on other OSs forking via parallel:mclapply is used

19



variables very similarly, based on the relative selection frequencies of the associated baselearn-
ers:

R> b <- gamboost(as.factor(diabetes) ~ pregnant + glucose + pressure + mass + pedigree + age,

+ family = Binomial(), data = pimaDiabTrain)[300]

R> aic <- AIC(b, method = "classical")

R> prB <- predict(b[mstop(aic)], newdata = pimaDiab[testInd,])

R> summary(b[mstop(aic)])$selprob

bbs(mass, df = dfbase) bbs(glucose, df = dfbase)

0.314465 0.251572

bbs(age, df = dfbase) bbs(pedigree, df = dfbase)

0.207547 0.125786

bbs(pressure, df = dfbase) bbs(pregnant, df = dfbase)

0.056604 0.044025

Finally, we compare the deviance on the test set for the two fitted models:

R> dev <- function(y, p){

+ -2*sum(dbinom(x = y, size = 1, prob = p, log = T))

+ }

R> c(spikeSlabGAM = dev(pimaDiab[testInd, "diabetes"], pr0),

+ gamboost = dev(pimaDiab[testInd, "diabetes"], plogis(prB)))

spikeSlabGAM gamboost

182.10 194.19

So it seems like spikeSlabGAM’s model averaged predictions are a little more accurate than
the predictions returned by gamboost in this case.

We can check the sensitivity of the results to the hyperparameters and refit the model with
a larger v0 to see if/how the results change:

R> hyper1 <- list(gamma = c(v0 = 0.005))

R> m1 <- spikeSlabGAM(diabetes ~ pregnant + glucose + pressure + mass + pedigree + age,

+ family = "binomial", data = pimaDiabTrain, mcmc = mcmc,

+ hyperparameters = hyper1)

R> pr1 <- predict(m1, newdata = pimaDiab[testInd, ])

R> print(summary(m1), printModels = FALSE)

Spike-and-Slab STAR for Binomial data

Model:

diabetes ~ (lin(pregnant) + sm(pregnant)) + (lin(glucose) + sm(glucose)) +

(lin(pressure) + sm(pressure)) + (lin(mass) + sm(mass)) +

(lin(pedigree) + sm(pedigree)) + (lin(age) + sm(age))

<environment: 0x96ee9d0>

524 observations; 58 coefficients in 13 model terms.

Prior:
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a[tau] b[tau] v[0] a[w] b[w]

5.000 25.000 0.005 1.000 1.000

MCMC:

Saved 8000 samples from 8 chain(s), each ran 5000 iterations after a

burn-in of 500 ; Thinning: 5

P-IWLS acceptance rates: 0.85 for alpha; 0.64 for xi.

Null deviance: 676

Mean posterior deviance: 459

Marginal posterior inclusion probabilities and term importance:

P(gamma=1) pi dim

u NA NA 1

lin(pregnant) 0.067 0.003 1

sm(pregnant) 0.079 -0.001 8

lin(glucose) 1.000 0.452 1 ***
sm(glucose) 0.078 0.000 9

lin(pressure) 0.103 -0.010 1

sm(pressure) 0.066 0.000 9

lin(mass) 1.000 0.237 1 ***
sm(mass) 0.942 0.062 9 ***
lin(pedigree) 0.148 0.009 1

sm(pedigree) 0.262 0.004 8 *
lin(age) 0.956 0.089 1 ***
sm(age) 0.996 0.155 8 ***

*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

R> (dev(pimaDiab[testInd, "diabetes"], pr1))

[1] 177.59

The selected terms are very similar, and the prediction is slightly more accurate (predictive
deviance for m0 was 182.1). Note that, due to the multi-modality of the target posterior,
stable estimation of precise posterior inclusion and model probabilities requires more parallel
chains than were used in this example.

5. Summary

A novel approach for Bayesian variable selection, model choice, and regularized estimation
in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses implemented
in spikeSlabGAM has been described. The package uses the established R formula syntax so
that complex models can be specified very concisely. It features powerful and user friendly
visualizations of the fitted models. Major features of the software have been demonstrated on
an example with artificial data with t-distributed errors and on the Pima Indians Diabetes
data set. In future work, the author plans to add capabilities for ”always included” semipara-
metric terms and for sampling the inclusion indicators under hierarchical constraints, i.e.,
never including an interaction if the associated main effects are excluded.
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Computational Details

This vignette was created with:

R> sessionInfo()

R version 3.1.2 (2014-10-31)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] mboost_2.4-0 stabs_0.1-0 spikeSlabGAM_1.1-8

[4] ggplot2_1.0.0

loaded via a namespace (and not attached):

[1] MASS_7.3-35 MCMCpack_1.3-3 Matrix_1.1-4

[4] R2WinBUGS_2.1-19 Rcpp_0.11.2 akima_0.5-11

[7] boot_1.3-9 cluster_1.14.4 coda_0.16-1

[10] colorspace_1.2-4 digest_0.6.4 grid_3.1.2

[13] gridExtra_0.9.1 gtable_0.1.2 labeling_0.2

[16] lattice_0.20-24 munsell_0.4.2 mvtnorm_1.0-0

[19] nnls_1.4 plyr_1.8.1 proto_0.3-10

[22] quadprog_1.5-5 reshape_0.8.5 reshape2_1.4

[25] scales_0.2.4 splines_3.1.2 stringr_0.6.2

[28] survival_2.37-7 tools_3.1.2
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