
STERGM - Separable Temporal ERGMs for modeling

discrete relational dynamics with statnet

Pavel N. Krivitsky, Steven M. Goodreau,
The Statnet Development Team

December 14, 2014

Contents

1 Intro 1

2 Getting the software 2

3 A quick review of static ERGMs 2

4 An Introduction to STERGMs (non-technical) 4

5 An Introduction to STERGMs (a bit more technical) 5

6 Notes on model specification and syntax 7

7 STERGM estimation and simulation, Example 1 8

8 networkDynamic 13

9 Independence within and across time steps 16

10 Example 2: Long durations 17

11 Example 3: Two network cross-sections 19

12 Example 4: Simulation driven by egocentric data 23

13 Additional functionality 29

1 Intro

This document is a brief vignette intended to quickly demonstrate the core function-
ality of tergm. For a more in-depth tutorial, please see the workshop materials on

1



the statnet wiki: http://statnet.csde.washington.edu/workshops/SUNBELT/

current/tergm/tergm_tutorial.pdf

2 Getting the software

If you have not already done so, please download and install ergm version 3.2 and
networkDynamic version 0.7. You will also want to make sure you have a reasonably
new version of R, preferably the latest (3.1).

> install.packages("ergm")

> install.packages("networkDynamic")

> library(ergm)

> library(networkDynamic)

3 A quick review of static ERGMs

Exponential-family random graph models (ERGMs) represent a general class of
models based in exponential-family theory for specifying the probability distribu-
tion underlying a set of random graphs or networks. Within this framework, one
can—among other tasks—obtain maximum-likehood estimates for the parameters
of a specified model for a given data set; simulate additional networks with the un-
derlying probability distribution implied by that model; test individual models for
goodness-of-fit, and perform various types of model comparison.

The basic expression for the ERGM class can be written as:

P (Y = y) =
exp(θ′g(y))

k(y)
(1)

where Y is the random variable for the state of the network (with realization y),
g(y) is the vector of model statistics for network y, θ is the vector of coefficients for
those statistics, and k(y) represents the quantity in the numerator summed over all
possible networks (typically constrained to be all networks with the same node set
as y).

This can be re-expressed in terms of the conditional log-odds of a single actor
pair:

logit (Yij = 1|ycij) = θ′δ(yij) (2)

where Yij is the random variable for the state of the actor pair i, j (with realization
yij), and ycij signifies the complement of yij , i.e. all dyads in the network other than

yij . The variable δ(yij) equals g(y+ij)− g(y−ij), where y+ij is defined as ycij along with

yij set to 1, and y−ij is defined as ycij along with yij set to 0. That is, δ(yij) equals the
value of g(y) when yij = 1 minus the value of g(y) when yij = 0, but all other dyads
are as in g(y). This emphasizes the log-odds of an individual tie conditional on all

2



others. We call g(y) the statistics of the model, and δ(yij) the “change statistics”
for actor pair yij .

Fitting an ERGM usually begins with obtaining data:

> library(ergm)

> data("florentine")

> ls()

[1] "flobusiness" "flomarriage"

> plot(flobusiness)

To refresh our memories on ERGM syntax, let us fit a cross-sectional example.
Just by looking at the plot of flobusiness, we might guess that there are more
triangles than expected by chance for a network of this size and density, and thus
that there is some sort of explicit triangle closure effect going on. One useful way to
model this effect in ERGMs that has been explored in the literature is with a gwesp

statistic.

> fit1 <- ergm(flobusiness~edges+gwesp(0,fixed=T))

Iteration 1 of at most 20:

The log-likelihood improved by 0.3105

Step length converged once. Increasing MCMC sample size.

Iteration 2 of at most 20:

3



The log-likelihood improved by 0.01535

Step length converged twice. Stopping.

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

> summary(fit1)

==========================

Summary of model fit

==========================

Formula: flobusiness ~ edges + gwesp(0, fixed = T)

Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.3629 0.6014 0 < 1e-04 ***

gwesp.fixed.0 1.5636 0.5720 0 0.00723 **

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 166.36 on 120 degrees of freedom

Residual Deviance: 78.33 on 118 degrees of freedom

AIC: 82.33 BIC: 87.91 (Smaller is better.)

With the estimation in place, we can simulate a new network from the given
model:

> sim1 <- simulate(fit1,nsim=1,

control=control.simulate.ergm(MCMC.burnin=1000))

> plot(sim1)

4 An Introduction to STERGMs (non-technical)

Separable Temporal ERGMs (STERGMs) are an extension of ERGMs for modeling
dynamic networks in discrete time, introduced in Krivitsky and Handcock (2010).
The cross-sectional ERGM entails a single network, and a single model on that
network. STERGMs, in contrast, posit two models: one ERGM underlying rela-
tional formation, and a second one underlying relational dissolution. Specifying a

4



STERGM thus entails writing two ERGM formulas instead of one. It also requires
dynamic data, of course; such data can come in many forms, and we will cover a
few examples today.

This approach is not simply a methodological development, but a theoretical one
as well, and one which matches common sense for many social processes. Think of
romantic relations. It seems intuitive that the statistical model underlying relational
formation (i.e. affecting who becomes partners with whom, out of the set of people
who aren’t already) is likely to be different than the model underlying relational
dissolution (i.e. affecting who breaks up with whom, out of the set of people currently
in relationships). Any reasonable model of the former would need to include a
variety of homophily parameters (mixing on age, for example). The latter may or
may not. (Conditional on being in a relationship, does your difference in age affect
your probability of breaking up? Perhaps, but probably not as fundametally or as
strongly as for formation).

5 An Introduction to STERGMs (a bit more technical)

We first review the ERGM framework for cross-sectional or static networks, observed
at a single point in time. Let Y ⊆ {1, . . . , n}2 be the set of potential relations (dyads)
among n nodes, ordered for directed networks and unordered for undirected. We can
represent a network y as a set of ties, with the set of possible sets of ties, Y ⊆ 2Y,
being the sample space: y ∈ Y. Let yij be 1 if (i, j) ∈ y — a relation of interest
exists from i to j — and 0 otherwise.

The network also has an associated covariate array X containing attributes of

5



the nodes, the dyads, or both. An exponential-family random graph model (ERGM)
represents the pmf of Y as a function of a p-vector of network statistics g(Y,X),
with parameters θ ∈ Rp, as follows:

Prθ (Y = y | X) =
exp {θ · g(y,X)}

c(θ,X,Y)
, (3)

where the normalizing constant

c(θ,X,Y) =
∑
y′∈Y

exp
{
θ · g(y′,X)

}
is a summation over the space of possible networks on n nodes, Y. Where Y and X
are held constant, as in a typical cross-sectional model, they may be suppressed in
the notation. Here, on the other hand, the dependence on Y and X is made explicit.

In modeling the transition from a network Yt at time t to a network Yt+1 at time
t+ 1, the separable temporal ERGM assumes that the formation and dissolution of
ties occur independently from each other within each time step, with each half of the
process modeled as an ERGM. For two networks (sets of ties) y,y′ ∈ Y, let y ⊇ y′

if any tie present in y′ is also present in y. Define Y+(y) = {y′ ∈ Y : y′ ⊇ y}, the
networks that can be constructed by forming ties in y; and Y−(y) = {y′ ∈ Y : y′ ⊆
y}, the networks that can be constructed dissolving ties in y.

Given yt, a formation network Y+ is generated from an ERGM controlled by a
p-vector of formation parameters θ+ and formation statistics g+(y+,X), conditional
on only adding ties:

Pr
(
Y+ = y+ | Yt; θ+

)
=

exp {θ+ · g+(y+,X)}
c (θ+,X,Y+(Yt))

, y+ ∈ Y+(yt). (4)

A dissolution network Y− is simultaneously generated from an ERGM controlled
by a (possibly different) q-vector of dissolution parameters θ− and corresponding
statistics g−(y−,X), conditional on only dissolving ties from yt:

Pr
(
Y− = y− | Yt; θ−

)
=

exp {θ− · g−(y−,X)}
c (θ−,X,Y−(Yt))

, y− ∈ Y−(yt). (5)

The cross-sectional network at time t+1 is then constructed by applying the changes
in Y+ and Y− to yt:

Yt+1 = Yt ∪ (Y+ −Yt) − (Yt −Y−).

which simplifies to either:

Yt+1 = Y+ − (Yt −Y−)

Yt+1 = Y− ∪ (Y+ −Yt)

Visually, we can sum this up as:

6



6 Notes on model specification and syntax

Within statnet, an ERGM involves one network and one set of network statistics, so
these are specified together using R’s formula notation:

my.network ∼ my.vector.of.g.statistics

For a call to stergm, there is still one network, but two formulas. These are now
passed as three separate arguments: the network (argument nw), the formation for-
mula (argument formation), and the dissolution formula (argument dissolution).
The latter two both take the form of a one-sided formula. E.g.:

stergm(my.network,

formation= ~edges+kstar(2),

dissolution= ~edges+triangle

)

There are other features of a call to either ergm or stergm that will be important
for us here. We list the features here; each will be illustrated in one or more examples
during the workshop.

1. To fix the coefficient for a particular network statistic, one uses offset notation.
For instance, to fix a dissolution model with only an edges term with parameter
value 4.2, the dissolution formula woud be:

dissolution= ∼offset(edges)

and the corresponding argument for passing the parameter value would be:

offset.coef.diss = 4.2

2. In parallel with ergm, any information used to specify the nature of the fit-
ting algorithm is passed by specifying a vector called control.stergm to the
control argument. For example:

7



control=control.stergm(MCMC.burnin=10000)

For a list of options, type ?control.stergm

3. Another argument that the user must supply is estimate, which controls the
estimation method. Unlike with cross-sectional ERGMs, there is not neces-
sarily an obvious default here, as different scenarios are best fit with different
approaches. The most important for the new user to recognize are EGMME (equi-
librium generalized method of moments estimation) and CMLE (conditional
maximum likelihood estimation). A good rule of thumb is that when fitting to
two networks, one should use estimate="CMLE" while when fitting to a single
cross-section with some duration information, use estimate="EGMME".

4. For cross-sectional ERGMs, the model is by default fit using the sufficient
statistics present in the cross-sectional network. For STERGMs, the presence
of multiple models makes the default less clear. Thus, the user is required to
supply this information via the targets argument. This can take a one-sided
formula listing the terms to be fit; or, if the formula is identical to either the for-
mation or dissolution model, the user can simply pass the string "formation"

or "dissolution", respectively. If one is specifying targets=”formation”, dis-
solution should be an offset, and vice versa. If the values to be targeted for
those terms are anything other than the sufficient statistics present in the
cross-sectional network, then those values can be passed with the argument
target.stats.

7 STERGM estimation and simulation, Example 1

Let us imagine that we have observed two things: a cross-sectional network, and a
mean relational duration. Let us say the cross-sectional network is flobusiness, and
the mean relational duration we have witnessed is 10 time steps. Furthermore, we
are willing to (for reasons of theory or convenience) assume a purely homogeneous
dissolution process (that is, every existing relationship has the same probability of
dissolving as all others, and at all times). For a cross-sectional ERGM, a purely
homogeneous model is one with just a single term in it for an edge count. The same
is true for either of the two formulas in a STERGM.

The steps we will go through are:

1. Specify formation and dissolution models (formation and dissolution).

We will begin by assuming a formation model identical to the model we fit in
the cross-sectional case:

formation = ∼edges+gwesp(0,fixed=T)

8



Analogously to cross-sectional ERGMs, our assumption of completely homo-
geneous dissolution corresponds to a model with only an edgecount term in it.
In STERGM notation this is:

dissolution = ∼edges

which correspond to the probability statement:

ln
P (Yij,t+1 = 1 | Yij,t = 1)

P (Yij,t+1 = 0 | Yij,t = 1)
= θ ∗ δ(y) (6)

where the one term in the δ(y) vector is the edge count of the network.

2. Calculate theta.diss.

Our dissolution model is applied to the set of ties that exist at any given
time point, as reflected in the conditional present in both the numerator and
denominator of Equation (8). The numerator thus represents the case where
a tie persists to the next step, and the denomiator represents the case where
it dissolves. Furthermore, δ(yij) = 1 for all i, j for the case of the edge count
statistic. We define the probability of persistance from one time step to the
next for actor pair i, j as pij , and the probability of dissolution as qij = 1−pij .
Our dissolution model is Bernoulli; that is, all edges have the same probability
of dissolution, and thus of persistence, so we further define pij = p∀i, j and
qij = q∀i, j. Then:

ln (
pij

1− pij
) = θ ∗ δ(yij)

ln (
p

1− p
) = θ

ln (
1− q
q

) = θ

ln (
1

q
− 1) = θ

And because this is a discrete memoryless process, durations are geometric;
symbolizing mean relational duration as d, we have d = 1

q , and thus:

θ = ln (d− 1) (7)

So, for our dissolution model, theta.diss = ln (10− 1) = ln 9 = 2.197:

> theta.diss <- log(9)

9



In short, because our dissolution model is dyadic independent, we can calculate
it using a (rather simple) closed form solution.

3. Estimate the formation model, conditional on the dissolution model. We put
it all together for our first call to stergm, adding in one additional control
argument that helps immensely with monitoring model convergence (and is
just plain cool): plotting the progress of the coefficient estimates and the
simulated sufficient statistics in real time.

> stergm.fit.1 <- stergm(flobusiness,

formation= ~edges+gwesp(0,fixed=T),

dissolution = ~offset(edges),

targets="formation",

offset.coef.diss = theta.diss,

estimate = "EGMME"

)

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
== Phase 3: Simulate from the fit and estimate standard errors.==

First, we should double-check to make sure the fitting went well:

> mcmc.diagnostics(stergm.fit.1)

==========================

EGMME diagnostics

==========================

⇒ Lots of output snipped. ⇐

Since those look good, we can next query the object in a variety of ways to
see what we have:

> stergm.fit.1

Formation Coefficients:

edges gwesp.fixed.0

-6.539 2.381

Dissolution Coefficients:

edges

2.197

> names(stergm.fit.1)

10



Sample statistics

−1
0

0
10

0 500 1000 1500 2000 2500

edges

0.0
00

.02
0.0

40
.06

0.0
8

−10 0 10 20

edges

−1
0

0
10

20

0 500 1000 1500 2000 2500

gwesp.fixed.0

0.0
00

.02
0.0

40
.06

−10 0 10 20

gwesp.fixed.0

[1] "network" "formation" "dissolution"

[4] "targets" "target.stats" "estimate"

[7] "covar" "opt.history" "sample"

[10] "sample.obs" "control" "reference"

[13] "mc.se" "constraints" "formation.fit"

[16] "dissolution.fit"

> stergm.fit.1$formation

~edges + gwesp(0, fixed = T)

> stergm.fit.1$formation.fit

EGMME Coefficients:

edges gwesp.fixed.0

-6.539 2.381

> summary(stergm.fit.1)

==============================

Summary of formation model fit

==============================

Formula: ~edges + gwesp(0, fixed = T)

11



Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges -6.539 60.333 0 0.914

gwesp.fixed.0 2.381 53.774 0 0.965

================================

Summary of dissolution model fit

================================

Formula: ~offset(edges)

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges 2.197 0.000 0 <1e-04 ***

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

The following terms are fixed by offset and are not estimated:

edges

We have now obtained estimates for the coefficients of a formation model that,
conditional on the stated dissolution model, yields simulated targets that matched
those observed. Something very useful we have also gained in the process is the
ability to simulate networks with the desired cross-sectional structure and mean
relational duration. This ability serves us well for any application areas that requires
us to simulate phenomena on dynamic networks, whether they entail the diffusion
of information or disease, or some other process.

> stergm.sim.1 <- simulate.stergm(stergm.fit.1, nsim=1,

time.slices = 1000)

Understanding this object requires us to learn about an additional piece of statnet
functionality: the networkDynamic package.

12



8 networkDynamic

In statnet, cross-sectional networks are stored using objects of class network. Tools
to create, edit, and query network objects are in the package network. Dynamic net-
works are now stored as objects with two classes (network and networkDynamic).
They can thus be edited or queried using standard functions from the network pack-
age, or using additional functions tailored specifically to the case of dynamic net-
works in the package networkDynamic.

To illustrate, let us begin with the network that we just created:

> stergm.sim.1

networkDynamic with 985 distinct change times:

⇒ Lots of output snipped. ⇐

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 120

missing edges= 0

non-missing edges= 120

Vertex attribute names:

priorates totalties vertex.names wealth

We can deduce from the number of edges that this likely represents the cumu-
lative network—that is, the union of all edges that exist at any point in time over
the course of the simulation. What does the network look like at different time
points? The function network.extract allows us to pull out the network at an
instantanoues time point (with the argument at), or over any given spell (with the
arguments onset and terminus).

> network.extract(stergm.sim.1,at=429)

For any one of these time points, we can look at the network structure:

> plot(network.extract(stergm.sim.1,at=882))

How well do the cross-sectional networks within our simulated dynamic network
fit the probability distribution implied by our model? We can check by considering
the summary statistics for our observed network, and those for our cross-sectional
networks.

13



> summary(flobusiness~edges+gwesp(0,fixed=T))

edges gwesp.fixed.0

15 12

> colMeans(attributes(stergm.sim.1)$stats)

edges gwesp.fixed.0

14.963 12.215

And we can also easily look at a time series and histogram for each statistic:

> plot(attributes(stergm.sim.1)$stats)

We should also check to make sure that our mean duration is what we expect (10
time steps). This requires knowing an additional function: as.data.frame, which,
when applied to an object of class networkDynamic, generates a timed edgelist.
Although right-censoring is present for some edges in our simulation, with a mean
duration of 10 time steps and a simulation 1000 time steps long, its effect on our
observed mean duration should be trivial.

> stergm.sim.1.dm <- as.data.frame(stergm.sim.1)

> names(stergm.sim.1.dm)

[1] "onset" "terminus"

[3] "tail" "head"

[5] "onset.censored" "terminus.censored"

[7] "duration" "edge.id"

14



0 200 400 600 800

5
10

15
20

25

Iterations

Trace of edges Density of edges

5 10 15 20 25

0.0
0

0.0
4

0.0
8

0 200 400 600 800

0
5

10
20

Iterations

Trace of gwesp.fixed.0 Density of gwesp.fixed.0

0 5 10 15 20 25

0.0
0

0.0
4

> mean(stergm.sim.1.dm$duration)

[1] 10.28003

The information on when an edge is active and when it is inactive is stored
within our network object as the edge attribute active. Vertices, too, are capable
of becoming active and inactive within networkDynamic, and this information is
stored as a vertex attribute. Most of the time, users should access this informa-
tion indirectly, through functions like network.extract or as.data.frame. Ad-
ditional functions to query or set activity include is.active, activate.vertex,
deactivate.vertex, activate.edge, and deactivate.edge, all documented in
help(package="networkDynamic").

For those who want to look under the hood, they can see the activity spells
directly. For a single edge, say, edge number 25, use:

> get.edge.value(stergm.sim.1, "active", unlist=FALSE)[[25]]

[,1] [,2]

[1,] 8 19

[2,] 117 119

[3,] 134 135

[4,] 148 191

[5,] 193 198

[6,] 204 212

[7,] 489 491

15



[8,] 494 516

[9,] 517 521

[10,] 582 619

[11,] 626 629

[12,] 655 666

[13,] 924 925

[14,] 965 967

[15,] 968 974

[16,] 980 981

[17,] 982 986

[18,] 987 990

[19,] 991 998

Note that networkDynamic stores spells in the form [onset,terminus), meaning
that the spell is inclusive of the onset and exclusive of the terminus. So a spell of 3,7
means the edge begins at time point 3 and ends just before time point 7. network-
Dynamic can handle continuous-time spell information. However, since STERGMs
are discrete-time with integer steps, what this means for STERGM is that the edge
is inactive up through time step 2; active at time steps 3, 4, 5, and 6; and inactive
again at time step 7 and on. Its duration is thus 4 time steps.

9 Independence within and across time steps

STERGMs assume that the formation and dissolution processes are indepedent of
each other within the the same time step.

This does not necessarily mean that they will be independent across time. In
fact, for any dyadic dependent model, they will not. To see this point, think of a
romantic relationship example with:

formation = ~edges+degree(2:10)

dissolution = ~edges

with increasingly negative parameters on the degree terms. What this means is
that there is some underlying tendency for relational formation to occur, which is
considerably reduced with each pre-existing tie that the two actors involved are
already in. In other words, there is a strong prohibition against being in multiple
simultaneous romantic relationships. However, dissolution is fully independent—
all existing relationships have the same underlying dissolution probability at every
time step. (The latter assumption is probably unrealistic; in practice, if someone
just acquired a second partner, their first is likely to be at increased risk of dissoving
their relation. We ignore this now for simplicity).

Imagine that Chris and Pat are in a relationship at time t. During the time
period between t and t+1, whether they break up does not depend on when either

16



of them acquires a new partner, and vice versa. Let us assume that they do *not*
break up during this time. Now, during the time period between t+1 and t+2,
whether or not they break up is dependent on the state of the network at time t+1,
and that depends on whether either of them they acquired new partners between t

and t+1.
The simple implication of this is that in this framework, formation and dissolu-

tion can be dependent, but that dependence occurs in subsequent time steps, not
simultaneously.

Note that a time step here is abritrary, and left to the user to define. One reason
to select a smaller time interval is that it makes this assumption more justifiable.
With a time step of 1 month, then if I start a new relationship today, the earliest
I can break up with my first partner as a direct result of that new partnership is
in one month. If my time step is a day, then it is in 1 day; the latter is likely
much more reasonable. The tradeoff is that a shorter time interval means longer
computation time for both model estimation and simulation, as will be seen below.
You will see throughout this talk that there are multiple positives and negatives to
having a short time step and having a long time step. We will discuss them as they
go, and review them collectively at the end.

At the limit, this can in practice approximate a continuous-time model—the only
issue is computational limitations.

10 Example 2: Long durations

For the type of model we saw in Example 1 (with a known dissolution model that
contains a subset of terms from the formation model), it can be shown that a good
set of starting values for the estimation of the formation model are as follows: (1) fit
the terms in the formation model as a static ERGM on the cross-sectional network;
and (2) subtract the values of the dissolution parameters from the corresponding
values in the cross-sectional model. The result is a vector of parameter values that
form a reasonable place to start the MCMC chain for the estimation of the formation
model. This is in fact exactly what the stergm estimation code does by default for
this type of model.

When mean relational duration is very long, this approximation is so good that
it may not be necessary to run a STERGM estimation at all. Especially if your
purpose is mainly for simulation, the approximation may be all you need. This is
a very useful finding, since models with long mean duration are precisely the ones
that are the slowest and most difficult to fit using EGMME. That’s because, with
long durations, very few ties will change between one time step and another, giving
the fitting algorithm very little information on which to perform the estimation.

Of course, in order to be able to take advantage of this method, it is necessary
for the terms in your dissolution model to be a subset of the terms in your formation
model.

17



To illustrate, let us reconsider Example 1, with a mean relational duration of
100 time steps.

> theta.diss.100 <- log(99)

First, we treat the formation process as if it were a stand-alone cross-sectional
model, and estimate it using a standard cross-sectional ERGM. We did, in fact, fit
this cross-sectional model earlier:

> summary(fit1)

==========================

Summary of model fit

==========================

Formula: flobusiness ~ edges + gwesp(0, fixed = T)

Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.3629 0.6014 0 < 1e-04 ***

gwesp.fixed.0 1.5636 0.5720 0 0.00723 **

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 166.36 on 120 degrees of freedom

Residual Deviance: 78.33 on 118 degrees of freedom

AIC: 82.33 BIC: 87.91 (Smaller is better.)

> theta.form <- fit1$coef

> theta.form

edges gwesp.fixed.0

-3.362898 1.563552

Then, we subtract the values of the dissolution θ from each of the corresponding
values in the formation model. In this example, the dissolution model contains only
an edges term, so this coefficient should be subtracted from the starting value for
the edges term in the formation model.

> theta.form[1] <- theta.form[1] - theta.diss.100

18



How well does this approximation do in capturing our desired dynamic network
properties? First, we can simulate from it:

> stergm.sim.2 <- simulate(flobusiness,

formation=~edges+gwesp(0,fixed=T),

dissolution=~edges,

monitor="all",

coef.form=theta.form,

coef.diss=theta.diss.100,

time.slices=10000)

Then check the results in terms of cross-sectional network structure and mean
relational duration?

> summary(flobusiness~edges+gwesp(0,fixed=T))

edges gwesp.fixed.0

15 12

> colMeans(attributes(stergm.sim.2)$stats)

edges gwesp.fixed.0

15.3835 12.3586

> stergm.sim.dm.2 <- as.data.frame(stergm.sim.2)

> mean(stergm.sim.dm.2$duration)

[1] 101.2837

> plot(attributes(stergm.sim.2)$stats)

11 Example 3: Two network cross-sections

Another common data form for modeling dynamic network processes consists of
observations of network structure at two or more points in time on the same node
set. Many classic network studies were of this type, and data of this form continue
to be collected and analyzed.

Let us consider the first two time points in the famous Sampson monastery data:

> data(samplk)

> ls(pattern="samp*")

[1] "samplk1" "samplk2" "samplk3"

19



0 2000 6000 10000

5
15

25
35

Iterations

Trace of edges Density of edges

5 10 20 30

0.0
0

0.0
2

0.0
4

0.0
6

0 2000 6000 10000

0
10

20
30

Iterations

Trace of gwesp.fixed.0 Density of gwesp.fixed.0

0 5 10 20 30

0.0
0

0.0
4

0.0
8

To pass them into stergm, we need to combine them into a list:

> samp <- list()

> samp[[1]] <- samplk1

> samp[[2]] <- samplk2

Now we must decide on a model to fit to them. Plotting one network:

> plot(samplk1)

20



we might get the idea to consider mutuality as a predictor of a directed edge. Also,
since this is a directed network, and there appear to be a considerable number of
triadic relations, it might be worth investigating the role of cyclic vs. transitive
triads in the network. Of course, since we have two network snapshots, and we have
separate formation and dissolution models, we can estimate the degree to which
closing a mutual dyad or closing a triad of each type predicts the creation of a tie,
and also estimate the degree to which maintaining a mutual dyad or maintaining
a triad of each type predicts the persistence of an existing tie. We might see dif-
ferent phenomena at work in each case; or the same phenomena, but with different
coefficients.

Because of the different structure of our model, we need to change our arguments
slightly. Our estimation method should now be conditional maximum likelihood
estimation (CMLE). Moreover, we no longer need the target argument (and it is in
fact not allowed for CMLE, since the algorithm automatically targets the sufficient
statistics present in each of the two networks). In this case, we have no offsets, since
there are no coefficients set in either the formation or dissolution model.

> stergm.fit.3 <- stergm(samp,

formation= ~edges+mutual+ctriad+ttriad,

21



dissolution = ~edges+mutual+ctriad+ttriad,

estimate = "CMLE"

)

Fitting formation:

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
Time points not specified for a list. Modeling transition from the first

to the second network. This behavior may change in the future.

And the results:

> summary(stergm.fit.3)

==============================

Summary of formation model fit

==============================

Formula: ~edges + mutual + ctriad + ttriad

Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.5397 0.4612 0 < 1e-04 ***

mutual 2.2431 0.5782 0 0.000134 ***

ctriple -0.4908 0.3717 0 0.187964

ttriple 0.2888 0.1293 0 0.026416 *

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 348.0 on 251 degrees of freedom

Residual Deviance: 129.1 on 247 degrees of freedom

AIC: 137.1 BIC: 151.2 (Smaller is better.)

================================

Summary of dissolution model fit

================================

Formula: ~edges + mutual + ctriad + ttriad

22



Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -0.1296 0.4299 0 0.7642

mutual 1.5900 0.7941 0 0.0506 .

ctriple -1.7059 1.2208 0 0.1684

ttriple 0.7066 0.3727 0 0.0637 .

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 76.25 on 55 degrees of freedom

Residual Deviance: 65.63 on 51 degrees of freedom

AIC: 73.63 BIC: 81.66 (Smaller is better.)

So, a relationship is more likely than chance to form if it will close a mutual
pair. And it is also more likely than chance to persist if it will retain a mutual pair,
although the coefficient is smaller. A relationship is more likely than chance to form
if it will close a transitive triad, and more likely to persist if it sustains a transitive
triad, although these effects appear to be less clearly significant.

12 Example 4: Simulation driven by egocentric data

In many cases, people’s primary interest in using dynamic networks is to simulate
some diffusion process on one or more networks with similar features. Increasingly,
our knowledge about those features come in the form of egocentrically sampled data,
not from the traditional network census in a bounded population. Both ergm and
stergm have methods for handling these situations.

For example, imagine that you want to model HIV transmission among a popu-
lation of gay men in steady partnerships. 50% of the men are White and 50% are
Black. You collect egocentric partnership data from a random (ha! ha!) sample of
these men. Your data say:

1. There are no significant differences in the distribution of momentary degree
(the number of ongoing partnerships at one point in time) reported by White
vs. Black men. The mean is 0.90, and the overall distribution is:

(a) 36% degree 0

(b) 46% degree 1

(c) 18% degree 2+

23



2. 83.3% of relationships are racially homogeneous

We also have data (from these same men, or elsewhere) that tell us that the mean
duration for a racially homogenous relationship is 10 months, while for a racially
mixed one it is 20 months. (Perhaps this is because the social pressure against
cross-race ties makes it such that those who are willing to enter them are a select
group, more committed to their relationships).

Before we model the disease transmission, we need a dynamic network that
possesses each of thse features to simulate it on.

Our first step is to create a 500-node undirected network, and assign the first
250 nodes to race 0 and the second to race 1. The choice of 500 nodes is arbitary.

> msm.net <- network.initialize(500, directed=F)

> msm.net %v% 'race' <- c(rep(0,250),rep(1,250))

> msm.net

Network attributes:

vertices = 500

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 0

missing edges= 0

non-missing edges= 0

Vertex attribute names:

race vertex.names

No edge attributes

ERGM and STERGM have functionality that allow us to simply state what the
target statistics are that we want to match; we do not actually need to generate a
network that has them. The formation formula and target statistics that we need
are:

> msm.form.formula <- ~edges+nodematch('race')+degree(0)+
concurrent

> msm.target.stats <- c(225,187,180,90)

Why don’t we specify degree(1) as well? How did we get those values?
Now let us turn to dissolution. We are back to the case where we can solve

these explicitly, although this is complicated slightly by the fact that our disslution

24



probabilities differ by the race composition of the members. One dissolution formula
for representing this is:

> msm.diss.formula <- ~offset(edges)+offset(nodematch("race"))

These two model statistics means that there will be two model coefficients. Let
us call them θ1 and θ2 for the edges and nodematch terms, respectively. Let us also
refer to the change statistics for actor pair i, j for each of these as δ1(yij) and δ2(yij),
respectively.

Thus the log-odds expression for dissolution that we saw earlier would here be
expressed as:

ln
P (Yij,t+1 = 1 | Yij,t = 1)

P (Yij,t+1 = 0 | Yij,t = 1)
= θ1δ1(yij) + θ2δ2(yij) (8)

Note that δ1(yij) would equal 1 for all actor pairs, while δ2(yij) would equal 1 for race
homophilous pairs and 0 for others. That means that the log-odds of tie persistence
will equal θ1 for mixed-race couples and θ1 + θ2 for race-homophilous couples. This
suggests that we should be able to calculate θ1 directly, and subsequently calculate
θ2.

Following the logic we saw in the Example 1, we can see that:

θ1 = ln dmixed − 1 (9)

and therefore θ1 = ln (20− 1) = ln 19 = 2.944.
Furthermore,

θ1 + θ2 = ln dhomoph − 1 (10)

and therefore θ2 = ln (dhomoph − 1)− θ1 = ln (10− 1)− 2.944 = −0.747.
So, we have:

> msm.theta.diss <- c(2.944, -0.747)

We add in one additional control parameter—SA.init.gain—giving it a small
value (the default is 0.1). As the help page for control.stergm sagely advises, “If
the process initially goes crazy beyond recovery, lower this value.” This slows down
estimation, but also makes it more stable. From trial and error, we know that this
model, fit to this relatively large network, does better with this smaller value.

Putting it all together gives us:

> set.seed(0)

> msm.fit <- stergm(msm.net,

formation= msm.form.formula,

dissolution= msm.diss.formula,

targets="formation",

25



target.stats= msm.target.stats,

offset.coef.diss = msm.theta.diss,

estimate = "EGMME"

)

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
======== Phase 3: Simulate from the fit and estimate standard errors.

========

Let’s first check to make sure it fit well:

> mcmc.diagnostics(msm.fit)

⇒ Lots of output snipped. ⇐

Sample statistics

−4
0−

20
0

20
40

0 500 1000 1500 2000 2500

edges

0.0
00

0.0
10

0.0
20

−40 −20 0 20 40 60

edges

−4
0−

20
0

20
40

0 500 1000 1500 2000 2500

nodematch.race

0.0
0

0.0
1

0.0
2

0.0
3

−40 −20 0 20 40

nodematch.race

−4
0−

20
0

20
40

0 500 1000 1500 2000 2500

degree0

0.0
00

0.0
10

0.0
20

0.0
30

−40 −20 0 20 40 60

degree0

and see what the results tell us:

> summary(msm.fit)

==============================

Summary of formation model fit

==============================

Formula: ~edges + nodematch("race") + degree(0) + concurrent

26



Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges -9.9577 90.1475 0 0.912

nodematch.race 2.2845 32.0345 0 0.943

degree0 -0.2056 16.8968 0 0.990

concurrent -0.8196 32.4500 0 0.980

================================

Summary of dissolution model fit

================================

Formula: ~offset(edges) + offset(nodematch("race"))

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges 2.944 0.000 0 <1e-04 ***

nodematch.race -0.747 0.000 0 <1e-04 ***

---

Signif. codes:

0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

The following terms are fixed by offset and are not estimated:

edges nodematch.race

Now, we simulate a dynamic network:

> msm.sim <- simulate(msm.fit,time.slices=1000)

and compare the outputs to what we expect, in terms of cross-sectional structure:

> colMeans(attributes(msm.sim)$stats)

edges nodematch.race degree0 concurrent

222.941 184.580 181.793 88.611

> msm.target.stats

27



[1] 225 187 180 90

Here’s another interesting way to look at one aspect of the network structure:

> msm.sim.dm <- as.data.frame(msm.sim)

> plot(msm.sim.dm$head,msm.sim.dm$tail)

●

●

●

●

●

●●

●●

●●
●●

●

●●

●

●●
●

●●●●

●

●
●

●

●

●●
●

●●
●●●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●●

●

●●

●●

●

●
●●

●

●

●

●

●●●

●

●
●

●●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●●●●●

●

●●

●
●

●●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●●

●

●

●●●●

●

●
●
●●

●

●●

●●

●●●●

●

●
●

●●

●

●●

●
●●●

●●

●●
●●

●

●

●

●

●

●●
●

●

●●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●●

●
●

●
●●

●
●●

●●

●●

●●

●

●●●

●

●

●●●

●
●●●

●

●●

● ●●

●●

●
●●

● ●

●●

●

●

●

●●●●
●

●●

●●
●●

●●

● ●
●●

●
●

●

●

● ●● ●
●

●

●

●●
● ●

●●●
●

●●

●

●
●

●

●●

●●
●

●●●

●
●

●

●●

●●●●

●

● ●

●●

●

●●

●

● ●●●
●●

●
●●

●
●

●●
●●

●

● ●●●
● ●●

●
●

●●
●

●

●

●● ●
●●

●●
●

●●●
●

●
●●●

●
●

●

●●
●

● ●●

●

●
●

●● ●
●

●

●●●

●

●

●

●●
●●●●

●

●

●●

●

●
●

●

●●

●

●
● ●

●●

●●
●

●
●●

●

●
●●

● ●

●
●

●●
●

●●●
●●

●

●●

●
●●

●

●
● ●

●
●

●● ●●

●●
●

●

●

●●

●
●

● ●

●●●
●

●●●

●

●●

●●

●
●

●●

●
●

●

●

●

●

● ●●

●● ●

●

●●

●
●

●●

●

●

●
●

●●

●●●
●

●

●●●● ●
●

●●
●

●
● ●●

●

●

●●

●

●
● ●●

●●
●

●
● ●

●● ●●
● ●

●

●●●●

● ●●●●●
●

●

●●● ●●

●

● ●

●

●
●

●●●● ●
● ●

●

●

●

●
●

●

● ●
●

● ●

●

●

●●●

●● ●

●

●

●

●
●●●

●
●●

●●

●

●●

●

●●
●●

●

●

●

●

●

●●

●●
●

●●●

●●●●

●●

●
●

●

●

●
●

● ●

●●●●

●

●
●

●
●

●
● ●

●

●

●
●

●
●●

●●

●
●

●

●
●

●●
●

● ●●●

● ●
●

●

●

●● ●●

●
● ●

●

● ●
● ●

●

●
●● ●

●
●●●●●

●● ●●●

● ●

●

●

●●

●●● ●

●

●

●●

●●

●
●●●

●●
●●

●

●●

●

●

●

●●

●

●
●

●●

●

●●

● ●
●

●

●●

●●●●
●

●

●●
●

●●
●

●

●●●

●

●
●● ●●● ●

●●

●

●●

●

●

●●● ●
●●

●
●

●
● ●

●

●

●

●
●

●
●

●

●

●
● ●

●●
●●

●● ● ●●
●

●
●● ●

●

●●

●●

●●
●

●● ●●●
●

●

●●

●

●
●

●●

●● ●●

●

● ●

●
● ●●●

●●
● ●

● ●

●●

●

●

●

●●● ●

●
●

●●

● ●

●

●

●

●● ●●
●

●
●

●
●

●

●●

●
●

● ● ●● ●
●

●●
●●

●●●

● ●●

●

●●

●●● ●

● ●●

●●
●●●●●●

●
●●

● ●●

●

●

●

●●

●

●
●

●
●

●●
●

●

●

●
●●● ● ●

●●
●

●
●●●

●●

●● ●●●
●●

●●
●

●●

●

●
●

●

●

●

●●
● ●●

●●

●

● ●●

●
●●

●

●

●
● ●●

●
● ●●

●
● ●●

●
●●

●

● ●
●●

●

●

● ●
●● ● ●

● ●
●

●●

● ●

●
●

●
●

●●

● ●
●

●●

● ●
●

●

●●

●
●

●

● ●
●●●

●
●●

●

●

●

●

●

●

●

●● ●

●
●

●●

●●●●

●
● ●

●

● ●●

●
●

●●

●

●●●●

●

●● ●

●

●

●

●
●

●

●
●

●●●

●●

●●
●

●

●
●

●

●
●

●

●
● ●

●
●

●●●
●

●

●
●●●

●

●

●●

●●●

●●●
●●

●●
●●

●●
●

●●●

●●●●
●

●●●

●

● ●

●

●
●

●

●
●●●

●
●

●
●

●●
●

●

●
●

●● ●

●

● ●●

●
●●

●

●

●
● ●

●● ●●

●

●

●●●
●

●

●
●

●
●

●

●●

●
●●●

● ●

●

●● ●●

●
●●●

●

● ●

●●● ●
● ●

● ●●
●●

●
●

●
●

●●
●●

●

●

●

●

●●

● ●

●
● ●●

●
●

●
●

●●

●●
●

●●

● ●●

● ●●

●

● ●●

●● ●●
●

● ●●

●

● ●●●

●

●

●●●

●

●●●●●

●●●
●

●

●

●

●

● ● ●
●

●●

● ●

●

●

●●

●
●

●

● ●
●

●●
●●●

●●
●● ●

●
●

●

●●●●

●

● ●

●●●
●

● ●

●●
● ●●

●

●

●
●

●●
●

●●●
●●

●

●
●

●●

●

●

●●●●
●

●
●

●● ●●●
●● ●●

●
●

●●

●●●

●

●●●

● ●
●

●● ●

●
●

●●

●
●

●●

●

●
●● ●●

●

●

●

●● ●●

●
●● ●

●●
●

● ●●
● ●

●●●●
●

●●●

●●
● ●●

●●
●

●●● ●

●
● ●

●●
●●

●

● ●
●●●●

●

●● ●●

● ●● ●
●

●
●

●

●

●●
●●

●●● ●
●●

●

●

●●

●
●

●

●

●
●●

●
●● ●

●

●

●

● ●●

●●

● ●

●●●

●●●

●
●●

● ●

●

● ●
●

● ●●

●

●

●●●
●

●
● ●

●
●

●●

●

●
●

● ●

●●

●●

●

●●
●

●● ●●●

●

●●

●
●

●
●

●●●

● ●●

●

●
●●

●
●

● ●

●●●
●●●

●
●

●
●●●

●●

●
●

●
●●●

●

●●
●

●●

●

●●●

●●
●●● ●

●
●● ●

●

●

●●

●

●

●

●●
●

● ●●● ●

●

●

● ●
●

●

● ●
●

●●
●

● ● ●●● ●
●●●

●●

●●

●
●●

●
●

●●
●

●

●
●●

●●

● ●●
●

●
● ●

●
●● ●● ●

●

●●
●

●

●

●

●

●
●●

●
●

●●
● ●●

●●●

●

●

●●●●

●

●●

●
●●●

●

●●●

●●

●

●

●●
●●

●

● ●
●●●

●● ●

●●●

●●

●

●
●

● ●
●●●

●●
●●● ●●●

●

●●

●● ●
●

●

●

●●

●

●

●●

●

●

●

●●
●

●●●
●
●●●●●

●●
●

●●●

●
●

●
● ●●

●

●●●

●

●
●●

●

●
●

●●
●

●● ●

●

●●

●●
●●

●

● ●

●
●

●

●●

●●

●●
●●

●

●●

● ●●●

●

●

●

●

●●

● ●

●●

●

●

●●
●●

●
● ●

● ●
●●

●

●

●● ●●

● ● ●●● ● ●●
●

●

●●●●

●
●

●

●●
●●●

● ●●●
●

●

●

●

●●

●●

●●
● ●●●●

● ●● ●
●

●●●
● ●●

●
●

●●●

●●●

● ●
●●●

● ●●●

●●●

●●● ●●●●●●●

●

●

●
●

●● ●

●

●

●

●●●

● ●●●
●

●●

●
●

●●

●● ●
●●

●
●

●

●
●●

●
●●

● ●●●
●

●● ●
●

●
●●

●●

●●●

●●● ●

●●● ●●

● ● ●●

●

●●
●

●●

●
● ●

●
●

●

●●

●● ●● ●●

●
● ●●

●●

●

●

●

●

● ●

●
●

●●

●

●

●● ●●●
●●

● ●●

●
●

●
●

● ●●

●● ●

●
●●

●

●●

●

●●

●●

●

●

●● ●●
●● ●

●
●●●

●
●

●

●

●●

●
●

●

●
●

●●

●

●
●

●●

●
●

●
●

●

●●

●●
●

● ●

●● ●

●
● ●

● ● ●

●

●

●

●●
●

● ●●

●
●●

●●

●

●
●

●

●

●
●●● ● ● ●

●

●●

●
●

●

●

●● ●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
● ●●

●
●

●
●

●●
●●

●

●●

●

● ●●
●

●
●

●

●

● ●

●

● ●
●

●

● ● ●

●
●

● ●

●

●

●
●

●●●
●● ●

●
● ●

●

●●

●

●●

●

●

●

●● ●●
● ●

●●●

●●●

●
●

●

●

● ●

●●● ●

●●●●
●

●

●

●●●●

●●

● ●

●

●

●●

●

●
●

● ●●●● ●

●●

●

●
●●
●

● ●

● ●● ● ●
●●

● ●
●

● ●
● ●

●

● ●
●
● ●●

●

●

●

●

●
●●●

●

●●● ●
●

●
●

●● ●●

●

●●

●●
●●●●● ●

●● ●●

●

●

●

●

●

●●
● ●

●●

●
●●●

●
●● ●

●●
●●

●
●●

●● ●●

●

●

●

●

●●

●

●

●

●
●●●

●● ●●
●

●

●

●

●
●

●
●

●

●●
●

● ●

●●

●

●●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●●
● ●

●

●
●●●

●

●●
●●●

● ●
●

●

● ●●●

●

●●

● ●●
●● ●
●●●

●
●

●●

●

●●

● ●
●●

●

● ●●

●

●

● ●

●

●
●●

● ● ●●●

●●●

●

●●

●

●● ●
●

●

●●●

● ●

●
●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●●

●●●
●●●

●

●●●●

●
●

●

●
●

●●●
●

●

●●●
●●

●●

●●

●
● ●

● ●

● ●
●●

●
●

●

●●

●

●●

●● ●

●

●

●●

●
●

●

●

●
●

● ●●
●

●●●
●

● ●

●●●●

●
●

●●

●●

●●●● ●
●●●

●

●●
●

●●

●

● ●●

●● ●●

● ●

●
● ●

●

●

●

●
●●

●

●

●●

● ●●
●●●●

● ●●

●

●

●● ●

●

●

●

●
●

●
●●

●

●●

●●

●●

●
●

●

●

●●

●

●●
●●

●●
● ●

●●●

●

●
●

●●●

●

●

● ●●●

● ●●●
●●

●● ●

●● ●●

●●●●

●●
●●

●
●

●
●●

● ●●

●

●

●

●

●

●●●

●
● ●

●

● ●
●

●●● ●●
●

●
●

●

●

●

●
●

● ●

●●

● ●●
●●●

●

●
●●●

●

●●
●

●

●

●
●

●

●
● ● ●●

●
●

● ●
●●

● ●
●

●

●

●

●●

●
●●

●

●
●

●

●●
●●●

●
●●

●●
●

●●

●●

●●

●●

●●
● ●

●

● ●●

●●●
●

●●

●

●

●

●

● ●
●●●

●
●

●

●

●

●●

●
●●

●●

●●
●●

●●●●
●

●
●●●

●

●
●

●

●●●

●

●
●

●●

●

●●

● ●

●

● ● ●
● ●●

●

●●
●

●
●

●

●

●
●●

●●●

●

● ●

●●●
● ●

●●●●●
● ●

●

●

●

●

●
●●

●
● ●●

●

●

●● ●●●

● ●

●●
●●

●●
●

●
●

●

● ●
●

●●

● ●

●

●●● ●●●●●
●● ●

●●

●●●●●
●

●●
●●

● ●

●
● ●

●●

●

●
●

●

●● ●

●

●

●●

●●
●

●●●●●●

●●●

●●

●●

●

●

●●
●●

●
●●

●
●

●
●

●●

●●

●

●● ●

●

●

●● ●
●●●●

●
●

●

●
●

●

●

●
●

●
● ●●

●●
●●

●●

●● ●

●●
●

●● ●● ●

●●
●

●
●

●

●●

●
●●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

● ●

●●
●

●

● ●
●

●

●

●

●●
● ●●

●

●●
●●

●●●

●●
●●

●

●●●●● ● ●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●● ●

●
●

●●

● ●●

●

●

● ●

● ● ●●
● ●

●●●
●

●

●●

●●
●

●

●
●●

●
●●●●

●
●

●

● ●●

●

●
●

●●

●●
●

●

●
●

● ●
●

●

●●●

●

●●
●●

●●

●
●

●● ●●

●●●

●

●
●

●

●

● ●●

●●
●●

●●●
●

●

● ●

●

●

●● ● ●●●

●●

● ●● ●

●●
●

●
●

●●
●●

●●
●●

●●●

●

●
●

●●

●

●●

● ●●
●

●● ●
●

●

●●
●

● ●
● ●●

●●●●
●

●
●

●●

●●

●●

●●

●

●
●

●●

●
●

●●

● ●

●

●
●

●
●● ●●●

●
●

●

●
●●

●

●

●
●●

●

●
● ●

●

●●
●●● ●

●●●

●

●●

● ●

●
●

●

●

●

●

●
●●

●

●
●

●● ●

● ●●
●● ●

●●

●

●

●●

●●

● ●
●

●

●

●●
●

●
●

●●●

●

● ●

●●●

●
● ●

●●

●
●

● ●
● ●

●

●

●

●

●

●●

●

●●

●

●●●●

●●

●●

●●

●
● ●

● ●
●

●
●

●

●

●●

●●

●
●

●●

●
●

●●● ●● ●●●

●

●
●

●
●

●

●

●●

● ●●
●

●●

●

● ●● ●

●

●
●●●●

●
●

●●
●

●
●

●

●
●●

●
●

●●●

●

●●
●

●●

●

●● ●●● ●● ●

●

●

●

●

●● ●● ●

●
●

●

●

●
●

●

●●

●●●

●● ●

●

●

●

● ●

●●
●● ●

●
●●

●●

●● ●

● ● ●

●

●●●

●

●●
● ●●●

●
● ●

●

●

●

●

●●
●●●

●●
●●

●
●

●

●●
●

● ●

●

●●
●

●●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●●

●

●

●
●

●

●●●
●

●

●

●●●
●

●

●

●●●

●

●●
●● ●

●●

●

●
●

●

●

●

●

●
●

●
●●●

●●
●●

●

●●

●
●

●

●● ●
●●

● ●●

●

●
●●● ●

●
● ●●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●●●
●

●● ●●

●
● ●

●

●●
●

●

●

●●
●

●

●

●
●● ●●

●●
● ●

●

●
●●

●

● ●
●

●

●

●●

● ● ●

● ●●

●

●●

●
●●

●●

●●

●

●
●

●

●

●

●

●
● ●●

●
●

●●●
●●

●●●●●

●

●●

●

●● ●

●
●

●●●●

●

●

●
● ●● ●

●●

● ●
●●

●
●

●●
●

●

●
●

●
●

●●

●●
●●●

●
●

●

●

●
●● ● ●
●●●

●

●● ●
●
●

●● ●

●

●

●●●

●●●●
●● ●●● ●

●

●

●

●

●●

●

●
●●

●
●●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●●●

●
● ●●

●●

●
●●

●

●●●● ● ●
●●

●
●

●●●

●●●

●

●
●

●

●
●●

●

●

●
●

●● ●

●

● ●
●●

●
●

●●

●●

● ●

●●
● ●●

●

●●●●●
●

●

●

●

●
●●
●

●

●

●

● ●●

●● ●

●

●●●

●●

● ●

●●

●
●●

●●●●

●

●

●●

●● ●●● ●

●
●●

●●
●● ●

●

●

●
●

●●

● ●
●●●

●

● ●●
●

●●●

●●●●

●

●
● ● ●

●
●

●●●●●

●

●

●

●
●

●●●

●

●

●

●
●●

● ●●
●

●
●

●

●
●
●

●

●●
●

●●● ●●

●●
●●

●

●● ●
●

●●● ●●●

●

●

●

●
●

●●

●●●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●●

● ●

●

●● ●

●

●

●
●●

●●

●

●● ●● ●

●
●● ● ●●

●

●

● ●●

●
●●●

●●
●

●

●●

●
●

●

●● ●

● ●
●

● ●

●
●

●

●
●

●
●

●

●●●●
●●

●

●●
●

●

●

●●
●

●●●

●

●
●

● ●

●●● ●
●

●●●

●

●●● ●●
●●

● ●

●
●

●●

● ●

●
●

●

●

●

● ●● ●●●
●

●

●
● ●

●

●

●●

●

●●

●

●

●

●

●●

● ●●●
●●●

●●●
●●

● ●● ●
●

●

●
●

●●
●●●● ●

●

●●

●

●●

●

● ●
●●

●
● ●●

●●

●
●

●
●●

●

●●●
●●●

●
●

●

●

●
● ●●● ●●

●
●

●

● ●● ●

●
●

●

●

●

●

●

●
●●●
● ●●●

●

●●

●●

●
●

●
●●● ●

●●●

●

●●

●

●

● ●

●

●●

●
●●

●
●

●●

●

●●

●

●

●

● ●●

●
●

●

●

●
●

●●

●●●
●●●

●

●●●
●●

●
●●

●
●

● ●
●

●
●

●●

●●

●

●

●

●

● ● ●● ●

●

●

●●●
●

●● ●
● ●

● ●●●

●
●●●

●●

●

●●

●
●

● ●
●●

●●●● ● ●●

●

●

●●

●

●
●

●
●

● ●
●●● ●

●

●
●●
●

●

●

●

●

●●●●
●●

●

●●
●●

●

● ●
●● ●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●● ●

●
●

●

● ●

●● ●

●
●

●●
●

● ●●●
●

●

●

●●●
●

●

●

●
●●

●

●

●

●

● ●●●

●

●

●
●●● ● ●

●
●

● ●● ●●
●●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

● ● ●

●
● ●

●

●●

●

●
●

●●●

● ●

●

●

●
●

●
● ●

●●

● ●
●●●

●
●

●

●

●
●

●

●
●●

●

●
●●

●

●
●

●●

●

●●

● ●
●●

●

●●

●
●

●
●

●
●●●

● ●●●●
●

●
●

●

● ●●●

●

● ●● ●

●

●

●
●

●

●●

●

●●
●

●● ●

● ●

●
●

●

●

● ●
●

●
●

● ●

● ●●●●

●

●● ●

●

●

●
●

●

●●● ●●

●

●

●

● ●

●●●● ●●

●
●

●
●

●●
●●●

●

●
●

●

●●

●

●

●

●

●

● ●

● ●
●

●●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●
●●●

●
●

●●
● ●

●

●

●●●●

●

● ●

●
●●

●●

●

●●
● ●●

●●
●
●●

●
● ●

●
●

●●●●

●

●

● ●

●●
●

●●

● ●●

● ●
●●●

●
●●●

●

●●

●●●

●
●●

●●

●●●

●

●● ●●●●

●●
●● ●

●
● ●●

● ●

●
●

●
●●●

●●

●
●

●
●

●

●●●●
●

●
●●●●
●

● ●
● ●

●
●●●

●

● ●●

● ●●

●

●●

●
●

●
●

●●

●
●●

●

●●

●●●

●●
●●

●●

●
●

●●

●

●

●
●

● ●

●

●
● ●●

●
●

●●

● ●
●●

●

●●
●

●

●

●
●

●
● ●●

●
●●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●●

●
●●
●

●

●

●
●

●
●

●●●●
●

●
●

●

●
●●

●

●

●
●
● ●

● ●
●●●●

●● ●

● ●

●

● ●

●●

●
● ●

●●● ●

●

●
●

●

●

●

●●●

●●

●
●

●
●●

●

●

● ●

●

●●

●

●

●●

●●●

●

●
●

●●●

●

●

● ●

●

● ●●● ●

●●
●●●

●

●

● ●●

●● ● ●● ●
●

● ●

●

● ●

● ●●●● ● ●●●●●
●

● ●
●●

●

●●

●

●

●●

●

●

●●

●● ●
● ●●●

●●● ●

● ●

●●

●●

●

● ●●

●
●●

●● ●●●
●

●

●●
●●●

●

●●●

●

●●
●●●

●●

● ●●
●

●●

●●
●

●
● ●

● ●

●●
●●● ●

●

● ●

●

●●

●

● ●

● ●
● ●●

●

●
●●●●

● ●

● ●●

●

●●

●●

●●
●●

●

●
●

●
●

●● ● ●

● ●
●

●●

● ●● ●
● ●

●

●
●

●

●

●●●●

● ●

●●
●●●

●●

●
●

●
●

●●
●● ●

●

●

●

●

●●
●

●
● ●●●

●
●

●

●●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●
●

●

●●
●

● ●

●●

●

●

●●●●●●
●

● ●●

●

●●

●●●

●●
●

●

●
●

●

●● ●●
●

●
●

●

●

●

●●

●●

●
●

●
●

●
●

●

● ●

●

●● ●

●

● ●●●

● ●

●●
● ●

●

●

●●

●

●

●

●

●

●
●●● ● ● ●

●
●●

●
●

● ●● ●

●

●

●

●

●●

● ●●

●
●

●●● ●
● ●

●

●●

●●

● ●

●

●

●
●●

●
●●

●
●

●

●

●
●

●

●

●
●●

●
●●

●
●

●

●●

●
●

●●
●●

●
●

●●
●●

●
●●

● ●●

●●

●

●●

●●

●● ●●

●●

●
●●

●

●●

●
●●●

●
●

●

●●

●●

●
●

●
●

●●
●

●●

● ●

●● ●●
● ●●

●●

●
●

●
●●

●●

●

●●

●

●●
● ●●

●

●
●●

● ●●

●

●

● ●

●● ●

●
●

●
●● ●●●

●● ●

● ●●

●

●
●

●

●

●
●

●

● ●

●● ●
●

●
●

●
●●●●

●
● ●●●

●

●●
●

●

●●

●
●

● ●

●

●
●

●
●●

●● ●●
●●

●

●●

●● ●
●

●

●

● ●●●●

●
●

●
●● ●●

●

●●
●

●

●
●● ●● ●

●

●

● ●●

●●●

●
●● ●●●●

●●●

● ●
●● ●
● ●

●●

●

●

●●
●

●

●●

●
● ●
●●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●
●●

●

●

●●● ●●
●●

● ●●

●
●

●

●
●●

●

●

●

●●
●●●

●●

●●

●

●
●

●

●
● ●●

●

●●

●●
●

●

●

●

●●
●● ●

● ●
● ●

●

● ●

●

●●●

●●

●

●● ●

●
●●●●

●

● ●●
●

●●

●●●

●

●●

●●

●
●

●

●● ●
●●

●
●

●● ●
●

●

● ●●

●●

●

●

● ●

●●

●

●●

●● ● ●●

●

●

●

●●

● ●●●●

●
●

●

●● ● ●●
●

●●
● ●

●●

●

●●
●

●●
●●

●

●●

●●

●●

●

●

●●

●

●●

● ●

●●

●
●

●

● ●

●

● ●●●
●●

●

●
● ●

● ●●

●

●

● ●
●

●
●

● ●
●

●●

●●

●

●●● ●

●
●●●

●

●

● ●

●
●

●●
●●● ●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

● ●● ●
●●

●
●

●
●●

●
● ●

● ●

●

●●

●● ●
●

●
●

●

●● ●●●

●

●

●

●

●●●

●
● ●

●

●

●●
●

●●

● ●

●●

●

●
●

●●●

●●●
●

●

● ●
●

●●

●

●●

●●

●●

●

●
●●

●●

●●

●

●●●●

●

●

●●●

●
●

●●●

●●●

●●● ●●

●●

●●

●

●

●

●●
● ●●

●

● ●

●

●●●

●

●● ●

●●
●

●

●

●

●●

● ●
●●
●

●
● ●

●
●

●

●

●

●●

●

●

●

●

●●

●● ●●
● ●●●

●
●●

●
●

●●●

●● ●

● ●

●

●

●

●

●● ● ●●
●

●

●●
●●

●

●●
●

●

●

●

● ●

●● ●●

●

● ●
●●●●

● ●●

●
●
●

●

●
●

●
●

●

●
● ●●●

●

●●●●●

●●
●● ●●

●●

●●
●●

●

●

●

●●

●

●●
●

●

●

●●●●●

●

●

●

●●●

●
●●●● ●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●● ●●●●
●● ●

●

●

● ●

● ●

● ●●
●

● ●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●
● ●

●
●●

●

●●●

●

● ●●

●
● ●● ●

●
●●

●●●●

● ●

● ●

●●

●
●●●

●●●●

● ●

●

●

●

●

●
●

●●

● ●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●●
●

●

●●
●

●

●

●

●●●

●●

●

●

●

●

● ●●

●

●
●●●

● ●●●●

●

●●

●●● ●●●● ●●
● ●

●
●

●
●

●

●

●●
●●

● ● ●

● ●
●●●

●

●
●

●

●

●

●●
●

●

●

●●

●

●●

●
●●

●
●●

●
●●

●

●
●

●

●●

●

●

●●●●●●● ●

●
●●

●

●

●
●

●●
●

●

● ●

●

●

●●

●

●
●

● ● ●●●
●

●●
● ●

●
●● ●●

●
●

●

●

●● ●●

●

●

●●

●

●● ● ●●
●

●

●●
●

●
●●●

●

●

●●● ● ●●●

●
●●● ●

●●
●● ●●●

● ●●●●

●●
●

●

●
● ●

●● ●

●●

●

●

●

●
●● ●

●
●

●

●

●

●●●

●
●

● ●

●

●●

● ●●
●

●

●
●●

●
● ●

●

●

●●

●●●●● ●
●●●●

●●
●●

●●
●

●
●●●●
●

● ●

●●

●

●●●

●●● ●●●

●

●
●

●

● ●●●

●●

●

●●

●●●

●●

●●●●
●

●●● ●

●●●●

●

●

●●

●

●●

●

●

● ●●

●

●

●
●

●

●
●

●●

● ●

●

●

●

●

●

●

●
●●●

●

● ●

●●

●
●

●

●● ●
●

●
●

●

●

●

●●

●

●●●

●●
●●
●●

●

●●
●

●

●

● ●

●

●● ●

●

●
● ●

●

●

●
●●●

●●●
●

●
●

●

● ●
●

●

●●●
●

●●

●●●●

●

●
●

●

●

●
●●

●

●●
● ●●

● ●●

● ●
●●

●

●
●

●●●●
●●

●
● ● ●●
●●

● ●

●

●

●

●

● ●●

●

●
●

●

●

●●● ●
●

●●● ●

●●
●

●

●

●●

●

●

●

●●●●

●

●● ●

●

●●

● ●
●●

●●
●● ●

●●
●

●

●
●

●● ●
● ●

●

●

●

●

●●
●●

●

●

●
●

●●

●

●

●
●

●●●● ●●● ●

●
●

●●

● ●

●

●

●

●

●

●
●

●
●

●●
●●●

●

●

●●

●
●

●
●

●
● ●●

●

●

●

●●

●●

●

●●●

●

● ●

●
●

●●

●●

●●

●●

●

●
●

● ●

●
● ●

●●
●

●

●●
●

●
●

● ●● ●

●
●

●●

●

●●

● ●●● ●●●
●

● ●

●

●

●
●

●

●
●

●

●

●●

●●
●●

●

●●●

●

●●● ●● ●

●●
●

●●

●

● ●● ●●

● ●
●

●

●

●
●

●●

●
●

●
●

● ●● ●

●●

●●

●
●●●

●

●●

●●

●

●●
●●

●● ●

●
●

●
●●

●●

●

●

●

●

●
● ●●

●
●

●●

●

●

●● ●●●●● ●

●
●

●
●

●

●

●

● ●

●

●●●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●

●●
●

●

●

●

●
●

●●●

●●

●

●●

●

●●●

●
●

●

●
●●

●●

●
●●

●
●●

●●

●
●

●

●
●

●
●

●
●●

● ●
●

●●

●

●

●
●● ● ●●

● ●
●●● ●●

●
●

●

●
●
●

●●●

●

●● ●●●

●
●

●
●

●

●

●●

●

●

●●●

●

●

●● ●

●

●●

●
●

●●
●

●●

●

●

●
●●●

●●●

● ●
●

●●●

●

●● ●●●● ●
●

●●

●

●

●
●

●

●

●

● ●
●●

●
● ●

●●
●

●●

●

● ●●●
●●

●

●

●●●

●

●

●

●

●● ●●
●

●

●
●

●●
●

●●
●

●

●

●

●●
●

●

●●

● ●

●
●

●
●

●
●

●

●●

●
●●

● ●

● ●

●
●

●

●

●

● ●

●
●

●
●

●

●●●

●●●●●
● ●

●●

●

●

●

●

● ●

●
●

●

●

●● ●

●

●●

●

●

●

●

●●● ●●●
●●

●

●

●

●
●●

●●

●●
●

●

●

●●

●

● ●
●

●

●

●●

●
●●

●

●

●●●

●

●

●

●●●

●
●

●
●

●●

●

●

●●
●

●

●
●

●

●

●
●

● ●

● ●

●●

●●
●

● ●

●

●

●●●

●
●

●
●

●

● ●

●

●●

●●●
●

●

●●●●

●

●
●● ●●

●
●●●

●●
● ●●

●

●

●

●

●● ●
●

●

●●

●

●
●●

●

●
●
●● ●●

●●

●● ●●
●

●●● ●●● ●
●

●

●●

●

●

●
●

●●
● ●

●
●

●
●●●

●●

●●●●●

● ●
●●●

●
●

●

●●
●

●

● ●
●

● ●
●

●

●
●

●●●●
●

●

●

●
●●

● ●
● ●

●
●●

●
●

●

●

●

● ●

●●●●

●

●
●

●

●

● ●
●

●

●

●

●● ●

●

●●
●

●●

●●
●●

● ●

●

●●

●●●

●●
●●

●

●●
●

● ●

●
●

●

●

●

●●●
●

●●
●●

● ●●

●

●

●

●● ●●

●●●

●● ●●●
● ●

●

●

●

●

●

●●● ●
●●

●
●

●●●
●●

●●
●

●

●
●

●●

●

●

● ●

●
●

●●
●

●

●

●

●●

●

●
●

●
●

●
●

●●● ●
●

●

●

●●

●

●
●

●●

●●

●

● ●●●
● ●●●

●
●

●●

●
●

●

●● ● ●●
●● ●

●●●

●

●

●

●
●

●

●

●

●

●
●

●●

● ●
●

●

●
●

●

●
●

●

●●

●●
●●

●● ●

●

●
●

●

●

●●

●

●
●

● ●●

●

● ●

●

●
● ● ●

●

●

●
● ●

●

●

●

●

●●
●

● ●

●

●

●
●●

●
●

●●

●●● ●

●

●● ● ●

● ●●
●

●

● ●

● ●
●

●

●
● ●●

●

●
●

●
●●

●●●
●

●
●●

●
●

● ●

● ●

●
●

●
●

●● ●●●

●●

●

●
●

●

●

●
●

●
●● ●

●

●
●●

●

●

●●

●

●
●

●

●

●●●
●●●●

●●

●

●●●●●

●

●●

●
● ●●

●

● ●

●●

●
●

● ●

●●

●
●

●

●

●
●●●●

●
●

●

● ●●
●

●●

●

●●●

● ●

● ● ●
●

●
● ●

●

●

●●

● ●

●

●● ●

●
● ● ●

●●
●●

●
● ● ●

●● ●●●

●

●

● ●

●

●

●

●

●●
●●

●

●●
●● ●

●
●

●●
●●

●
●●

●

●

●●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●●
●

●●●

●
●●

●

●●

●
●● ●●

●●

●
●

●

●

●●
● ●

●

●
●●

●
●

●● ●
●●

●
●

●

●

●●
●●
●

●
●●● ●●

●
●

● ●

●

● ●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●
●

●●●
●

●
● ●

●●

●

● ●

●
●● ●

●●●●
● ●

● ●

●●

●

●
● ●

●

● ●●● ● ●

●

●

●

●●
●

●
●● ●●

●

●

●

●

●
●

●●
●

●●
●●

●●
●

●
●

● ●●● ●
●● ●

●

●●

●●

●●

●●

●

●
●

●●●●
●● ●●●●

●

●

●●●
● ● ●●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●● ●
●

●●●
●●

●

●●

●
●

●
●

●

●

●●●
●●

●

●●
● ●●

●
●

●

●
●

●
●●●

●

●

●●

●

●●
●

●

● ●

●

●

●● ●

●

●

●
●

●
●

●● ●

●

● ●

●

●

●
●

●

●

●
●●●

●
● ●

●●

●

●●
●

●●

● ● ●
●

●
●●

●
●

●●
●

●●●●●
● ●

●
● ●

●
●

●

● ●

●●

●

●
●

●
●

●● ●
●●

● ●●

●

●●

●

●
●

●
●

●●
●

● ● ●
●● ●●

●●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

● ●
●

●

● ●

●● ●

●
●

●
● ●●

●
●

●●
●

●

●

●

●

●●

●●

●
●

●
●

●

●●

●●

●●●●

●●

●
●

●●

● ●
●●

●●

●
●●

●●

●

●

●

●

●●

●●
●● ●●

●

●

●

●●

● ●● ●

●

●

● ●●

●

●

●● ●

●
● ●

● ●

●
● ●

●

●
●

●
●● ●

●
● ●

● ●

●

●

●
●

●●●
● ●

●

●●
● ●

●

●
●

● ●● ● ●

●●
●

●●

●
●●

●●
●

●

●

●
●● ●

●

●●
●

●

●

●

●

●

●

● ●●
●

●
●

●
●

●
●

●●●

●

●
●

●

●●●●
● ●●

●

●

● ● ●
●

● ●

●
●

●
●●

●

●●

●●

●●

●

●
●

●
●

● ●
● ●

● ●

●
●

●
●

●
●●

●●●●

●

●
●

●

●
●●

●●

●
●●

●
● ●●

●
●

●
●

●

●

●

●
●●●

●●
●

●
●

●
●

●●

● ●

●●

● ●

●

●
●

● ●●

●● ●
●●

●●
●
●

●

●

●

●● ●
●●●

●●

●●● ●
●

●

●● ●

●

●●

●

●●
●

●

●

●

●

●●

●
●●

● ●

●● ●
●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

●●
●● ● ●

●

●●
●

●●

●

● ●

●●
●

●

●●
●●

●

● ●
●

●
●●

●●

●

●

●

●● ●

●

●

●●

●

●● ● ●●

●
●● ●

●

●
●

●●●
●

●
●

●

●

●

●●
●

●

●●

●

●

●●● ●

● ●●

●
●●

●

●

●

●●

●

● ●
●

●
● ●●●

●
●

●●● ●

●
●●

●
●

●

● ●●

●●●●● ●

●
●

●●
● ●
●

●
●

●
●

●

●●

●
●●● ●

●

●

●●

●
● ●

●● ●
●

●

●

●

●●
●

●
● ●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●
●●●

●●

● ●
●

●
●

●

●●

●
●

● ●●

●● ●
●

●●●●

●

●
●●●

●●
●

●●

●

●●
●

●
● ●

●●
●

●

●

●

●
●

●

●●
●●

●●
●

●
●●

●

●
●

● ●

●

●
●

●
●

●
●● ●

●
●

● ●
●●

●

●

●

●●

●
●● ●●

●

●

●●

● ●●

●

●

●

●●
●

● ●

● ●

●

●
● ●●

●

●

●

●

●●●
●

●●

●

●

● ●
●

●

● ●●

●

●

●

●

●

●● ●
●

●
●●

●

●

●

●●
● ●

● ●●

●

●●●

●

●●

● ●●

●●

●

●●

●●

●

●●
● ●

●

●

● ● ●●

●
●●

●● ●

●
●

●

●

●●
●

●

● ● ●

●
●

●

●
●

● ●

●●

●
●●

●
●

●

●●
●

●●
● ●

●● ●●●

●

●●

●● ●●

●

●

●

● ●● ●

● ●●

●
●

●

●● ● ●

●
●●●

●

●

●●

●●

●●●●● ●
●

●●
●

●

●
● ●●●

●●●
●

●

●●
●●

●
●

●●●
●

●

●
●●

●

● ●

● ●

●

●
●

●

●

●● ●
●●

●

● ●● ●

●●

● ●
●●

●

●

●●

●●
●●●

●

●

●
●

●●

● ●

● ●●

●
●●

●●

●
●

●

● ●

●

●
● ●

●● ●
●

● ●●● ●●● ●
● ●

●
●●

●

●●
●

●●

●●

●

● ●

●●●

●

●

●

●

●
●●

●

●●
●●

●

●

●

●

●

●
●

●

● ●●●

●
● ●●

●●

●●● ●

●
●

●

●●
●

●
●

●●●
●

●●

●

●
●●● ●

●
●

●

●

●
●

●
●

● ●

●
●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●

● ●●
●

●
●● ●

●●●
●

●●
●

●

●●●●

●●

●

●

●●

●
●●

●

●
●
●

●
●

●

●
●

●●● ●
●

●

●

●

●●

●

●
●

●●

●●

● ●

●
●

●

●
●

●
●

●●●●●●● ●
●

●●● ●● ●
● ●

●
● ●

●
● ●

●
●●●

● ● ●

● ●
●●

●
● ● ●●●

●

●

●

● ●

●●

●

●

●

● ● ●●
● ●●

●● ●

●● ●

●

● ●

● ●

●

●
●

●

●●●

●
●

●

●
●●

●● ●● ●
●

●●

●

●

●●

●

●
●●●

●●●

●● ●

●

●

●

●
●●

●
●

●●

●
●

●●

●●●
●

●

●●
●

●

●●

●

●

●

●
●●

●

●
●

● ●

●●

●
●

●●
●

●●

●

●
●

●●●

●●

●
● ●

●● ●●

●

●
●●

●

●● ●
●●

●
●

●

●●● ●●

●●

●

●

●●● ●

●

●

● ●
●●

●

●

●

●●
●●

●

● ●

●●●

●●
●

●

●

●●

●

●

● ●●
●

●

●

●
●

●●

●

●

●

●●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●●
●●

●
●

●

●

●
●

●●
●

●●

●●

●
●

●

●

●

●

●

●●●

●●

●

●

●●

●●

●
●

●
●●

●
●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●

●●

●
●●

●

●

●

● ●
●

●●●● ●

●

●●

●

●

●
●

●

●●
●

●●●

●

●

●●
●

●●●● ● ●

●
●

●●●

●●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●

●●●

●●
●

●●

●●

●

● ●●
●

●

●

●
●

●

●●● ●

●

●
●

●
●●

●

●

●
●

●
●

●

●●

● ●

●

●

●

●

●●

●

●

●●

●●

●
●

● ●●
●●

● ●

●
●●

●● ●

●●●
● ●●

●●

●
● ●

●
●●

●

●

●

● ●●
●●

●
●●

●

●
●

●
●●●

●●

●
●

●

● ●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●●

●
● ●●

●
● ●

●
● ● ●●●

●●

● ●

●
● ●

●

● ●● ●
●●

●● ●

● ●

● ●

●

● ●
●

●

●

● ●●

●
●●●●

●

●

●●●●
●●

●

●●●
● ●

●●● ●●
●●

●●

●
● ●●

●

●●●

●

●

●●

●

●

●

● ●

●

●

●

●

●
● ●●

●

●●
●

●

●
●

●●●●

●
●

●

●●
●●●

●●

●

●●

●
● ●

●
●●

●●● ●

●●●

●

●

● ● ●
●

●

●

● ●

●●

●●

●

●
●

●

●●●●

●

●

●
●

● ●●
●

● ●
●●

●

●

●
●

●

●
●

●

●

●
●
●●

●●●

●●

●

●
●

●●

●●

●
●

●●●

●● ●

●● ●

●
● ●●●●

●
●

●● ●

●

●

●
●●

●
●●

●
●●●

●

●

●

●●

●
●

●

●
●
●

●

●

● ●●

●

●
●

● ●
●

●

●●

●●
●

● ●● ●
●●

●
●

●
●

●

●

● ●

●

● ● ●

●

●
●

● ●

●●

●
●●

●●

●●

●

●
●●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●●

●
● ●

● ●●●● ● ●

● ●
●

● ●

●
●●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
●

●●
●

●

●
●

●
● ●

●

●
●

●

●

●● ●
● ●

●
●

● ●
●●

●●

●

●

●

●

● ●●

●

●●●●
●

●●
●

●

●

●

●

●

●

●

●●●

●
●●

●●●

●●● ●
●

●

●●

●

●●
●

●

●●

●
●

●●
●●

●●

●
●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

● ●
● ●

●●
●

●●

● ●

●

●● ●●

●●

●●

●

●

●

●
●

●
●●●

●●

●● ●
●

●

● ●

●

●

●●

●●●
●

●

●
●●

● ●
●

●● ●
●

●

●●
●

●
●

● ●

●

●
●●●

●
●

●●●

●●
●●● ●

●

●
●● ●●●

●●
●

●

●

●●

● ●●
●

●● ●

●

●

●
●

●
●

●
●●

●
●

●● ●●
●

●
●

●

●●
●●

●

●

●●

●
●

●

●

●
●

● ● ●●

●● ●●●
●

●● ●

●
●

●
●

●

●

●●●

●
●

●

●

●

●●●
●

●

●●

●

●

●

●
●

●
●● ●●

●

●
●

●●
●

●●
●

●

●

● ●

●●

●●

●

●
●

●
●●●

●

●

●

●●
●

●

●

●

●● ● ●

●●

●

●

●

●●●

●●

●●

●●

●

●
●

●

● ●
●

●●●

●
●

●

●
●●

●● ●●

●
●●●●

●

●

●
●●

●

● ●●
●

●●

●

●●● ●●

●
● ●

●
●

●●
●

●
●●●

●
● ●●

●

●●

●●
●

●●

●
● ●●● ●●

●

● ●

●
●

●

●

●●
●●●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●

●● ●
●●●

●
●

●
●●

●●●

● ●●

● ●
●

●

●

●

●●
●

● ●● ●

●
●

●

●

●

●

●

●

●

●●

●
●

●
● ● ●

●

●

●
●

●●

●

●

●

●●
●

●

●● ●

●

●
●●

●
●

●

● ●

● ●
● ●

●● ●●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●
●

●

● ●

●
●●

●
●

●

●●●

●
● ●●

●●●

●
●●

●

●

●

●

●

● ●●
●

● ●
● ●● ●

● ●●
●

●

●

●●

●
●●

●
●

●
●

●
●

●

●
● ●

●

●●

● ●

● ●
●

●●●

●●

●●
●

● ●●

●

● ●

●

●●

●

●●

●
●●

●
●

● ●●●●
●

●

●

●

●●●●

●●●
●

●

●
●

●

●●● ●●●

●
●
●

●

●

●

●

● ●

● ●●

●

●
●

●

●●

●
●

●

●

●

●

●●

●●●

●●

●

●

●

●

●● ● ●

●● ●●

●●

●

●
●

●
●

●● ●
●●●●●●

●
●

●●●●
●

●

●●

●

●●
●

●
●

●
●

●

●●●

●
●

●

●

●

●
●●

●●●●●
●

●

●

●

●

●

●

●

●●●
●

●
●

●●
●

●●

● ●
●

●

●

●
●

●

●

●
● ●

●
●

●● ●

●
●

●

●

● ●
●

●

●

● ●

● ●

●
●

●

●
●

●

● ●●●
●●

●

●

● ●

●
● ●

●●

● ●

●

●

●●
●

●

●●
●

●

●

●
●● ●●

●
●

●

●●

●● ●●
●

● ●
●

●
●

●
●●

●

●●
●

●

●
●

●

●● ●
●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
● ●

●

● ●

●

●

●●

●

●

●
●

●

● ●●

●

●

●
● ●●●

●

●
●

●●

●●

● ● ●
●

●●

●
●

●

●●● ●

●●● ●
●●

● ● ●●
● ●

●●
●

●
● ●

●●

●

●

● ●

●

●

●

●
● ●●

● ●●●
●

● ●

●
●●●

●

●

● ●
●

●●●●

●

●

●
●●

●

●●●
●●

●
●●

●
● ●

●

●

●●

●

●

●

●●
●

●
●

●
●

● ●
●

●

●

●

● ● ●

●

●
●

●

●

●

●
●

●
●● ●●● ●

● ● ●
●

●

●

● ●●

●● ●●● ●●

●●

● ●

●

●●

●
●● ●

●

●●

●●●●

●●

●
●

● ●● ●

● ●●

● ●
●

●
●

●

●

●●

●

●●

●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●
● ●● ●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●● ●

●

●●

●
●

●
●

●

●

●
●

●●

●●

●

●

●

●●

●●●

●

●

●
●

●

●●●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●
●

●●
●

●

● ●
●●

●●● ●

●

●

●

●

● ●

● ●

●
●

●

●●
●

●● ●
●

●

●

● ●
●

●

●

●
● ●●

●
●

●●

● ●

●● ●●

●●

●

●● ●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

● ●●

●

● ●● ●●●

●

●

●
●● ●

●●

●

●

●

● ● ●●●●
●●

●
●

●
●

●

●●

●

●

●
●●
●●

●●●● ●
●

●

●

●●●

●

●

●●
●●

●

●

●

●
●

●
● ●

●●●●

● ●● ●●

●
●

●

●

●

●
●

●

●
● ●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●●
●●

●

●

●

● ●

●●

●●
●

●●

●

●
●

● ●

●●

●●
●

●

●
●●

●

●
●● ●

●
●

●

●

●●

●

●

●

● ●
●

●

●●

●●●

● ●●

●

● ●

●● ●
●

● ●

●
●

●

●
●●

●
●

●

● ●
● ●

●

●

●
●●

●

● ●

●

●
●

●
● ●

●

●
●

●●

●

●●
●

●●
●

●
●

●

●

●

●

●

●●
● ●●●

●

●

●

●

●

●●

●●●●
●● ●●

●

● ●

●

●

●
●

●
●●

●

● ●
●●● ●●

●●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●●

●
●●

●●
●● ●

● ●

●●

●●●
●

●

●
● ●

● ●●

●
●

● ●

●●

●

● ●●
●

●●●

●● ●
●

●
●

●
●

● ●

●●●●
●●

●

●
● ●●

●
●

●●
●● ●

●

●
●

● ●●

●●● ● ● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●●

●
●

●

●

●

●

●●
●

●

●
●

●

●●●●●●

●

●● ●●●

● ●●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●

●● ●

●
●● ●●

●●● ●

●
●

●●
●

● ●●

● ●

●●

●
●

●
●

●
●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●● ●●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●●

●

●

●

●●

●●

●

●

●
●

● ●●

●

●
●●

●

●

●●●
●

●

●

●
●

●

●

●

●
●

●●●●
●

●

●
● ●

●

●
●

● ●

●● ●

●
●

●
●

●

●
●●●

●● ●
●

●●

●●

●●●
●●●

●
●

●

● ●

●

●●

●
●

● ●

●
●●

●
●

●●●
●

●
●

●●
●

●
●

●● ●
●

●●

●

●●●●
●

●

●●
●

●

●
●

●●
●

●

●
●

●

●

●
●

●●

●
●●

●

●

●

●

●
●

●●

●

●
●

●
●

●● ●●
●

●

●●
●●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●● ●
●

●
●

● ● ●

● ●

●●●● ●

●

●

●
●●●

●
●

●

●

●●●

●●
●●

● ●
●

●

●●
●

●●
●

● ●
●

●
●

●

●

●

●
●

●

●

●

●● ●●

●

●●

●
●●●

●●

●
●
● ●

●

●
●

●

●

●

●

●

●
●●

●●
●

● ●

●●

●●●

● ●

●●
●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●● ●
●

●

●● ●

●

●

●
●

●

●

●
●●

●● ● ●●

●
●

●

●

●
●● ●● ●●

●●

●●
●

●●

●
● ●

●

●
●●

●●

●

●
●

●

●

●●●

●
●

●

●●
●● ●

●● ●

● ●
●

●

●
●

● ●

●
●

●

●●

●

●
●

●

●

●
●●

●
●●

●
●●

●

●

●

●

●

●●

●

●

●

●●
●●

●
●

● ●

●

●

● ●
● ●●

●

●●

●
●

●

●●

●

●

●
●●

●
●

●

●●

●

●
● ●

●

●●

●

●
●

● ● ●

●

●●● ●

●
●

●

●

●

●
● ● ●●●

●

●

●
●●

●

●●
● ●

●

●● ●

●
●

●
●

●

●●
● ●

●
●

●

●●

● ●
●

●

●
●●

●
●

●

●
●●

●

●●●

●
● ● ●

●●

●●
●●●

●

●

●●
●●

●

●●●●

●

●

●

●● ●

●

●

●

●● ●

●●
●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●●

●

● ●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●

●
●

● ●

● ●●

●●
●●

● ●●
●

●

●

●●

●

●

●

●
●

●

●

●

●●●

● ●

●
●

●

●
●
●●●

●●

●

●

●
●

●
●

●●
●

●●

●

●

●
●

●

● ●

●

●●● ●
●

●●
●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●
●

●

●
●

●●

●

●●●

●
●

●
●

●

●●
● ● ●

●

●

●
●●

●
●

● ●●

●
●● ● ●

●●●
●

●

●
●

● ●
●

●

●

●

● ●●
● ●

●●

●
●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●

●

●●●
●

●●●

●●

●

●

● ●● ●

●●
●

●

●

●

●

● ●
●●

●
●

●

●
●

●

●
●●

●●
●●

●

●

●
●

● ●

●

●

●
● ●

●
●

●

●

●

●

●● ●
●●

●
●●

●

●

●●

●

●
●

●
● ●

●

●

●

●●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●
●

●

●
●

●●

●●

●
●

● ●●

● ●
●●

●● ●
●

● ●
●

● ●●
●●

●
●

●●

●

●

●

●

●●

●

●●●

●●● ●
●

●

● ●● ●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●● ● ●●

●●●

●

●

●●

●

●● ●
●
●

●●

●
● ●●

● ●

●

●

●

●
●

●

●

●

●●
●

● ●

● ●●

●
●●

●

●

●

●

● ●●

●

●
●● ●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●
●

●●

●●

● ●●
●●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●●
●

●

●

●●

●

●● ●●

●

●
●

●

●

●

● ●
●●

●

●
●

●
●●●

●

●

●

●

●● ●

●

●

●●

●

●

●●● ●

● ●●

●
●

●

●

●

●●

●

● ●
●● ●

●

●
●

●

●

●● ●●

●
●● ●●

●●●
●

●
●

● ●

●●

●

●
●

●

●●●

●●

●
● ●

●

●

●●
●

●

●●

●

●●

●●

●
●

●

●●

●
●

●●

●

● ●●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●
●●●

● ● ●

● ●

●
●●

●

●
●

●● ●
●

● ●●
●●●●●

●

●

●
●

● ●

●

●

●

●

●●●
●

●
●●

●
● ●

●

●

●●●

●
●

●
●●

●

● ●
●●●●

●

●

●●
●

● ●●

●

●

●

●
●

●●

●
●●

●
● ●

●
●

●
●●

●

●

● ●●

●

●

●
●

●

●●

●●●● ●
● ●

●

●

●
● ●

●●

●
●

●

●●
●

●

● ●●

● ●

● ●
● ●

●

●

●

●
●

●● ●
●

●

●

●●

●
●

●

●
●

●

●

●
●

● ● ●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●

●●●

●
●

●

●

●

●
●●

● ●
●

●

●
●●

●

●

●●●

●● ●
●

●

●

●

●

●

●

●● ●

●

●
●● ●

●●

●
●

● ●

●●●
●

●

●

●
●

●

●
●

●

●
●●●●● ●

●
●

●

●

●●

●

●● ●
●

●
●

●

●

● ●
●●

● ●

●

●
●●●

●

●

●

●

●

●

●●
●

●

●

●●
●

● ●
● ●

●

●

●
●

●

●●●●

●●
●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●
●

●● ●
●

●
●

●

●
●

● ●
●●

●●

●
●

●●

●●
●

●
●

●

●
●

●

●
●

●
●● ● ●

●●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●●
● ●●

●●

● ●●
●● ●

●

●
●

●

●
●

●

●
● ●

●

●

●● ●
●

● ●

●

●

●
●

●
●

●

●

●
●●●

●

●

●●
●

●

●

●●
●

● ●●

● ●●
●

●

●
●●

●

● ●●

●
● ●

●
●

●

●

●●●
●

● ●
● ●

●
●

●● ●

●
●

●

●●

●

●

●● ●

●

●

●

●●●●

●

●

●
●

●

●

●●●
●

● ●●●●●●
●●

●

●
●

●
●●

●

●●

●●
●●

●
●
●●

●●●
●

●

●

●

●

●

●
●

● ●

●

● ●
●

●
●●

●

●

●

●●
● ●●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●
●●

●●

●

●
●

●
● ●

●
●

●
●

●●

●

●
●

●

●

●

●

● ●

●●

● ●

●●

●
●

●

●

●
●

●
● ●

●

●

●
●●

● ●
●●

●●
●
● ●

●
●

●●
●

● ●
● ●

●
●●●

● ●
●

●●
●

●

●

●
●

●
●

●
●● ●

●●
●●

●

● ●

●●

●

●
●

●
●

●
● ●

●

●

●● ●
●

●● ●

●● ●●●

●

●

● ●
●

●

● ● ●

●

●● ●

●●
●

●

● ●
●

●●● ●
●

●

●
●

●
●●

●

●●

● ●
●

●●

●
●●

●
●

●

●
●●

●
●

●●

●●

●●

● ● ●●●

●●

●
●

●

●●

●

●

●

●

●●
●●●

●
●

●

●

●

●

●

● ●

●
●

● ●● ●

●●
●

●
●●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●
● ●

●

●

●

●

●

●●

●●

●●
●

● ● ●

●
● ●

● ● ●
●

● ●

● ●

●● ●

●

●

●
●

●

●
●●

●●

●
●

●
●

●

● ●

●● ●●
●●●

● ●

●●

●

●

● ●

● ●
●●●

●

●

●

● ●

●● ●
●

● ●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
● ●

●
●●

●
●

●

●● ●
● ●● ●

●

●

●

●

●
●● ●●

●

●
●

●

●

●●●

●●
●●

● ●

●

● ● ●
●

●
●

● ●

●

●

●

● ● ●●
●

●

●
●

●

●●

●

●● ●●

●

●
●

●
●● ●

●

●

●

●●

●

●●

●

●

●

●●●●
●

●●

● ●

●

●

●●●

●

●
●●

●

●
●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

● ●●●
● ●●

●

● ●
●●

●
●

● ●●
●

●●●

●●
●

●

●

●
●

●
●

●

●

●●

●●
●

●

●
●

●

●
●

●

●
●

● ●
●●

●

●

●

●

●

●● ●
●

●
● ●

●

●●
●

●

●

●

●
●●

●

●

●●

●
● ● ●

●● ●
●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

● ●
●

●

●●

●

●

●●

●

●
●

●●
●

●
●

●

●●
●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

● ●●●

●

●

●

●●

●

●
● ●

●

●●

●

●
●

●
●
●

●

●● ●

●● ●
●
●

●

●

●●

●●

● ● ●●● ●

●

●●

●

●

●

●●●

●● ●

●

●●

●●

●●●

●

●

● ●

● ●

●
●

●

● ●●

● ●
●

●●

● ●
●

●

●●

●● ●●

●●

●
●
●

●

● ●

●
●

●

●
●

●

● ●
●●

●●●

● ● ●

●

●● ●
●●● ●●●●

●●

●●

●
●

●

●
●

●● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●

● ●

●

●

●
●

●

●
●

●

●

●●
●

●●

●

●
● ●●

●●●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●●
●●

●
● ●

●

● ●
●

●
●●

●
● ●

●
●

●●

●● ●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●● ●

●

●

●

●

● ●
●

●

●

●
● ●

●
●●●

●
●●

●

●

●●
●

●

●

●
●●

●

●

●

●
● ●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●●●

●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●● ●
●● ●

●
●

●

● ●

●●
●●

●●
● ●

●

●

●●

●
●

●●

●●

●

●

●

●● ●

●●

●
●

●

●

● ●
●

● ●

●

●

● ●

●●●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●
● ●

●

●

●

● ●●
● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●●

●
●

●

●

●

●

● ●

● ●

●

●

●
● ●

●
●

●●●
●

●

●● ●

●

●
●●

● ●
●

●

●
●

●

●
●

●
●

●● ●

●

●

●
●

● ●

●●●

● ●

●●

●

●

●
● ●

●
●
●

●● ●
●

●●

●

●
●●

●

●

●

● ●
● ●

●

●
●

● ●

●
●

●
●

●

●●

● ●

●

●
●●

●

●

● ●

●
●

● ●

●

●

●●●●
●

●

●●

●

●

●

● ●

●● ● ●●

●

●

●●
●

●

●
● ●

●●
●

●

●

● ●

●

●

●
● ●

●●

● ● ●
●

●
●● ●

●

●
●

●

●
●

●
● ●

●

●

●

●

●●

●

●
●

● ●

●

●●

●

●● ●

●● ●●

●
●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●● ●

●
●●

●
●

●

● ●●
●

●
●

●

●

●

●
● ●

●

●●● ●
●

● ●●

●

●●
●

●

●

●

●

●

●

● ●

●
●●

●

● ●

●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●
●●

●

●●

●

●

● ●
●

●●

●

●
●●

●●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●

●

● ●

●
●

●

●

●●
●

● ●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

● ●

●●

●

●

●

●●
●●●

●

●
●

●

●

●

●●

●● ●

●● ●

●

●

●

● ● ●

●

●
●● ●

●●●

●
●

●

●

●● ●
●

●
●

●

●●

●

●

●

● ●
●●

● ●●
●

●
●

●

●
●

●●
●

●

●●
●

● ●
●

●

●

● ●

●

●

●

●●

●
●

●●●
● ●

●
●●

●

●

●
●

●

●
●● ●

●●

●
● ●●

●
●

●

●

●
● ●●

● ●

●● ●●

●

●●

●
● ●

●

●

●
●

●

●
●

●
● ●●●

● ●

●

●

● ●

●

●

●

● ●

● ●

●

●
●
●

●

●

● ●●

●●
●

●

●

●

●●
●

●

● ●
●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●
●

●

●●●● ●

●
●

●●
●

● ●

● ●
●

●
●

●
●

●

●

●

● ●
●

●● ●
●

●

●

●
●

●

● ●

●
●●

●
● ● ●

●

● ● ●

●

●●

●

●

●● ●
●

●●
●

●●
● ●

●● ●

●

●●
●

●● ●●●●

●

●●●

●●

●
●●● ●

●

●
●

●

●

● ●●● ●
● ●

●

●

●

●

●●

●●
●

●●
●

●
●

●

●
●

●●

● ●

●●●
● ●●

●●●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●
●●

●●●●

●● ●●●

●
●

●
●

●

●

●

●

●

●●●●
●

●

●
●●

●

● ●

●

●

●
●●

●

●

●●
●

●

● ●
● ●

●
●

●

●

●●

●

●
●

●
● ●

●
●

●

●
●●

●

●●●
●

●● ●
●

●

●

●
●

●

●
●

●●

●●●

●

●

●●
● ●

●

●

●

●

●●

●

●●

● ●

●
●

●

●
●

●
●

●

●● ●

●● ●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●●

●
●

●●

●

●
●

●

●●
●

●

●
●

●
●

●

●
●

● ●

●●
● ●

●

●●

●
●●

●●

● ●

● ●
●

● ●● ●
●● ●

●

●

● ●
●

● ●●

●
●

●●
●●

●

●

●●

●

●

● ●
●

●

●●
● ●●●

●

●

●

●

●●●

●

●

●

●

● ●
● ●

●●

●

●●

●

●●●
●

●●●

●

●●

●

●

●●

●
● ●●

●

●● ●

●●

●

● ●
●

●● ●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●●

●

●

● ●

●

●
● ●●

● ●
●

● ●
●●●

●

●

●●

●

●
●

●

●●

●●

●

●
●

●
●

●●

●●●
●

●

●

●
●
●

●

●

●

●
●

●●
●
● ●●

●●

●●

●
●●
●

●

●

●
●

● ●
● ●●

●●

● ●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
● ●

●

●●
●

●

●

●●

●

● ●

●

●●

●

●

●● ●

●

●●

●

●
●

●

●

● ●
● ● ●

●
●●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

● ● ●●

●
●

●●●

●
●

●
●● ●

●

●

●

●
●

●
●●

●
●●

●
●

●

●

●

● ● ●

●

●
●

●

●

●●

● ●

●

●
●

● ● ●●

●●

●

●

●
●

●

●●
● ●●

●

●
●

●
●●

●

●●
●

●●

●●

●
●

●● ● ●

●

● ●
●●

● ●
●

●
●

● ● ●
●

●●

●

●
●

● ●

●
●

●
● ●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●●

●

● ● ●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●●

●

●● ●●

●

●

●

●
●●

●

●● ●●
●

●

●

●

●

●●

● ●● ●
●●

●
● ●

●

●

●

●

●

●

●

● ●●
●

●

● ●

●

●

●● ●
●●

●

●
●

●

●
●

●
●

●●●

●
●

●
● ●

●

●●

●

●
●

●

●

●●

●

●

●

●

● ●●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
● ●

●

●● ●

●

●

●
●● ●

●

●

●

●●

●

●

● ●
●

●

●●

●

●

●

●
●

●

●
●

●●

●
●●

●

● ●

● ●

●
● ●●

●

●

●

●

●

●

●

●

●●●

●
● ●

●
●●

●

●
●

●

●

●
● ●

●●
●

●

●
●

●

●

●

●●
●● ●●

●

●

●●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●

● ●●● ●

●
● ●●

● ●

●

●

●

●●

●●

● ●●

●

●

●

●

●

●●

●

● ●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●● ●
● ●

●●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●
●

●

●

●
●
●

●

●

●

●

●

● ●
●

●

●●

●

● ●●

●

●

● ●●
●

●

●

● ●●●
●

●

●

●●●

●

●
●

●

●● ●

●
●

● ●

●●

●

●
●

●

●

●
●

●

●●

●

● ● ●

●

●
●

●

●
●●

●

●
●●

●

●

●

●●
●

●●
● ●●

●●
●

●
●

● ●●

●

● ●● ●●

●
● ●● ●

●

●●

●
●●

●

● ●●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●● ●
●

●
●

●
● ●

●● ●

● ●

●

●
●●

●

● ●●

●●●

● ●●

● ●
●

●

●
● ●

●●
●

●

●

● ● ●

●
●

●
●

●

●
●

●●●
●

●

●

●
●

●
● ●

●

●

●●
●●

●

●●
● ●

● ●
●●

●
●●

●● ●
●●

●

●

●

●

●

●●

● ●

●
●

●

●
●

●●●

●

●

●●●●
●

●

●

●●

●
●
●

●

●

●
●

●●
●

●

●

●
●

●

● ●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●●●

●●
●

●

●
●

●
●●

●● ●

●● ●●●

●

●

●

●●

●

●● ●

●

●

●●

●

● ●
●● ●

●

●
●

●
●

●

●

●● ● ●●●

●

●
●

●

●

●
●

●

●●

● ●

●
●

●
●

●

●●

● ●
●

● ●
●●
●

●●

●●

●
●

●●

●

●

● ●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

● ●

●● ●● ●
●

●

● ●
●

●

● ●●

●●

●
●

●

●
●

● ●

●
●

●

●
●

●

●●
●

●

●

● ●

●●
●

●
●● ●

● ●

●

●
● ●

●

●

●●
●

●

●●●

●

●

●

● ●

●●

●
●●

●●

●

●

●
●

●

●
●

●

●●
● ●

●

●

●●
● ●

●●
●

● ●
●●

●

●
●

●

●●

●

●
●

●●
●

●

●
●

●

●

●
●

●

●●●

●

●●●● ●

●

● ● ●
●

● ●
●●

●
●

●
●●

● ●

●

●
●

●

●
●●

●

●●

●●

●●
●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●●
●

●

●
●

●

● ●

●
●

●

● ●

●

●

●
● ●

●

●●
● ●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●●

●
● ●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

● ●

●

●● ● ●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

● ●
●

●
●

●

●●

●
●●●
●

●
●

●●
●

●
●

●●

● ●●

●

●
●

●
●●

●
● ● ●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●
● ●

●

● ●

●

● ● ●
●

●

●●

●

●
●

●●●
●

●

●
●●●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●●

● ●●
●

● ●

●

●

●

●●
●

●

●

●

● ●●●

●

●

●
●

●● ●

●

●
●

●
●

●

●

●

●

●● ●

●●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●
● ●

●
●

● ●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●
●

●

● ●

●
●● ●

●

●● ●●
● ●

●●

●

●

●●

●●●

● ●

●● ●

●
●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●
●

●

● ●●
●

●

●
●●● ●

●

●

●

● ●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●

●

●●

● ● ●

●●

●
●●

●
●

●

●
●

●
●

●

●

●
● ● ●

●

●

●● ●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●● ●
●

●
●

●
●● ●

●
● ●

●
●●

●
●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

● ●

●
●

●
● ●● ●●

●
●● ●

●●

●

● ●

●
●●

●
●

●

●
●

●

●

●●
●

● ●
●● ●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●
●
●

●

●●●

●

●

●

●

●●
●●

●

●

●

●
●●

●●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●●
● ●

●●

● ●

●

●●

●

●

●

●
● ●●

●

●●

●

●
●

●

●●

●

●

●

● ● ●

●

●
●

●
●

● ●

●

●●

●

●●

●● ● ●●

● ●

●
●

●●
●●

●
●

●●

● ●

●●

●
●

●●●
●

●● ●

●

●

●

●

●

●●
●

●
●

●
●●

●

● ●
● ●

●
●

●●●
●

●

●

●
●

●●

●

●●

●
●●

●
●

●

●

●

●●
●

●

●●

●
●●

●●

●●●

●

●

● ●

●

●●

●●

●

●

●●

●●

●

●
●

●

●

●●●
●

●●

●

●● ●
●

● ●●
●

●

●

●
●

●
●

●

●●

●

●

●
●

● ●●

●

●
●●

●
●

●

● ●●
●

●
●

●

●
●●

● ●

●
● ●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●●
●

●
●

●

●
●

●

●
●●

●

●
●●● ●

●
●

●● ●●

●

●
●

●

● ●
●

● ●
●

●

● ●

●
●
●

●

●

●●

● ●

●

●
●

●●●
●

●

●
●

●
●● ●

●● ●
●
●

●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●● ● ●
●●

●
●●

●

●

●
●

●●
●

● ●

●

●
● ● ●

● ●●●●

●● ●

●

●

● ●

●

●

●
●

●

●
●

●

● ●●

●

●

●
●

●●

●

●
●

●● ● ●

●
●

●

●

● ●

●

● ●

●●●●

●●

●
●

●

●
●

●
● ●

●
●

●

●
●

●
● ●

● ●
●

●
●●

●

●
●●

● ●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●
●

●
●●

●

●
●

● ●
●

● ●

●

●

●
●

● ●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●

●●
● ●

●
●

●

●
● ●

●

● ●
●●

●

● ● ●

●

●

●

●●●
●●

●
●●

●

●

●
●

●
●
●● ●

●

●

●
●

●

●

●
●

●

●

●●

●
● ●

●

●● ●

●●

● ●

●
●●

● ●

●

●●
●

●

● ● ●● ●

●

●

●

●

●●

●

● ●

● ●

● ●

●
●

●

●● ●
●

●
●

● ●

●

● ●●

●
●

●

●
●

●
●

●
●

●●

●

●

●

● ●

●●
● ●●

●

●

●

●

●

●●
●●

●
●●● ●

● ●

●

● ●● ●

●

●●

●

●
●

●

●

●
●

● ●
●● ●● ●

●●

●
●

●
●

●
●●

●

●

● ●

●

●

●
● ●

●

●

● ●

●
● ●

●
●

●●

●

●
●

●

●

●

●

● ●●
●●

●
●

●

●
●●

● ●●● ●
● ●●

●●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

● ●

●

●●

●

● ●
●

●

●●

●●

●
●

● ●
●

●

●

● ●
●●

●●

● ●

●

●

●

●

●
●●

●

●

● ●●●

●●

●

●

●
●

●●

●● ●
●

●

●

●

●

●
● ●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

● ●
●

● ●

●
●
● ●●●

●
●

● ●

●

●

●

●
● ●

●
●

● ● ●●
●●

●
● ●

●

●

●●

●
●

● ●
●●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

● ●

●

●●●

● ●

●
●

●

●

●

● ●●

●

●

●

● ●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●
●

●

●

● ●

● ●
●

●

●
●

●

●

●

●
●

●
●
●

●

● ●
●

●
●

●

●

●

●

● ●

●
●

●
●

●

●
●●

●

●
●

●●

●

●
●

●

●

●
● ●

●

●
●●

●
●

●

●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●●

●●

●●
●

●
●

●● ●
●

●

● ●

●●● ●●
●

●

●
●

●

● ●

●

●

●●

●

●

● ●●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●●●

●

●

●
● ● ●●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●● ●
●

● ●
●

●

●●
● ●

●

●

●

●

●
●

●
●

●●● ●

●

●●
● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●●
●

●●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●●

●●

●●

●
●
●

●

●

● ●

● ●●

●

●
●

●

●

● ●

●

● ● ●

●

●
●

●

●

●
●● ●●

●●

●●

●●●

●
●●●

●●
●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●● ●

●

●

●

●●
●

●●

●

●

●

●
●

●
●
●

●●

●

●

●
●

● ●
●

●

● ●

●

●

●

●

●
●●

●●

●
●●

●

● ●

●

●

● ● ●

●●
● ●

●

●
●

●
●

●

●

●

● ● ●
●
●

● ●●

●

●●

●
●

●

●

● ●

● ●

● ●

●
●
●

●

●

●

●
●

● ●
●

●●

●
●

●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●●

●

● ●

●●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●
● ●

●

●
●

●

●

● ●●
●

●

●●●

●

● ●●●
●●

●

●

●
● ●●

●

●

●

●
●

● ●●●
●

●
●●

●
●

●●

●

●●

● ●
●

●

●
●

●●

● ●
●

● ●
● ● ●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●● ●

●
● ●

●●●

●
●

●●
●

●

●

●

● ●

●● ● ●●
●

●

●
●●

●

●

●●
● ●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

● ●●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●●● ●● ●●

●

●●

●
●

●

●●

●
● ●● ●

●

●

●
●●

●

●
● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●●●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

● ●
●

●●

●

●
●

●

● ●
●

●●
●

●

●

●●
●

●

●

●

●

● ● ●

●
●
●●

●

●

● ●

●

●

●

●

● ●
●

●●
● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

● ● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●●●

●
●●

●

●●

●

●
●

●
●

●

●

●
●

● ●●
●

●

●

●

●
●

●
●

●
●

●

●

● ●●●

●
●

●●

● ●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●
● ●●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●
●

● ●
●

●

●● ●●

●

● ●

●
●

●

●
●

●

● ●

●

●

●

●

● ●● ●

●

● ●

●

●●● ●

●
●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●●

●

●
●

●

●
● ●

●

●
●

● ●

●
●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●●

● ●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

● ●●

●

●●

●●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●● ●●

●
● ●●

● ●

●

●

●●

●●
●

●

●●●

●
●

●

●

●

●
●

●●

●
●

●
●

●

● ●

●

●
● ●

●
● ●

●●
●

●
●●

●

●
●

● ●
●

●
●

●

● ●

●● ●

●

●
●

●

●

●

●
● ●

●

●

●● ●●
●

●

●

●

●

● ●
● ●

●

●●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●● ●

●

●

●
●

●
●

●

●●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●
● ●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●
● ●

●
● ● ●

●
●

●

● ●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

● ●

●
●

●●

●

●

●●●

●
●

●

● ●

●

●●

●

●

●● ●

●

●●

●

●

●
●

●
●

●

● ●●

●

●●

●
●

●

● ●

●

●

●

●●
● ●

●●
●

●
●

●

●

●
●

●
●

●●
●

●

●

●●

●

●

●●
●●

●

● ●

●

●

●

●

●●
● ●

●
●●

●●

●
●

●
●●

●

●

●
●

●

●●

●

●
●

●
●

●

● ●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
● ● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●
●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●●

●●
●

●
●

●

●

●

●

●● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

● ●
●

●

●

●●

●
●

● ●

● ●
●

●
●

●

● ●

●
●

●

●●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

●

●

●

●● ●

●●

●● ●

●

● ●● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●● ●

●
●

●●

●●

●

●

●

●
●

●

●●

● ●●●

●

● ●

●● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●●
●●

●
●

● ●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●

● ● ●
● ●

●
●●

●

●
●●

●●

●●

●

● ●●
●

●

●● ●●

● ●

●
● ●

●

●
●

●

●
●

●

●

●

● ●

●
●

● ●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●
●

●

● ●●●

●

● ●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●
●

● ●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●● ●●

●
●

●

●

●●

●

●

● ●

● ●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●●

● ● ●

●

●●● ●

●
● ●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●●

●●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●●● ●
●

● ●●

●

●
● ●

●
●●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●●●

●

●

●
●

●

●●
●

●
●
●

●

●

●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

msm.sim.dm$head

ms
m.

sim
.dm

$ta
il

And relationship length:

> names(msm.sim.dm)

[1] "onset" "terminus"

[3] "tail" "head"

[5] "onset.censored" "terminus.censored"

[7] "duration" "edge.id"

> msm.sim.dm$race1 <- msm.sim.dm$head>250

> msm.sim.dm$race2 <- msm.sim.dm$tail>250

> msm.sim.dm$homoph <- msm.sim.dm$race1 == msm.sim.dm$race2

> mean(msm.sim.dm$duration[msm.sim.dm$homoph==T &

msm.sim.dm$onset.censored==F & msm.sim.dm$terminus.censored==F ])

[1] 9.821697

> mean(msm.sim.dm$duration[msm.sim.dm$homoph==F &

msm.sim.dm$onset.censored==F & msm.sim.dm$terminus.censored==F ])

[1] 20.33698

28



13 Additional functionality

Both the stergm functions and the networkDynamic package have additional func-
tionality, which you can learn about and explore through the use of R’s many help
features. Remember that both of these have only been released publicly for the
first time in recent weeks. If you begin to use them in depth in the near future,
you will likely have further questions. If so, we encourage you to join the stat-
net users’ group (http://csde.washington.edu/statnet/statnet_users_group.
shtml), where you can then post your questions (and possibly answer others).
You may also encounter bugs; please use the same place to report them. Happy
stergming!

References:

Pavel N. Krivitsky and Mark S. Handcock. A Separable Model for Dynamic Net-
works. 2010. http://arxiv.org/abs/1011.1937

29


