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1 The Problem

This is an example of using the mcmc package in R. The problem comes
from a take-home question on a (take-home) PhD qualifying exam (School of
Statistics, University of Minnesota).

Simulated data for the problem are in the file logit.txt. There are five
variables in the data set, the response y and four predictors, x1, x2, x3, and x4.

A frequentist analysis for the problem is done by the following R statements

> foo <- read.table("logit.txt", header = TRUE)

> out <- glm(y ~ x1 + x2 + x3 + x4, data = foo,

+ family = binomial())

> summary(out)

Call:
glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(), data = foo)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7461 -0.6907 0.1540 0.7041 2.1943

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6328 0.3007 2.104 0.03536 *
x1 0.7390 0.3616 2.043 0.04100 *
x2 1.1137 0.3627 3.071 0.00213 **
x3 0.4781 0.3538 1.351 0.17663
x4 0.6944 0.3989 1.741 0.08172 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 137.628 on 99 degrees of freedom
Residual deviance: 87.668 on 95 degrees of freedom
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AIC: 97.668

Number of Fisher Scoring iterations: 6

But this problem isn’t about that frequentist analysis, we want a Bayesian
analysis. For our Bayesian analysis we assume the same data model as the
frequentist, and we assume the prior distribution of the five parameters (the
regression coefficients) makes them independent and identically normally dis-
tributed with mean 0 and standard deviation 2.

The log unnormalized posterior (log likelihood plus log prior) density for
this model is calculated by the following R function (given the preceding data
definitions)

> x <- foo

> x$y <- NULL

> x <- as.matrix(x)

> x <- cbind(1, x)

> dimnames(x) <- NULL

> y <- foo$y

> lupost <- function(beta, x, y) {

+ eta <- x %*% beta

+ p <- 1/(1 + exp(-eta))

+ logl <- sum(log(p[y == 1])) + sum(log(1 -

+ p[y == 0]))

+ return(logl + sum(dnorm(beta, 0, 2, log = TRUE)))

+ }

2 Beginning MCMC

With those definitions in place, the following code runs the Metropolis algo-
rithm to simulate the posterior.

> library(mcmc)

> set.seed(42)

> beta.init <- as.numeric(coefficients(out))

> out <- metrop(lupost, beta.init, 1000, x = x,

+ y = y)

> names(out)

[1] "accept" "batch" "initial"
[4] "final" "initial.seed" "final.seed"
[7] "time" "lud" "nbatch"
[10] "blen" "nspac" "scale"

> out$accept

[1] 0.008
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The arguments to the metrop function here (there are more we don’t use
here) are

� an R function (here lupost that evaluates the log unnormalized density
of the desired stationary distribution (here a posterior distribution) of the
Markov chain. Note that (although this example does not exhibit the
phenomenon) that the unnormalized density may be zero, in which case
the log unnormalized density is -Inf.

� an initial state (here beta.init) of the Markov chain.

� a number of batches (here 1e3) for the Markov chain. This combines with
batch length and spacing (both 1 by default) to determine the number of
iterations done.

� additional arguments (here x and y) supplied to provided functions (here
lupost).

� there is no “burn-in” argument, although burn-in is easily accomplished,
if desired (more on this below).

The output is in the component out$batch returned by the metrop function.
We’ll look at it presently, but first we need to adjust the proposal to get a higher
acceptance rate (out$accept). It is generally accepted (Gelman, Roberts, and
Gilks, 1996) that an acceptance rate of about 20% is right, although this rec-
ommendation is based on the asymptotic analysis of a toy problem (simulating
a multivariate normal distribution) for which one would never use MCMC and
is very unrepresentative of difficult MCMC applications.

Geyer and Thompson (1995) came to a similar conclusion, that a 20% accep-
tance rate is about right, in a very different situation. But they also warned that
a 20% acceptance rate could be very wrong and produced an example where a
20% acceptance rate was impossible and attempting to reduce the acceptance
rate below 70% would keep the sampler from ever visiting part of the state space.
So the 20% magic number must be considered like other rules of thumb we teach
in intro courses (like n > 30 means means normal approximation is valid). We
know these rules of thumb can fail. There are examples in the literature where
they do fail. We keep repeating them because we want something simple to tell
beginners, and they are all right for some problems.

Be that as it may, we try for 20%.

> out <- metrop(out, scale = 0.1, x = x, y = y)

> out$accept

[1] 0.739

> out <- metrop(out, scale = 0.3, x = x, y = y)

> out$accept

[1] 0.371
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> out <- metrop(out, scale = 0.5, x = x, y = y)

> out$accept

[1] 0.148

> out <- metrop(out, scale = 0.4, x = x, y = y)

> out$accept

[1] 0.209

Here the first argument to each instance of the metrop function is the output
of a previous invocation. The Markov chain continues where the previous run
stopped doing just what it would have done if it had kept going the initial
state and random seed being the final state and random seed of the previous
invocation. Everything stays the same except for the arguments (here scale
that are supplied).

� The argument scale controls the size of the Metropolis “normal random
walk”proposal. The default is scale = 1. Big steps give lower acceptance
rates. Small steps give higher. We want something about 20%. It is also
possible to make scale a vector or a matrix. See help(metrop).

Because each run starts where the last one stopped (when the first argument
to metrop is the output of the previous invocation), each run serves as “burn-in”
for its successor (assuming that any part of that run was worth anything at all).

3 Diagnostics

O. K. That does it for the acceptance rate. So let’s do a longer run and look
at the results.

> out <- metrop(out, nbatch = 10000, x = x, y = y)

> out$accept

[1] 0.2345

> out$time

[1] 1.15 0.00 1.17 0.00 0.00

Figure 1 (page 5) shows the time series plot made by the R statement

> plot(ts(out$batch))

Another way to look at the output is an autocorrelation plot. Figure 2
(page 6) shows the time series plot made by the R statement

> acf(out$batch)
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Figure 1: Time series plot of MCMC output.
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Figure 2: Autocorrelation plot of MCMC output.
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As with any multiplot plot, these are a bit hard to read. Readers are invited
to make the separate plots to get a better picture. As with all “diagnostic” plots
in MCMC, these don’t “diagnose” subtle problems. As

http://www.stat.umn.edu/~charlie/mcmc/diag.html

says

The purpose of regression diagnostics is to find obvious, gross,
embarrassing problems that jump out of simple plots.

The time series plots will show obvious nonstationarity. They will not show
nonobvious nonstationarity. They provide no guarantee whatsoever that your
Markov chain is sampling anything remotely resembling the correct stationary
distribution (with log unnormalized density lupost). In this very easy problem,
we do not expect any convergence difficulties and so believe what the diagnostics
seem to show, but one is a fool to trust such diagnostics in difficult problems.

The autocorrelation plots seem to show that the the autocorrelations are
negligible after about lag 25. This diagnostic inference is reliable if the sampler
is actually working (has nearly reached equilibrium) and worthless otherwise.
Thus batches of length 25 should be sufficient, but let’s use length 100 to be
safe.

4 Monte Carlo Estimates and Standard Errors

> out <- metrop(out, nbatch = 100, blen = 100, outfun = function(z,

+ ...) c(z, z^2), x = x, y = y)

> out$accept

[1] 0.2332

> out$time

[1] 1.16 0.00 1.17 0.00 0.00

We have added an argument outfun that gives the “functional” of the state
we want to average. For this problem we are interested in both posterior mean
and variance. Mean is easy, just average the variables in question. But variance
is a little tricky. We need to use the identity

var(X) = E(X2)− E(X)2

to write variance as a function of two things that can be estimated by simple
averages. Hence we want to average the state itself and the squares of each
component. Hence our outfun returns c(z, z^2) for an argument (the state
vector) z.

The ... argument to outfun is required, since the function is also passed
the other arguments (here x and y) to metrop.
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4.1 Simple Means

The grand means (means of batch means) are

> apply(out$batch, 2, mean)

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265
[6] 0.5145751 0.7560775 1.4973807 0.3913837 0.7244162

The first 5 numbers are the Monte Carlo estimates of the posterior means. The
second 5 numbers are the Monte Carlo estimates of the posterior absolute second
moments. We get the posterior variances by

> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265

> sigmasq

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

Monte Carlo standard errors (MCSE) are calculated from the batch means.
This is simplest for the means.

> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)

> mu.mcse

[1] 0.01224260 0.01417916 0.01793129 0.01468594 0.01582040

The extra factor sqrt(out$nbatch) arises because the batch means have vari-
ance σ2/b where b is the batch length, which is out$blen, whereas the overall
means mu have variance σ2/n where n is the total number of iterations, which
is out$blen * out$nbatch.

4.2 Functions of Means

To get the MCSE for the posterior variances we apply the delta method. Let
ui denote the sequence of batch means of the first kind for one parameter and
ū the grand mean (the estimate of the posterior mean of that parameter), let vi

denote the sequence of batch means of the second kind for the same parameter
and v̄ the grand mean (the estimate of the posterior second absolute moment
of that parameter), and let µ = E(ū) and ν = E(v̄). Then the delta method
linearizes the nonlinear function

g(µ, ν) = ν − µ2
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as
∆g(µ, ν) = ∆ν − 2µ∆µ

saying that
g(ū, v̄)− g(µ, ν)

has the same asymptotic normal distribution as

(v̄ − ν)− 2µ(ū− µ)

which, of course, has variance 1 / nbatch times that of

(vi − ν)− 2µ(ui − µ)

and this variance is estimated by

1
nbatch

nbatch∑
i=1

[
(vi − v̄)− 2ū(ui − ū)

]2
So

> u <- out$batch[, 1:5]

> v <- out$batch[, 6:10]

> ubar <- apply(u, 2, mean)

> vbar <- apply(v, 2, mean)

> deltau <- sweep(u, 2, ubar)

> deltav <- sweep(v, 2, vbar)

> foo <- sweep(deltau, 2, ubar, "*")

> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2,

+ 2, mean)/out$nbatch)

> sigmasq.mcse

[1] 0.004241637 0.007292224 0.007271390 0.007374833
[5] 0.008175832

does the MCSE for the posterior variance.
Let’s just check that this complicated sweep and apply stuff does do the

right thing.

> sqrt(mean(((v[, 2] - vbar[2]) - 2 * ubar[2] *

+ (u[, 2] - ubar[2]))^2)/out$nbatch)

[1] 0.007292224

Comment Through version 0.5 of this vignette it contained an incorrect pro-
cedure for calculating this MCSE, justified by a handwave. Essentially, it said
to use the standard deviation of the batch means called v here, which appears
to be very conservative.
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4.3 Functions of Functions of Means

If we are also interested in the posterior standard deviation (a natural ques-
tion, although not asked on the exam problem), the delta method gives its
standard error in terms of that for the variance

> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse/(2 * sigma)

> sigma

[1] 0.2964985 0.3588304 0.3580911 0.3655008 0.4045678

> sigma.mcse

[1] 0.007152882 0.010161102 0.010152989 0.010088669
[5] 0.010104403

5 A Final Run

So that’s it. The only thing left to do is a little more precision (the exam
problem directed “use a long enough run of your Markov chain sampler so that
the MCSE are less than 0.01”)

> out <- metrop(out, nbatch = 500, blen = 400, x = x,

+ y = y)

> out$accept

[1] 0.235155

> out$time

[1] 23.40 0.02 24.40 0.00 0.00

> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6624650 0.7941013 1.1712710 0.5066326 0.7261414

> sigmasq

[1] 0.09189246 0.13323054 0.13230811 0.12871293 0.15978638

> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)

> mu.mcse

[1] 0.002960128 0.003647420 0.003787855 0.003632080
[5] 0.004273624
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> u <- out$batch[, 1:5]

> v <- out$batch[, 6:10]

> ubar <- apply(u, 2, mean)

> vbar <- apply(v, 2, mean)

> deltau <- sweep(u, 2, ubar)

> deltav <- sweep(v, 2, vbar)

> foo <- sweep(deltau, 2, ubar, "*")

> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2,

+ 2, mean)/out$nbatch)

> sigmasq.mcse

[1] 0.001044801 0.001725900 0.001518322 0.001553468
[5] 0.002010717

> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse/(2 * sigma)

> sigma

[1] 0.3031377 0.3650076 0.3637418 0.3587658 0.3997329

> sigma.mcse

[1] 0.001723311 0.002364198 0.002087087 0.002165017
[5] 0.002515076

and some nicer output, which is presented in three tables constructed from the
R variables defined above using the R xtable command in the xtable library.

First the posterior means, then the posterior variances (table on page 11),

Table 1: Posterior Means

constant x1 x2 x3 x4

estimate 0.6625 0.7941 1.1713 0.5066 0.7261
MCSE 0.0030 0.0036 0.0038 0.0036 0.0043

and finally the posterior standard deviations (table on page 12).

Table 2: Posterior Variances

constant x1 x2 x3 x4

estimate 0.0919 0.1332 0.1323 0.1287 0.1598
MCSE 0.0010 0.0017 0.0015 0.0016 0.0020

Note for the record that the all the results presented in the tables are from
“one long run” where long here took only 23.4 seconds (on whatever computer
it was run on).
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Table 3: Posterior Standard Deviations

constant x1 x2 x3 x4

estimate 0.3031 0.3650 0.3637 0.3588 0.3997
MCSE 0.0017 0.0024 0.0021 0.0022 0.0025
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