
1

SeqinR 1.0-4: a contributed package to the R
project for statistical computing devoted to
biological sequences retrieval and analysis

Delphine Charif1, Jean R. Lobry1, Leonor Palmeira1

Université Claude Bernard - Lyon I
Laboratoire de Biométrie, Biologie Évolutive
CNRS UMR 5558 - INRIA Helix project
43 Bd 11/11/1918
F-69622 VILLEURBANNE CEDEX, FRANCE
http://pbil.univ-lyon1.fr/members/lobry/

Summary. The seqinR package for the R environment is a library of utilities
to retrieve and analyse biological sequences. It provides an interface between i)
the R language and environment for statistical computing and graphics and ii) the
ACNUC sequence retrieval system for nucleotide and protein sequence databases
such as GenBank, EMBL, SWISS-PROT. ACNUC is very efficient in providing
direct access to subsequences of biological interest (e.g. protein coding regions, tRNA
or rRNA coding regions) present in GenBank and in EMBL. Thanks to a simple
query language, it is then easy under R to select sequences of interest and then
use all the power of the R environment to analyze them. The ACNUC databases
can be locally installed but they are more conveniently accessed through a web
server to take advantage of centralized daily updates. The aim of this paper is to
provide a handout on basic sequence analyses under seqinR with a special focus on
multivariate methods.

1.1 Introduction

1.1.1 About R and CRAN

R [9, 21] is a libre language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques:
linear and nonlinear modelling, statistical tests, time series analysis, classifica-
tion, clustering, etc. Please consult the R project homepage at http://www.R-
project.org/ for further information.

The Comprehensive R Archive Network, CRAN, is a network of servers
around the world that store identical, up-to-date, versions of code and doc-
umentation for R. At compilation time of this document, there were 59

2 D. Charif & J.R. Lobry & L. Palmeira

mirrors available from 24 countries. Please use the CRAN mirror near-
est to you to minimize network load, they are listed at http://cran.r-
project.org/mirrors.html, and can be directly selected with the function
chooseCRANmirror().

1.1.2 About this document

In the terminology of the R project [9, 21], this document is a package vignette.
The examples given thereafter were run under R version 2.2.0, 2005-10-
06 on Thu Mar 23 11:19:02 2006 with Sweave [6]. The last compiled version
of this document is distributed along with the seqinR package in the /doc
folder. Once seqinR has been installed, the full path to the package is given
by the following R code :
.find.package("seqinr")

[1] "/Users/lobry/Library/R/library/seqinr"

1.1.3 About sequin and seqinR

Sequin is the well known sofware used to submit sequences to GenBank, se-
qinR has definitively no connection with sequin. seqinR is just a shortcut,
with no google hit, for ”Sequences in R”.

However, as a mnemotechnic tip, you may think about the seqinR package
as the Reciprocal function of sequin: with sequin you can submit sequences
to Genbank, with seqinR you can Retrieve sequences from Genbank. This
is a very good summary of a major functionality of the seqinR package: to
provide an efficient access to sequence databases under R.

1.1.4 About getting started

You need a computer connected to the Internet. First, install R on your com-
puter. There are distributions for Linux, Mac and Windows users on the
CRAN (http://cran.r-project.org). Then, install the ape, ade4 and se-
qinr packages. This can be done directly in an R console with for instance
the command install.packages("seqinr"). Last, load the seqinR package
with:
library(seqinr)

The command lseqinr() lists all what is defined in the package seqinR:
lseqinr()[1:9]

[1] "AAstat" "EXP" "GC" "GC1" "GC2"
[6] "GC3" "SEQINR.UTIL" "a" "aaa"

We have printed here only the first 9 entries because they are too numerous.
To get help on a specific function, say aaa(), just prefix its name with a
question mark, as in ?aaa and press enter.

1 SeqinR 1.0-4 3

1.1.5 About running R in batch mode

Although R is usually run in an interactive mode, some data pre-processing
and analyses could be too long. You can run your R code in batch mode in a
shell with a command that typically looks like :

unix$ R CMD BATCH input.R results.out &

where input.R is a text file with the R code you want to run and
results.out a text file to store the outputs. Note that in batch mode, the
graphical user interface is not active so that some graphical devices (e.g. x11,
jpeg, png) are not available (see the R FAQ [4] for further details).

It’s worth noting that R uses the XDR representation of binary objects in
binary saved files, and these are portable across all R platforms. The save()
and load() functions are very efficient (because of their binary nature) for
saving and restoring any kind of R objects, in a platform independent way. To
give a striking real example, at a given time on a given platform, it was about 4
minutes long to import a numeric table with 70000 lines and 64 columns with
the defaults settings of the read.table() function. Turning it into binary
format, it was then about 8 seconds to restore it with the load() function. It
is therefore advisable in the input.R batch file to save important data or re-
sults (with something like save(mybigdata, file = "mybigdata.RData"))
so as to be able to restore them later efficiently in the interactive mode (with
something like load("mybigdata.RData")).

1.1.6 About the learning curve

If you are used to work with a purely graphical user interface, you may feel
frustrated in the beginning of the learning process because apparently simple
things are not so easily obtained (ce n’est que le premier pas qui coûte !). In
the long term, however, you are a winner for the following reasons.

Wheel (the): do not re-invent (there’s a patent [11] on it anyway). At the
compilation time of this document there were 687 contributed packages
available. Even if you don’t want to be spoon-feed à bouche ouverte, it’s
not a bad idea to look around there just to check what’s going on in your
own application field. Specialists all around the world are there.

Hotline: there is a very reactive discussion list to help you, just make sure to
read the posting guide there: http://www.R-project.org/posting-guide.
html before posting. Because of the high traffic on this list, we strongly
suggest to answer yes at the question Would you like to receive list mail
batched in a daily digest? when subscribing at https://stat.ethz.ch/
mailman/listinfo/r-help. Some bons mots from the list are archived in
the R fortunes package.

Automation: consider the 178 pages of figures in the additional data
file 1 (http://genomebiology.com/2002/3/10/research/0058/suppl/

4 D. Charif & J.R. Lobry & L. Palmeira

S1) from [18]. They were produced in part automatically (with a propri-
etary software that is no more maintained) and manually, involving a lot
of tedious and repetitive manipulations (such as italicising species names
by hand in subtitles). In few words, a waste of time. The advantage of the
R environment is that once you are happy with the outputs (including
graphical outputs) of an analysis for species x, it’s very easy to run the
same analysis on n species.

Reproducibility: if you do not consider the reproducibility of scientific re-
sults to be a serious problem in practice, then the paper by Jonathan Buck-
heit and David Donoho [2] is a must read. Molecular data are available in
public databases, this is a necessary but not sufficient condition to allow
for the reproducibility of results. Publishing the R source code that was
used in your analyses is a simple way to greatly facilitate the reproduction
of your results at the expense of no extra cost. At the expense of a little ex-
tra cost, you may consider to set up a RWeb server so that even the laziest
reviewer may reproduce your results just by clicking on the ”do it again”
button in his web browser (i.e. without installing any software on his com-
puter). For an example involving the seqinR pacakage, follow this link
http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/ to re-
produce on-line the results from [1].

Fine tuning: you have full control on everything, even the source code for
all functions is available. The following graph was specifically designed to
illustrate the first experimental evidence [22] that, on average, we have
also [A]=[T] and [C]=[G] in single-stranded DNA. These data from Char-
gaff’s lab give the base composition of the L (Ligth) strand for 7 bacterial
chromosomes.
example(chargaff)

[A]

 0 % − 100 %
●●

●●

●●
●

●●
●●

●●

●
●●

●●
●●

●

●●
●●

●●

●

[G]

 0 % − 100 %
●●

●●
●●

●
●●

●●
●●

●

●●
●●

●●

● ●●
●●

●●
●

[C]

 0 % − 100 %
●●

●●
●●

●

●●
●●

●●

● ●●
●●

●●
●

●●
●●

●●

●

[T]

 0 % − 100 %

This is a very specialised graph. The filled areas correspond to non-allowed
values beause the sum of the four bases frequencies cannot exceed 100
%. The white areas correspond to possible values (more exactly to the
projection from R4 to the corresponding R2 planes of the region of allowed

1 SeqinR 1.0-4 5

values). The lines correspond to the very small subset of allowed values for
which we have in addition [A]=[T] and [C]=[G]. Points represent observed
values in the 7 bacterial chromosomes. The whole graph is entirely defined
by the code given in the example of the chargaff dataset (?chargaff to
see it).
Another example of highly specialised graph is given by the function
tablecode() to display a genetic code as in textbooks :
tablecode(dia = F)

Genetic code 1 : standard

u u u Phe
u u c Phe
u u a Leu
u u g Leu

u c u Ser
u c c Ser
u c a Ser
u c g Ser

u a u Tyr
u a c Tyr
u a a Stp
u a g Stp

u g u Cys
u g c Cys
u g a Stp
u g g Trp

c u u Leu
c u c Leu
c u a Leu
c u g Leu

c c u Pro
c c c Pro
c c a Pro
c c g Pro

c a u His
c a c His
c a a Gln
c a g Gln

c g u Arg
c g c Arg
c g a Arg
c g g Arg

a u u Ile
a u c Ile
a u a Ile
a u g Met

a c u Thr
a c c Thr
a c a Thr
a c g Thr

a a u Asn
a a c Asn
a a a Lys
a a g Lys

a g u Ser
a g c Ser
a g a Arg
a g g Arg

g u u Val
g u c Val
g u a Val
g u g Val

g c u Ala
g c c Ala
g c a Ala
g c g Ala

g a u Asp
g a c Asp
g a a Glu
g a g Glu

g g u Gly
g g c Gly
g g a Gly
g g g Gly

It’s very convenient in practice to have a genetic code at hand, and more-
over here, all genetic code variants are available :
tablecode(numcode = 2, dia = F)

Genetic code 2 : vertebrate.mitochondrial

u u u Phe
u u c Phe
u u a Leu
u u g Leu

u c u Ser
u c c Ser
u c a Ser
u c g Ser

u a u Tyr
u a c Tyr
u a a Stp
u a g Stp

u g u Cys
u g c Cys
u g a Trp
u g g Trp

c u u Leu
c u c Leu
c u a Leu
c u g Leu

c c u Pro
c c c Pro
c c a Pro
c c g Pro

c a u His
c a c His
c a a Gln
c a g Gln

c g u Arg
c g c Arg
c g a Arg
c g g Arg

a u u Ile
a u c Ile
a u a Met
a u g Met

a c u Thr
a c c Thr
a c a Thr
a c g Thr

a a u Asn
a a c Asn
a a a Lys
a a g Lys

a g u Ser
a g c Ser
a g a Stp
a g g Stp

g u u Val
g u c Val
g u a Val
g u g Val

g c u Ala
g c c Ala
g c a Ala
g c g Ala

g a u Asp
g a c Asp
g a a Glu
g a g Glu

g g u Gly
g g c Gly
g g a Gly
g g g Gly

6 D. Charif & J.R. Lobry & L. Palmeira

As from seqinR 1.0-4, it is possible to export the table of a genetic
code into a LATEX document, for instance table 1.1 and table 1.2 were
automatically generated with the following R code:
tablecode(numcode = 3, urn.rna = s2c("TCAG"), latexfile = "code3.tex")
tablecode(numcode = 4, urn.rna = s2c("TCAG"), latexfile = "code4.tex")

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Thr CCT Pro CAT His CGT Arg
CTC Thr CCC Pro CAC His CGC Arg
CTA Thr CCA Pro CAA Gln CGA Arg
CTG Thr CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 1.1. Genetic code number 3: yeast.mitochondrial.

The tables were then inserted in the LATEX file with:

\input{code3.tex}
\input{code4.tex}

Data as fast moving targets: in research area, data are not always stable.
compare the following graph :
dbg <- get.db.growth()
plot(x = dbg$date, y = log10(dbg$Nucl), las = 1, main = "The growth of DNA databases",

xlab = "Year", ylab = "Log10 number of nucleotides")

1 SeqinR 1.0-4 7

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 1.2. Genetic code number 4: protozoan.mitochondrial+mycoplasma.

●

●
●

●
●

●
●●

●
●

●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●
●●●●●●

●
●●

●●
●●●

●
●
●
●
●●●●●●●●●●

●●●●●●

●●●●●●●●

1985 1990 1995 2000 2005

6

7

8

9

10

11

The growth of DNA databases

Year

Lo
g1

0
nu

m
be

r
of

 n
uc

le
ot

id
es

with figure 1 in [15], data have been updated since then but the same
R code was used to produce the figure, ensuring an automatic update.
For LATEX users, it’s worth mentioning the fantastic tool contributed by
Friedrich Leish [6] called Sweave() that allows for the automatic insertion
of R outputs (including graphics) in a LATEX document. In the same spirit,
there is a package called xtable to coerce R data into LATEX tables.

8 D. Charif & J.R. Lobry & L. Palmeira

1.2 How to get sequence data

1.2.1 Importing raw sequence data from fasta files

The fasta format is very simple and widely used for simple import of biological
sequences. It begins with a single-line description starting with a character >,
followed by lines of sequence data of maximum 80 character each. Examples of
files in fasta format are distributed with the seqinR package in the sequences
directory:

list.files(path = system.file("sequences", package = "seqinr"),
pattern = ".fasta")

[1] "Anouk.fasta" "bb.fasta" "ct.fasta" "gopher.fasta"
[5] "louse.fasta" "malM.fasta" "ortho.fasta" "seqAA.fasta"

The function read.fasta() imports sequences from fasta files into your
workspace, for example:

seqaa <- read.fasta(File = system.file("sequences/seqAA.fasta",
package = "seqinr"), seqtype = "AA")

seqaa

$A06852
[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L" "L" "L" "S" "Q" "L"
[19] "P" "R" "E" "I" "P" "G" "Q" "S" "T" "N" "D" "F" "I" "K" "A" "C" "G" "R"
[37] "E" "L" "V" "R" "L" "W" "V" "E" "I" "C" "G" "S" "V" "S" "W" "G" "R" "T"
[55] "A" "L" "S" "L" "E" "E" "P" "Q" "L" "E" "T" "G" "P" "P" "A" "E" "T" "M"
[73] "P" "S" "S" "I" "T" "K" "D" "A" "E" "I" "L" "K" "M" "M" "L" "E" "F" "V"
[91] "P" "N" "L" "P" "Q" "E" "L" "K" "A" "T" "L" "S" "E" "R" "Q" "P" "S" "L"
[109] "R" "E" "L" "Q" "Q" "S" "A" "S" "K" "D" "S" "N" "L" "N" "F" "E" "E" "F"
[127] "K" "K" "I" "I" "L" "N" "R" "Q" "N" "E" "A" "E" "D" "K" "S" "L" "L" "E"
[145] "L" "K" "N" "L" "G" "L" "D" "K" "H" "S" "R" "K" "K" "R" "L" "F" "R" "M"
[163] "T" "L" "S" "E" "K" "C" "C" "Q" "V" "G" "C" "I" "R" "K" "D" "I" "A" "R"
[181] "L" "C" "*"
attr(,"name")
[1] "A06852"
attr(,"Annot")
[1] ">A06852 183 residues"
attr(,"class")
[1] "SeqFastaAA"

A more consequent example is given in the fasta file ct.fasta which con-
tains the complete genome of Chlamydia trachomatis that was used in [7].
You should be able to reproduce figure 1b from this paper with the following
code:

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",
package = "seqinr"), g2.coord = system.file("sequences/ct.coord",
package = "seqinr"), oldoriloc = TRUE)

plot(outst, outsk/1000, type = "l", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb", main = expression(italic(Chlamydia ~

~trachomatis) ~ ~complete ~ ~genome), las = 1)
abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

1 SeqinR 1.0-4 9

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

Terminus

Origin

Note that the algorithm has been improved since then and that it’s more
advisable to use the default option oldoriloc = FALSE if you are inter-
ested in the prediction of origins and terminus of replication from base com-
position biases (more on this at http://pbil.univ-lyon1.fr/software/
oriloc.html). See also [19] for a recent review on this topic.

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",
package = "seqinr"), g2.coord = system.file("sequences/ct.coord",
package = "seqinr"))

plot(outst, outsk/1000, type = "l", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb", main = expression(italic(Chlamydia ~

~trachomatis) ~ ~complete ~ ~genome), las = 1)
mtext("New version")
abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

10 D. Charif & J.R. Lobry & L. Palmeira

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

New version

Terminus

Origin

1.2.2 Importing aligned sequence data

Aligned sequence data are very important in evolutionary studies, in this
representation all vertically aligned positions are supposed to be homologous,
that is sharing a common ancestor. This is a mandatory starting point for
comparative studies. There is a function in seqinR called read.alignment()
to read aligned sequences data from various formats (mase, clustal, phylip,
fasta or msf) produced by common external programs for multiple sequence
alignment.

Let’s give an example. The gene coding for the mitochondrial cytochrome
oxidase I is essential and therefore often used in phylogenetic studies because
of its ubiquitous nature. The following two sample tests of aligned sequences of
this gene (extracted from ParaFit [13]), are distributed along with the seqinR
package:

louse <- read.alignment(system.file("sequences/louse.fasta",
package = "seqinr"), format = "fasta")

louse$nam

[1] "gi|548117|gb|L32667.1|GYDCYTOXIB" "gi|548119|gb|L32668.1|GYDCYTOXIC"
[3] "gi|548121|gb|L32669.1|GYDCYTOXID" "gi|548125|gb|L32671.1|GYDCYTOXIF"
[5] "gi|548127|gb|L32672.1|GYDCYTOXIG" "gi|548131|gb|L32675.1|GYDCYTOXII"
[7] "gi|548133|gb|L32676.1|GYDCYTOXIJ" "gi|548137|gb|L32678.1|GYDCYTOXIL"

1 SeqinR 1.0-4 11

gopher <- read.alignment(system.file("sequences/gopher.fasta",
package = "seqinr"), format = "fasta")

gopher$nam

[1] "gi|548223|gb|L32683.1|PPGCYTOXIA" "gi|548197|gb|L32686.1|OGOCYTOXIA"
[3] "gi|548199|gb|L32687.1|OGOCYTOXIB" "gi|548201|gb|L32691.1|OGOCYTOXIC"
[5] "gi|548203|gb|L32692.1|OGOCYTOXID" "gi|548229|gb|L32693.1|PPGCYTOXID"
[7] "gi|548231|gb|L32694.1|PPGCYTOXIE" "gi|548205|gb|L32696.1|OGOCYTOXIE"

Fig. 1.1. Louse (left) and gopher (right). Images are from the wikipedia (http:
//www.wikipedia.org/). The picture of the chewing louse Damalinia limbata found
on Angora goats was taken by Fiorella Carnevali (ENEA, Italy). The gopher drawing
is from Gustav Mützel, Brehms Tierleben, Small Edition 1927.

The aligned sequences are now imported in your R environment. The 8
genes of the first sample are from various species of louse (insects parasitics
on warm-blooded animals) and the 8 genes of the second sample are from
their corresponding gopher hosts (a subset of rodents), see figure 1.1 :

l.names <- readLines(system.file("sequences/louse.names",
package = "seqinr"))

l.names

[1] "G.chapini " "G.cherriei " "G.costaric " "G.ewingi " "G.geomydis "
[6] "G.oklahome " "G.panamens " "G.setzeri "

g.names <- readLines(system.file("sequences/gopher.names",
package = "seqinr"))

g.names

[1] "G.brevicep " "O.cavator " "O.cherriei " "O.underwoo " "O.hispidus "
[6] "G.burs1 " "G.burs2 " "O.heterodu"

SeqinR has very few methods devoted to phylogenetic analyses but many
are available in the ape package. This allows for a very fine tuning of the
graphical outputs of the analyses thanks to the power of the R facilities. For
instance, a natural question here would be to compare the topology of the tree
of the hosts and their parasites to see if we have congruence between host and
parasite evolution. In other words, we want to display two phylogenetic trees

12 D. Charif & J.R. Lobry & L. Palmeira

face to face. This would be tedious with a program devoted to the display
of a single phylogenetic tree at time, involving a lot of manual copy/paste
operations, hard to reproduce, and then boring to maintain with data updates.

How does it looks under R? First, we need to infer the tree topologies from
data. Let’s try as an illustration the famous neighbor-joining tree estimation
of Saitou and Nei [23] with Jukes and Cantor’s correction [10] for multiple
substitutions.

library(ape)
louse.JC <- dist.dna(x = lapply(louse$seq, s2c), model = "JC69")
gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c), model = "JC69")
l <- nj(louse.JC)
g <- nj(gopher.JC)

Now we have an estimation for illustrative purposes of the tree topology
for the parasite and their hosts. We want to plot the two trees face to face,
and for this we must change R graphical parameters. The first thing to do is
to save the current graphical parameter settings so as to be able to restore
them later:

op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical
parameters are not all settable, we just want to save those we can change at
will. Now, we can play with graphics :

g$tip.label <- paste(1:8, g.names)
l$tip.label <- paste(1:8, l.names)
layout(matrix(data = 1:2, nrow = 1, ncol = 2), width = c(1.4,

1))
par(mar = c(2, 1, 2, 1))
plot(g, adj = 0.8, cex = 1.4, use.edge.length = FALSE, main = "gopher (host)",

cex.main = 2)
plot(l, direction = "l", use.edge.length = FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)

1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

We now restore the old graphical settings that were previously saved:

1 SeqinR 1.0-4 13

par(op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd() command, create a text file
called essai.r with your favourite text editor, and copy/paste the previous
R commands, that is :

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")

gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")

l.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.names")

g.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.names")

louse.JC <- dist.dna(x = lapply(louse$seq, s2c), model = "JC69")

gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c), model = "JC69")

l <- nj(louse.JC)

g <- nj(gopher.JC)

g$tip.label <- paste(1:8, g.names)

l$tip.label <- paste(1:8, l.names)

layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))

par(mar=c(2,1,2,1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)

plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to R console
to enter the command :

source("essai.r")

This should reproduce the previous face-to-face phylogenetic trees in your
R graphical device. Now, your boss is unhappy with working with the Jukes
and Cantor’s model [10] and wants you to use the Kimura’s 2-parameters
distance [12] instead. Go back to the text editor to change model = "JC69"
by model = "K80", save the file, and in the R console source("essai.r")
again, you should obtain the following graph :

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)

1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

Nice congruence, isn’t it? Now, something even worst, there was a error
in the aligned sequence set : the first base in the first sequence in the file
louse.fasta is not a C but a T. To locate the file on your system, enter the
following command:

14 D. Charif & J.R. Lobry & L. Palmeira

system.file("sequences/louse.fasta", package = "seqinr")

[1] "/Users/lobry/seqinr.Rcheck/seqinr/sequences/louse.fasta"

Open the louse.fasta file in your text editor, fix the error, go back to
the R console to source("essai.r") again. That’s all, your graph is now
consistent with the updated dataset.

1.2.3 Complex queries in ACNUC databases

As a rule of thumb, after compression one nucleotide needs one octet of disk
space storage (because you need also the annotations corresponding to the
sequences), so that most likely you won’t have enough space on your computer
to work with a local copy of a complete DNA database. The idea is to import
under R only the subset of sequences you are interested in. This is done in
three steps:

Choose a bank

Select the database from which you want to extract sequences with the
choosebank() function. This function initiates a remote access to an AC-
NUC database. Called without arguments, choosebank() returns the list of
available databases:

choosebank()

[1] "genbank" "embl" "emblwgs" "swissprot"
[5] "ensembl" "emglib" "nrsub" "nbrf"
[9] "hobacnucl" "hobacprot" "hovernucl" "hoverprot"
[13] "hogennucl" "hogenprot" "hoverclnu" "hoverclpr"
[17] "homolensprot" "homolensnucl" "HAMAPnucl" "HAMAPprot"
[21] "hoppsigen" "nurebnucl" "nurebprot" "taxobacgen"
[25] "greview" "hogendnucl" "hogendprot" "refseq"

Biological sequence databases are fast moving targets, and for publication
purposes it is recommended to specify on which release you were working on
when you made the job. To get more informations about available databases
on the server, just set the infobank parameter to TRUE. For instance, here is
the result for the three first databases on the default server at the compilation
time (March 23, 2006) of this document:

choosebank(infobank = TRUE)[1:3,]

bank status
1 genbank on
2 embl on
3 emblwgs on

info
1 GenBank Rel. 152 (15 February 2006) Last Updated: Mar 23, 2006
2 EMBL Library Release 85 (December 2005)
3 EMBL Whole Genome Shotgun sequences Release 85 (December 2005)

1 SeqinR 1.0-4 15

Note that there is a status column because a database could be un-
available for a while during updates. If you try call choosebank(bank =
"bankname") when the bank called bankname is off from server, you will get
an explicit error message stating that this bank is temporarily unavailable,
for instance:

choosebank("off")

Error in choosebank("off") : Database with name -->off<-- is currently off for maintenance, please try again later.

Some special purpose databases are not listed by default. These are tagged
databases that are only listed if you provide an explicit tagbank argument
to the choosebank() function. Of special interest for teaching purposes is
the TP tag, an acronym for Travaux Pratiques which means ”practicals”, and
corresponds to frozen databases so that you can set up a practical whose
results are stable from year to year. Currently available frozen databases at
the default server are:

choosebank(tagbank = "TP", infobank = TRUE)

bank status
1 emblTP on
2 swissprotTP on
3 hoverprotTP on
4 hovernuclTP on
5 trypano on

info
1 EMBL Library Release 78 WITHOUT ESTs (March 2004)
2 UniProt Rel. 1 (SWISS-PROT 43 + TrEMBL 26 + NEW): Last Updated: May 3, 2004
3 HOVERGEN - Release 45 (Jan 22 2004) Last Updated: Jan 22, 2004
4 HOVERGEN - Release 45 (Jan 22 2004) Last Updated: Jan 22, 2004
5 trypano Rel. 1 (27 Janvier 2004) Last Updated: Jan 27, 2004

Now, if you want to work with a given database, say GenBank, just call
choosebank() with "genbank" as its first argument and store the result in a
variable in the workspace, called for instance mybank in the example thereafter:

mybank <- choosebank("genbank")
str(mybank)

List of 8
$ socket :Classes 'sockconn', 'connection' int 8
$ bankname: chr "genbank"
$ totseqs : chr "58763669"
$ totspecs: chr "357303"
$ totkeys : chr "1427601"
$ release : chr "GenBank Rel. 152 (15 February 2006) Last Updated: Mar 23, 2006"
$ status :Class 'AsIs' chr "on"
$ details : chr [1:3] "GenBank Rel. 152 (15 February 2006) Last Updated: Mar 23, 2006" "60,869,697,571 bases; 55,921,644 sequences; 2,842,024 subseqs; 410,216 refers." "Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I"

The list returned by choosebank() here means that in the database called
genbank at the compilation time of this document there were 58,763,669 se-
quences from 357,303 species and a total of 1,427,601 keywords. The status
of the bank was on, and the release information was GenBank Rel. 152 (15
February 2006) Last Updated: Mar 23, 2006. For specialized databases,
some relevant informations are also given in the details component, for in-
stance:

16 D. Charif & J.R. Lobry & L. Palmeira

choosebank("taxobacgen")$details

[1] "TaxoBacGen Rel. 7 (September 2005)"
[2] "1,151,149,763 bases; 254,335 sequences; 847,767 subseqs; 63,879 refers."
[3] "Data compiled from GenBank by Gregory Devulder"
[4] "Laboratoire de Biometrie & Biologie Evolutive, Univ Lyon I"
[5] "------------------------------"
[6] "This database is a taxonomic genomic database."
[7] "It results from an expertise crossing the data nomenclature database DSMZ"
[8] "[http://www.dsmz.de/species/bacteria.htm Deutsche Sammlung von"
[9] "Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany]"
[10] "and GenBank."
[11] "- Only contains sequences described under species present in"
[12] "Bacterial Nomenclature Up-to-date."
[13] "- Names of species and genus validly published according to the"
[14] "Bacteriological Code (names with standing in nomenclature) is"
[15] "added in field \"DEFINITION\"."
[16] "- A keyword \"type strain\" is added in field \"FEATURES/source/strain\" in"
[17] "GenBank format definition to easyly identify Type Strain."
[18] "Taxobacgen is a genomic database designed for studies based on a strict"
[19] "respect of up-to-date nomenclature and taxonomy."

The previous command has a side-effect that is worth mentioning. As from
seqinR 1.0-3, the result of the choosebank() function is automatically stored
in a global variable named banknameSocket, so that if no socket argument
is given to the query() function, the last opened database will be used by
default for your requests. This is just a matter of convenience so that you don’t
have to explicitly specify the details of the socket connection when working
with the last opened database. You have, however, full control of the process
since choosebank() returns (invisibly) all the required details. There is no
trouble to open simultaneously many databases. You are just limited by the
number of simultaneous connections your build of R is allowed1.

For advanced users who may wish to access to more than one database
at time, a good advice is to close them with the function closebank() as
soon as possible so that the maximum number of simultaneous connections is
never reached. In the example below, we want to display the number of taxa
(i.e. the number of nodes) in the species taxonomy associated with each avail-
able database (including frozen databases). For this, we loop over available
databases and close them as soon as the information has been retrieved.

banks <- c(choosebank(), choosebank(tagbank = "TP"))
ntaxa <- numeric(0)
for (i in banks) {

ntaxa[i] <- as.numeric(choosebank(i)$totspecs)
closebank()

}
dotchart(log10(ntaxa[order(ntaxa)]), pch = 19, main = "Number of taxa in available databases",

xlab = "Log10(number of taxa)")

1 There is a very convenient function called closeAllConnections() in the R base
package if you want to close all open connections at once.

1 SeqinR 1.0-4 17

nrsub
trypano
hoppsigen
ensembl
homolensprot
homolensnucl
refseq
nurebprot
nurebnucl
emglib
greview
emblwgs
hogennucl
hogendnucl
hogenprot
hogendprot
HAMAPprot
HAMAPnucl
hobacprot
hovernuclTP
hoverprotTP
hoverclnu
nbrf
hoverclpr
taxobacgen
hovernucl
hoverprot
hobacnucl
swissprotTP
swissprot
emblTP
embl
genbank

●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

1 2 3 4 5

Number of taxa in available databases

Log10(number of taxa)

Make your query

For this section, set up the default bank to GenBank, so that you don’t have
to provide the sockets details for the query() function:

choosebank("genbank")

Then, you have to say what you want, that is to compose a query to select
the subset of sequences you are interested in. The way to do this is documented
under ?query, we just give here a simple example. In the query below, we want
to select all the coding sequences (t=cds) from cat (sp=felis catus) that are
not (et no) partial sequences (k=partial). We want the result to be stored
in an object called completeCatsCDS.
query("completeCatsCDS", "sp=felis catus et t=cds et no k=partial")

Now, there is in the workspace an object called completeCatsCDS, which
does not contain the sequences themselves but the sequence names (and vari-
ous relevant informations such as the genetic code and the frame) that fit the
query. They are stored in the req component of the object, let’s see the name
of the first ten of them:

sapply(completeCatsCDS$req[1:10], getName)

18 D. Charif & J.R. Lobry & L. Palmeira

[1] "AB000483.PE1" "AB000484.PE1" "AB000485.PE1" "AB004237"
[5] "AB004238" "AB009279.PE1" "AB009280.PE1" "AB010872.UGT1A1"
[9] "AB011965.SDF-1A" "AB011966.SDF-1B"

The first sequence that fit our request is AB000483.PE1, the second one
is AB000484.PE1, and so on. Note that the sequence name may have an ex-
tension, this corresponds to subsequences, a specificity of the ACNUC system
that allows to handle easily a subsequence with a biological meaning, typi-
cally a gene. The list of available subsequences in a given database is given
by the function getType(), for example the list of available subsequences in
GenBank is given in table 1.3.

Type Description

1 CDS .PE protein coding region
2 LOCUS sequenced DNA fragment
3 MISC RNA .RN other structural RNA coding region
4 RRNA .RR mature ribosomal RNA
5 SCRNA .SC small cytoplasmic RNA
6 SNRNA .SN small nuclear RNA
7 TRNA .TR mature transfer RNA

Table 1.3. Available subsequences in genbank

The component call of completeCatsCDS keeps automatically a trace of
the way you have selected the sequences:

completeCatsCDS$call

query(listname = "completeCatsCDS", query = "sp=felis catus et t=cds et no k=partial")

At this stage you can quit your R session saving the workspace image. The
next time an R session is opened with the workspace image restored, there will
be an object called completeCatsCDS, and looking into its call component
will tell you that it contains the names of complete coding sequences from
Felis catus.

In practice, queries for sequences are rarely done in one step and are more
likely to be the result of an iterative, progressively refining, process. An im-
portant point is that a list of sequences can be re-used. For instance, we can
re-use completeCatsCDS to get only the list of sequences that were published
in 2004:

query("ccc2004", "completeCatsCDS et y=2004")
length(ccc2004$req)

[1] 57

Hence, there were 57 complete coding sequences published in 2004 for Felis
catus in GenBank.

1 SeqinR 1.0-4 19

As from release 1.0-3 of the seqinR package, there is new parameter
virtual which allows to disable the automatic retrieval of information for
all list elements. This is interesting for list with many elements, for instance :

query("allcds", "t=cds", virtual = TRUE)
allcds$nelem

[1] 3063389

There are therefore 3,063,389 coding sequences in this version of Gen-
Bank2. It would be long to get all the informations for the elements of this
list, so we have set the parameter virtual to TRUE and the req component
of the list has not been documented:

allcds$req

[[1]]
[1] NA

However, the list can still be re-used3, for instance we may extract from
this list all the sequences from, say, Mycoplasma genitalium:

query("small", "allcds et sp=mycoplasma genitalium", virtual = TRUE)
small$nelem

[1] 916

There are then 916 elements in the list small, so that we can safely repeat
the previous query without asking for a virtual list:

query("small", "allcds et sp=mycoplasma genitalium")
sapply(small$req, getName)[1:10]

[1] "AY191424" "AY386807" "AY386808" "AY386809" "AY386810" "AY386811"
[7] "AY386812" "AY386813" "AY386814" "AY386815"

Here are some illustrations of using virtual list to answer simple questions
about the current GenBank release.

Man. How many sequences are available for our species?
query("man", "sp=homo sapiens", virtual = T)
man$nelem

[1] 10142972

There are 10,142,972 sequences from Homo sapiens.
Sex. How many sequences are annotated with a keyword starting by sex?

query("sex", "k=sex@", virtual = T)
sex$nelem

[1] 1062

There are 1,062 such sequences.
tRNA. How many complete tRNA sequences are available?
2 which is stored in the release component of the object banknameSocket and

current value is today (March 23, 2006): banknameSocket$release = GenBank

Rel. 152 (15 February 2006) Last Updated: Mar 23, 2006.
3 of course, as long as the socket connection with the server has not been lost:

virtual lists details are only known by the server.

20 D. Charif & J.R. Lobry & L. Palmeira

query("trna", "t=trna et no k=partial", virtual = T)
trna$nelem

[1] 162281

There are 162,281 complete tRNA sequences.
Nature vs. Science. In which journal were the more sequences published?

query("nature", "j=nature", virtual = T)
nature$nelem

[1] 1155303

query("science", "j=science", virtual = T)
science$nelem

[1] 1232149

There are 1,155,303 sequences published in Nature and 1,232,149 se-
quences published in Science, so that the winner is Science.

Smith. How many sequences have Smith (last name) as author?
query("smith", "au=smith", virtual = T)
smith$nelem

[1] 1267937

There are 1,267,937 such sequences.
YK2. How many sequences were published after year 2000 (included)?

query("yk2", "y>2000", virtual = T)
yk2$nelem

[1] 44518219

There are 44,518,219 sequences published after year 2000.
Organelle contest. Do we have more sequences from chloroplast genomes

or from mitochondion genomes?
query("chloro", "o=chloroplast", virtual = T)
chloro$nelem

[1] 107851

query("mito", "o=mitochondrion", virtual = T)
mito$nelem

[1] 345370

There are 107,851 sequences from chloroplast genomes and 345,370 se-
quences from mitochondrion genomes, so that the winner is mitochon-
drion.

Extract sequences of interest

The sequence itself is obtained with the function getSequence(). For example,
the first 50 nucleotides of the first sequence of our request are:

myseq <- getSequence(completeCatsCDS$req[[1]])
myseq[1:50]

[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c" "c" "g" "t" "t"
[19] "t" "t" "t" "a" "g" "g" "c" "a" "c" "c" "t" "g" "c" "t" "c" "c" "t" "g"
[37] "g" "t" "g" "c" "t" "g" "c" "a" "g" "c" "t" "g" "g" "t"

They can also be coerced as string of character with the function c2s():
c2s(myseq[1:50])

[1] "atgaatcaaggagccgtttttaggcacctgctcctggtgctgcagctggt"

1 SeqinR 1.0-4 21

Note that what is done by getSequence() is much more complex than a
substring extraction because subsequences of biological interest are not nec-
essarily contiguous or even on the same DNA strand. Consider for instance
the following coding sequence from sequence AE003734:

AE003734.PE35 Location/Qualifiers (length=1833 bp)
CDS join(complement(162997..163210),

complement(162780..162919),complement(161238..162090),
146568..146732,146806..147266)
/gene="mod(mdg4)"
/locus_tag="CG32491"
/note="CG32491 gene product from transcript CG32491-RT;
trans-splicing"

To get the coding sequence manually you would have join 5 different pieces
from AE003734 and some of them are in the complementary strand. With
getSequence() you don’t have to think about this. Just make a query with
the sequence name:

query("transspliced", "N=AE003734.PE35")
length(transspliced$req)

[1] 1

getName(transspliced$req[[1]])

[1] "AE003734.PE35"

Ok, now there is in your workspace an object called transspliced which
req component is of length one (because you have asked for just one sequence)
and the name of the single element of the req component is AE003734.PE35
(because this is the name of the sequence you wanted). Let see the first 50
base of this sequence:

getSequence(transspliced$req[[1]])[1:50]

[1] "a" "t" "g" "g" "c" "g" "g" "a" "c" "g" "a" "c" "g" "a" "g" "c" "a" "a"
[19] "t" "t" "c" "a" "g" "c" "t" "t" "g" "t" "g" "c" "t" "g" "g" "a" "a" "c"
[37] "a" "a" "c" "t" "t" "c" "a" "a" "c" "a" "c" "g" "a" "a"

All the complex transsplicing operations have been done here. You can
check that there is no in-frame stop codons4 with the getTrans() function to
translate this coding sequence into protein:

getTrans(transspliced$req[[1]])[1:50]

[1] "M" "A" "D" "D" "E" "Q" "F" "S" "L" "C" "W" "N" "N" "F" "N" "T" "N" "L"
[19] "S" "A" "G" "F" "H" "E" "S" "L" "C" "R" "G" "D" "L" "V" "D" "V" "S" "L"
[37] "A" "A" "E" "G" "Q" "I" "V" "K" "A" "H" "R" "L" "V" "L"

table(getTrans(transspliced$req[[1]]))

* A C D E F G H I K L M N P Q R S T V W Y
1 55 9 38 50 22 28 11 20 40 36 10 21 35 57 22 54 50 38 1 13

In a more graphical way:
4 Stop codons are represented by the character * when translated into protein.

22 D. Charif & J.R. Lobry & L. Palmeira

aacount <- table(getTrans(transspliced$req[[1]]))
aacount <- aacount[order(aacount)]
names(aacount) <- aaa(names(aacount))
dotchart(aacount, pch = 19, xlab = "Stop and amino-acid counts",

main = "There is only one stop codon in AE003734.PE35")
abline(v = 1, lty = 2)

Stp
Trp
Cys
Met
His
Tyr
Ile
Asn
Phe
Arg
Gly
Pro
Leu
Asp
Val
Lys
Glu
Thr
Ser
Ala
Gln

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

There is only one stop codon in AE003734.PE35

Stop and amino−acid counts

Note that the relevant variant of the genetic code was automatically set
up during the translation of the sequence into protein. This is because the
transspliced$req[[1]] object belongs to the SeqAcnucWeb class:
class(transspliced$req[[1]])

[1] "SeqAcnucWeb"

Therefore, when you are using the getTrans() function, you are auto-
matically redirected to the getTrans.SeqAcnucWeb() function which knows
how to take into account the relevant frame and genetic code for your coding
sequence.

1.3 How to deal with sequences

1.3.1 Sequence classes

There are at present three classes of sequences, depending on the way they
were obtained:

1 SeqinR 1.0-4 23

� seqFasta is the class for the sequences that were imported from a fasta
file

� seqAcnucWeb is the class for the sequences coming from an ACNUC
database server

� seqFrag is the class for the sequences that are fragments of other sequences

1.3.2 Generic methods for sequences

All sequence classes are sharing a common interface, so that there are very few
method names we have to remember. In addition, all classes have their specific
as.ClassName method that return an instance of the class, and is.ClassName
method to check whether an object belongs or not to the class. Available
methods are:

Methods Result Type of result
getFrag a sequence fragment a sequence fragment

getSequence the sequence vector of characters
getName the name of a sequence string
getLength the length of a sequence numeric vector
getTrans translation into amino-acids vector of characters
getAnnot sequence annotations vector of string

getLocationposition of a Sequence on its parent sequencelist of numeric vector

1.3.3 Internal representation of sequences

The current mode of sequence storage is done with vectors of characters in-
stead of strings. This is very convenient for the user because all R tools to
manipulate vectors are immediatly available. The price to pay is that this stor-
age mode is extremly expensive in terms of memory. They are two utilities
called s2c() and c2s() that allows to convert strings into vector of characters,
and vice versa, respectively.

Sequences as vectors of characters

In the vectorial representation mode, all the very convenient R tools for in-
dexing vectors are at hand.

1. Vectors can be indexed by a vector of positive integers saying which ele-
ments are to be selected. As we have already seen, the first 50 elements
of a sequence are easily extracted thanks to the binary operator from:to,
as in:
1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
[49] 49 50

myseq[1:50]

24 D. Charif & J.R. Lobry & L. Palmeira

[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c" "c" "g" "t" "t"
[19] "t" "t" "t" "a" "g" "g" "c" "a" "c" "c" "t" "g" "c" "t" "c" "c" "t" "g"
[37] "g" "t" "g" "c" "t" "g" "c" "a" "g" "c" "t" "g" "g" "t"

The seq() function allows to build more complexe integer vectors. For
instance in coding sequences it is very common to focus on third codon
positions where selection is weak. Let’s extract bases from third codon
positions:
tcp <- seq(from = 3, to = length(myseq), by = 3)
tcp[1:10]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp <- myseq[tcp]
myseqtcp[1:10]

[1] "g" "t" "a" "a" "c" "t" "t" "g" "c" "g"

2. Vectors can also be indexed by a vector of negative integers saying which
elements have to be removed. For instance, if we want to keep first and
second codon positions, the easiest way is to remove third codon positions:
-tcp[1:10]

[1] -3 -6 -9 -12 -15 -18 -21 -24 -27 -30

myseqfscp <- myseq[-tcp]
myseqfscp[1:10]

[1] "a" "t" "a" "a" "c" "a" "g" "g" "g" "c"

3. Vectors are also indexable by a vector of logicals whose TRUE values say
which elements to keep. Here is a different way to extract all third coding
positions from our sequence. First, we define a vector of three logicals with
only the last one true:
ind <- c(F, F, T)
ind

[1] FALSE FALSE TRUE

This vector seems too short for our purpose because our sequence is much
more longer with its 1425 bases. But under R vectors are automatically
recycled when they are not long enough:
(1:30)[ind]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp2 <- myseq[ind]

The result should be the same as previously:
identical(myseqtcp, myseqtcp2)

[1] TRUE

This recycling rule is extremely convenient in practice but may have sur-
prising effects if you assume (incorrectly) that there is a stringent dimen-
sion control for R vectors as in linear algebra.

Another advantage of working with vector of characters is that most R
functions are vectorized so that many things can be done without explicit
looping. Let’s give some very simple examples:

tota <- sum(myseq == "a")

The total number of a in our sequence is 350. Let’s compare graphically
the different base counts in our sequence :

1 SeqinR 1.0-4 25

basecount <- table(myseq)
myseqname <- getName(completeCatsCDS$req[[1]])
dotchart(basecount, xlim = c(0, max(basecount)), pch = 19,

main = paste("Base count in", myseqname))

a
c
g
t

●

●

●

●

0 100 200 300 400

Base count in AB000483.PE1

dinuclcount <- count(myseq, 2)
dotchart(dinuclcount[order(dinuclcount)], xlim = c(0, max(dinuclcount)),

pch = 19, main = paste("Dinucleotide count in", myseqname))

ta

cg

at

tt

gt

ac

tc

gc

cc

aa

ga

ca

gg

tg

ct

ag

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

Dinucleotide count in AB000483.PE1

codonusage <- uco(myseq)
dotchart.uco(codonusage, main = paste("Codon usage in", myseqname))

26 D. Charif & J.R. Lobry & L. Palmeira

ctg
ctc
ttg
ctt
cta
tta

tcc
agc
tct
agt
tca
tcg

gtg
gtc
gtt
gta

aag
aaa

acc
aca
act
acg

ggg
ggc
gga
ggt

cag
caa

gag
gaa

gca
gct
gcc
gcg

agg
cgc
aga
cgg
cgt
cga

ccc
cct
ccg
cca

aac
aat

tgc
tgt

ttt
ttc

atc
att
ata

gac
gat

atg

tgg

tac
tat

cac
cat

tga
tag
taa

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●
●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●
●

Stp

His

Tyr

Trp

Met

Asp

Ile

Phe

Cys

Asn

Pro

Arg

Ala

Glu

Gln

Gly

Thr

Lys

Val

Ser

Leu

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

Codon usage in AB000483.PE1

Sequences as strings

If you are interested in (fuzzy) pattern matching, then it is advisable to work
with sequence as strings to take advantage of regular expression implemented
in R. The function words.pos() returns the positions of all occurrences of
a given regular expression. Let’s suppose we want to know where are the
trinucleotides ”cgt” in a sequence, that is the fragment CpGpT in the direct
strand:

mystring <- c2s(myseq)
words.pos("cgt", mystring)

1 SeqinR 1.0-4 27

[1] 15 854 909 919 987 1248

We can also look for the fragment CpGpTpY to illustrate fuzzy matching
because Y (IUPAC code for pyrimidine) stands C or T:

words.pos("cgt[ct]", mystring)

[1] 15 909 919

To look for all CpC dinucleotides separated by 3 or 4 bases:
words.pos("cc.{3,4}cc", mystring)

[1] 27 121 152 278 431 437 471 476 477 492 555 618 722 788
[15] 809 885 886 939 1043 1046 1190 1220 1263

Virtually any pattern is easily encoded with a regular expression. This is
especially useful at the protein level because many functions can be attributed
to short linear motifs.

1.4 Multivariate analyses

1.4.1 Correspondence analysis

This is the most popular multivariate data analysis technique for amino-acid
and codon count tables, its application, however, is not without pitfalls [20].
Its primary goal is to transform a table of counts into a graphical display,
in which each gene (or protein) and each codon (or amino-acid) is depicted
as a point. Correspondence analysis (CA) may be defined as a special case of
principal components analysis (PCA) with a different underlying metrics. The
interest of the metrics in CA, that is the way we measure the distance between
two individuals, is illustrated bellow with a very simple example (Table 1.4
inspired from [3]) with only three proteins having only three amino-acids, so
that we can represent exactly on a map the consequences of the metric choice.

data(toyaa)
toyaa

Ala Val Cys
1 130 70 0
2 60 40 0
3 60 35 5

Let’s first use the regular Euclidian metrics between two proteins i and i′,

d2(i, i′) =
J∑

j=1

(nij − ni′j)2 (1.1)

to visualize this small data set:

28 D. Charif & J.R. Lobry & L. Palmeira

Ala Val Cys

1 130 70 0
2 60 40 0
3 60 35 5

Table 1.4. A very simple example of amino-acid counts in three proteins to be
loaded with data(toyaa).

library(ade4)
pco <- dudi.pco(dist(toyaa), scann = F, nf = 2)
myplot <- function(res, ...) {

plot(res$li[, 1], res$li[, 2], ...)
text(x = res$li[, 1], y = res$li[, 2], labels = 1:3, pos = ifelse(res$li[,

2] < 0, 1, 3))
perm <- c(3, 1, 2)
lines(c(res$li[, 1], res$li[perm, 1]), c(res$li[, 2],

res$li[perm, 2]))
}
myplot(pco, main = "Euclidian distance", asp = 1, pch = 19,

xlab = "", ylab = "", las = 1)

●

●

●

−20 0 20 40

−30

−20

−10

0

10

20

30

Euclidian distance

1

2

3

From this point of view, the first individual is far away from the two others.
But thinking about it, this is a rather trivial effect of protein size:
rowSums(toyaa)

1 2 3
200 100 100

1 SeqinR 1.0-4 29

With 200 amino-acids, the first protein is two times bigger than the others
so that when computing the Euclidian distance (1.1) its nij entries are on
average bigger, sending it away from the others. To get rid of this trivial
effect, the first obvious idea is to divide counts by protein lengths so as to
work with protein profiles. The corresponding distance is,

d2(i, i′) =
J∑

j=1

(
nij

ni•
− ni′j

ni′•
)2 (1.2)

where ni• and ni′• are the total number of amino-acids in protein i and
i′, respectively.

profile <- toyaa/rowSums(toyaa)
profile

Ala Val Cys
1 0.65 0.35 0.00
2 0.60 0.40 0.00
3 0.60 0.35 0.05

pco1 <- dudi.pco(dist(profile), scann = F, nf = 2)
myplot(pco1, main = "Euclidian distance on protein profiles",

asp = 1, pch = 19, xlab = "", ylab = "", ylim = range(pco1$li[,
2]) * 1.2)

●

●

●

−0.04 −0.02 0.00 0.02 0.04

−
0.

02
0.

00
0.

02
0.

04

Euclidian distance on protein profiles

1
2

3

The pattern is now completely different with the three protein equally
spaced. This is normal because in terms of relative amino-acid composition

30 D. Charif & J.R. Lobry & L. Palmeira

they are all differing two-by-two by 5% at the level of two amino-acids only.
We have clearly removed the trivial protein size effect, but this is still not
completely satisfactory. The proteins are differing by 5% for all amino-acids
but the situation is somewhat different for Cys because this amino-acid is very
rare. A difference of 5% for a rare amino-acid has not the same significance
than a difference of 5% for a common amino-acid such as Ala in our example.
To cope with this, CA make use of a variance-standardizing technique to
compensate for the larger variance in high frequencies and the smaller variance
in low frequencies. This is achieved with the use of the chi-square distance
(χ2) which differs from the previous Euclidean distance on profiles (1.2) in
that each square is weighted by the inverse of the frequency corresponding to
each term,

d2(i, i′) = n••

J∑
j=1

1
n•j

(
nij

ni•
− ni′j

ni′•
)2 (1.3)

where n•j is the total number of amino-acid of kind j and n•• the total
number of amino-acids. With this point of view, the map is now like this:

coa <- dudi.coa(toyaa, scann = FALSE, nf = 2)
myplot(coa, main = expression(paste(chi^2, " distance")),

asp = 1, pch = 19, xlab = "", ylab = "")

●

●

●

−0.1 0.0 0.1 0.2 0.3

−
0.

2
−

0.
1

0.
0

0.
1

χ2 distance

1

2

3

1 SeqinR 1.0-4 31

The pattern is completely different with now protein number 3 which is
far away from the others because it is enriched in the rare amino-acid Cys as
compared to others.

The purpose of this small example was to demonstrates that the metric
choice is not without dramatic effects on the visualisation of data. Depending
on your objectives, you may agree or disagree with the χ2 metric choice, that’s
not a problem, the important point is that you should be aware that there is
an underlying model there, chacun a son goût ou chacun à son goût, it’s up
to you.

Now, if you agree with the χ2 metric choice, there’s a nice representation
that may help you for the interpretation of results. This is a kind of ”biplot”
representation in which the lines and columns of the dataset are simultane-
ously represented, in the right way, that is as a graphical translation of a
mathematical theorem, but let’s see how does it look like in practice:
scatter(coa, clab.col = 0.8, clab.row = 0.8, posi = "none")

 d = 0.5

 1

 2
 3

 Ala

 Val
 Cys

What is obvious is that the Cys content has a major effect on protein
variability here, no scoop. Please note how the information is well summarised
here: protein number 3 differs because it’s enriched in in Cys ; protein number
1 and 2 are almost the same but there is a small trend protein number 1 to be
enriched in Ala. As compared to to table 1.4 this graph is of poor information
here, so let’s try a more big-rooom-sized example (with 20 columns so as to
illustrate the dimension reduction technique).

32 D. Charif & J.R. Lobry & L. Palmeira

Data are from [17], a sample of the proteome of Escherichia coli. According
to the title of this paper, the most important factor for the between-protein
variability is hydrophilic - hydrophobic gradient. Let’s try to reproduce this
assertion :

download.file(url = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt",
destfile = "data.txt")

ec <- read.table(file = "data.txt", header = TRUE, row.names = 1)
ec.coa <- dudi.coa(ec, scann = FALSE, nf = 1)
F1 <- ec.coa$li[, 1]
hist(F1, proba = TRUE, xlab = "First factor for amino-acid variability",

col = grey(0.8), border = grey(0.5), las = 1, ylim = c(0,
6), main = "Protein distribution on first factor")

lines(density(F1, adjust = 0.5), lwd = 2)

Protein distribution on first factor

First factor for amino−acid variability

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0

1

2

3

4

5

6

There is clearly a bimodal distribution of proteins on the first factor. What
are the the amino-acid coordinates on this factor?

aacoo <- ec.coa$co[, 1]
names(aacoo) <- rownames(ec.coa$co)
aacoo <- sort(aacoo)
dotchart(aacoo, pch = 19, xlab = "Coordinate on first factor",

main = "Amino acid coordinates on first factor")

1 SeqinR 1.0-4 33

glu
asp
arg
gln
lys
his
asn
pro
cys
thr
tyr
ala
val
ser
leu
gly
ile
met
phe
trp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2 0.3

Amino acid coordinates on first factor

Coordinate on first factor

Aliphatic and aromatic amino-acids have positive values while charged
amino-acids have negative values5. Let’s try to compute the GRAVY score
(i.e. the Kyte and Doolittle hydropathic index[5]) of our proteins to compare
this with their coordinates on the first factor. We need first the amino-acid
relatives frequencies in the proteins, for this we divide the all the amino-acid
counts by the total by row:
ecfr <- ec/rowSums(ec)
ecfr[1:5, 1:5]

arg leu ser thr pro
FOLE 0.05829596 0.10313901 0.06278027 0.08520179 0.03587444
MSBA 0.06529210 0.10309278 0.08591065 0.06185567 0.02233677
NARV 0.06637168 0.12831858 0.06637168 0.05752212 0.03539823
NARW 0.05627706 0.16450216 0.05627706 0.03030303 0.04329004
NARY 0.06614786 0.06420233 0.05058366 0.03891051 0.06031128

We need also the coefficients corresponding to the GRAVY score:
gravy <- read.table(file = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/gravy.txt")
gravy[1:5,]

V1 V2
1 Ala 1.8
2 Arg -4.5
3 Asn -3.5
4 Asp -3.5
5 Cys 2.5

coef <- gravy$V2

The coefficient are given in the alphabetical order of the three letter code
for the amino acids, that is in a different order than in the object ecfr:
5 The physico-chemical classes for amino acids are given in the component
AA.PROPERTY of the SEQINR.UTIL object.

34 D. Charif & J.R. Lobry & L. Palmeira

names(ecfr)

[1] "arg" "leu" "ser" "thr" "pro" "ala" "gly" "val" "lys" "asn" "gln" "his"
[13] "glu" "asp" "tyr" "cys" "phe" "ile" "met" "trp"

We then re-order the columns of the data set and check that everthing is
OK:

ecfr <- ecfr[, order(names(ecfr))]
ecfr[1:5, 1:5]

ala arg asn asp cys
FOLE 0.08520179 0.05829596 0.04035874 0.05381166 0.008968610
MSBA 0.08247423 0.06529210 0.03608247 0.05154639 0.003436426
NARV 0.05309735 0.06637168 0.01769912 0.02212389 0.013274336
NARW 0.09090909 0.05627706 0.02597403 0.09090909 0.017316017
NARY 0.06225681 0.06614786 0.03891051 0.05642023 0.035019455

all(names(ecfr) == tolower(as.character(gravy$V1)))

[1] TRUE

Now, thanks to R build-in matrix multiplication, it’s only one line to com-
pute the GRAVY score:

gscores <- as.matrix(ecfr) %*% coef
plot(gscores, F1, xlab = "GRAVY Score", ylab = "F1 Score",

las = 1, main = "The first factor is protein hydrophaty")

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

●

●

●
●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

● ● ●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

● ●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

−1.0 −0.5 0.0 0.5 1.0

−0.2

0.0

0.2

0.4

The first factor is protein hydrophaty

GRAVY Score

F
1

S
co

re

The proteins with high GRAVY scores are integral membrane proteins,
and those with low scores are cytoplasmic proteins. Now, suppose that we

1 SeqinR 1.0-4 35

want to adjust a mixture of two normal distributions to get an estimate of
the proportion of cytoplasmic and integral membrane proteins. We first have
a look on the predefined distributions (Table 1.5), but there is apparently not
an out of the box solution. We then define our own probability density func-

d p q r

beta dbeta pbeta qbeta rbeta
binom dbinom pbinom qbinom rbinom
cauchy dcauchy pcauchy qcauchy rcauchy

chisq dchisq pchisq qchisq rchisq
exp dexp pexp qexp rexp

f df pf qf rf
gamma dgamma pgamma qgamma rgamma

geom dgeom pgeom qgeom rgeom
hyper dhyper phyper qhyper rhyper
lnorm dlnorm plnorm qlnorm rlnorm
logis dlogis plogis qlogis rlogis

nbinom dnbinom pnbinom qnbinom rnbinom
norm dnorm pnorm qnorm rnorm
pois dpois ppois qpois rpois

signrank dsignrank psignrank qsignrank rsignrank
t dt pt qt rt

unif dunif punif qunif runif
weibull dweibull pweibull qweibull rweibull
wilcox dwilcox pwilcox qwilcox rwilcox

Table 1.5. Density, distribution function, quantile function and random generation
for the predefined distributions under R

tion and then use fitdistr from package MASS to get a maximum likelihood
estimate of the parameters:

dmixnor <- function(x, p, m1, sd1, m2, sd2) {
p * dnorm(x, m1, sd1) + (1 - p) * dnorm(x, m2, sd2)

}
library(MASS)
e <- fitdistr(F1, dmixnor, list(p = 0.88, m1 = -0.04, sd1 = 0.076,

m2 = 0.34, sd2 = 0.07))$estimate
e

p m1 sd1 m2 sd2
0.88405009 -0.03989489 0.07632235 0.33579162 0.06632259

hist(F1, proba = TRUE, col = grey(0.8), main = "Ajustement with a mixture of two normal distributions",
xlab = "First factor for amino-acid variability", las = 1)

xx <- seq(from = min(F1), to = max(F1), length = 200)
lines(xx, dmixnor(xx, e[1], e[2], e[3], e[4], e[5]), lwd = 2)

36 D. Charif & J.R. Lobry & L. Palmeira

Ajustement with a mixture of two normal distributions

First factor for amino−acid variability

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0

1

2

3

4

1.4.2 Synonymous and non-synonymous analyses

Genetic codes are surjective applications from the set codons (n = 64) into
the set of amino-acids (n = 20) :

1 SeqinR 1.0-4 37

The surjective nature of genetic codes
Genetic code number 1

Adapted from insert 2 in Lobry & Chessel (2003) JAG 44:235

gcagccgcggctaga
agg

cga
cgc

cgg
cgt

aac
aat
gac

gat

tgc

tgt

caa
cag

gaa

gag
gga

ggc
ggg

ggt
cac

cat
ata

atc
attctactcctgcttttattgaaa

aag
atg

ttc
ttt

cca
ccc

ccg
cct

agc
agt

tca

tcc

tcg
tct

taa

tag
tga
aca

acc
acg

act
tgg

tac
tat

gtagtcgtg gtt

AlaArg
Asn

Asp
Cys

Gln
Glu

Gly
His

IleLeuLysMet
Phe

Pro
Ser

Stp
Thr

Trp
TyrVal

A R N
D
C
Q
E

G
H

ILKM
F

P
S
*
T
W

Y V

Two codons encoding the same amino-acid are said synonymous while two
codons encoding a different amino-acid are said non-synonymous. The distinc-
tion between the synonymous and non-synonymous level are very important in
evolutionary studies because most of the selective pressure is expected to work
at the non-synonymous level, because the amino-acids are the components of
the proteins, and therefore more likely to be subject to selection.

Ks and Ka are an estimation of the number of substitutions per synony-
mous site and per non-synonymous site, respectively, between two protein-
coding genes [14]. The Ka

Ks
ratio is used as tool to evaluate selective pressure

(see [8] for a nice back to basics). Let’s give a simple illustration with three or-
thologous genes of the thioredoxin familiy from Homo sapiens, Mus musculus,
and Rattus norvegicus species:

ortho <- read.alignment(system.file("sequences/ortho.fasta",
package = "seqinr"), format = "fasta")

kaks.ortho <- kaks(ortho)
kaks.ortho$ka/kaks.ortho$ks

38 D. Charif & J.R. Lobry & L. Palmeira

AK002358.PE1 HSU78678.PE1
HSU78678.PE1 0.1243472
RNU73525.PE1 0.1405012 0.1356036

The Ka

Ks
ratios are less than 1, suggesting a selective pressure on those

proteins during evolution.
For transversal studies (i.e. codon usage studies in a genome at the time it

was sequenced) there is little doubt that the strong requirement to distinguish
between synonymous and an non-synonymous variability was the source of
many mistakes [20]. We have just shown here with a scholarship example
that the metric choice is not neutral. If you consider that the χ2 metric is
not too bad, with respect to your objectives, and that you want to quantify
the synonymous and an non-synonymous variability, please consider reading
this paper [16], and follow this link http://pbil.univ-lyon1.fr/members/
lobry/repro/jag03/ for on-line reproducibility.

Let’s now use the toy example given in table 1.6 to illustrate how to study
synonymous and non-synonymous codon usage.

data(toycodon)
toycodon

gca gcc gcg gct gta gtc gtg gtt tgt tgc
1 33 32 32 33 18 17 17 18 0 0
2 13 17 17 13 8 12 12 8 0 0
3 16 14 14 16 8 9 10 8 3 2

gca gcc gcg gct gta gtc gtg gtt tgt tgc

1 33 32 32 33 18 17 17 18 0 0
2 13 17 17 13 8 12 12 8 0 0
3 16 14 14 16 8 9 10 8 3 2

Table 1.6. A very simple example of codon counts in three coding sequences to be
loaded with data(toycodon).

Let’s first have a look to global codon usage, we do not take into account
the structure of the genetic code:

global <- dudi.coa(toycodon, scann = FALSE, nf = 2)
myplot(global, asp = 1, pch = 19, xlab = "", ylab = "", main = "Global codon usage")

1 SeqinR 1.0-4 39

●

●

●

−0.1 0.0 0.1 0.2 0.3

−
0.

2
−

0.
1

0.
0

0.
1

Global codon usage

1

2

3

From a global codon usage point of view, coding sequence number 3 is
away. To take into account the genetic code structure, we need to know for
which amino-acid the codons are coding. The codons are given by the names
of the columns of the object toycodon:

names(toycodon)

[1] "gca" "gcc" "gcg" "gct" "gta" "gtc" "gtg" "gtt" "tgt" "tgc"

Put all codon names into a single string:

c2s(names(toycodon))

[1] "gcagccgcggctgtagtcgtggtttgttgc"

Transform this string as a vector of characters:

s2c(c2s(names(toycodon)))

[1] "g" "c" "a" "g" "c" "c" "g" "c" "g" "g" "c" "t" "g" "t" "a" "g" "t" "c"
[19] "g" "t" "g" "g" "t" "t" "t" "g" "t" "t" "g" "c"

Translate this into amino-acids using the default genetic code:

translate(s2c(c2s(names(toycodon))))

[1] "A" "A" "A" "A" "V" "V" "V" "V" "C" "C"

Use the three letter code for amino-acid instead:

40 D. Charif & J.R. Lobry & L. Palmeira

aaa(translate(s2c(c2s(names(toycodon)))))

[1] "Ala" "Ala" "Ala" "Ala" "Val" "Val" "Val" "Val" "Cys" "Cys"

Make this a factor:

facaa <- factor(aaa(translate(s2c(c2s(names(toycodon))))))
facaa

[1] Ala Ala Ala Ala Val Val Val Val Cys Cys
Levels: Ala Cys Val

The non synonymous codon usage analysis is the between amino-acid anal-
ysis:

nonsynonymous <- t(between(dudi = t(global), fac = facaa,
scann = FALSE, nf = 2))

myplot(nonsynonymous, asp = 1, pch = 19, xlab = "", ylab = "",
main = "Non synonymous codon usage")

●

●

●

−0.1 0.0 0.1 0.2 0.3

−
0.

1
0.

0
0.

1
0.

2

Non synonymous codon usage

1

2

3

This is reminiscent of something, let’s have a look at amino-acid counts:

by(t(toycodon), facaa, colSums)

INDICES: Ala
1 2 3

130 60 60

INDICES: Cys
1 2 3
0 0 5

1 SeqinR 1.0-4 41

INDICES: Val
1 2 3
70 40 35

This is exactly the same data set that we used previously (table 1.4) at
the amino-acid level. The non synonymous codon usage analysis is exactly
the same as the amino-acid analysis. Coding sequence number 3 is far away
because it codes for many Cys, a rare amino-acid. Note that at the global
codon usage level, this is also the major visible structure. To get rid of this
amino-acid effect, we use the synonymous codon usage analysis, that is the
within amino-acid analysis:

synonymous <- t(within(dudi = t(global), fac = facaa, scann = FALSE,
nf = 2))

myplot(synonymous, asp = 1, pch = 19, xlab = "", ylab = "",
main = "Synonymous codon usage")

●

●

●

−0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

Synonymous codon usage

1

2

3

Now, coding sequence number 2 is away. When the amino-acid effect is
removed, the pattern is then completely different. To interpret the result we
look at the codon coordinates on the first factor of synonymous codon usage:

tmp <- synonymous$co[, 1, drop = FALSE]
tmp <- tmp[order(tmp$Axis1), , drop = FALSE]
colcod <- sapply(rownames(tmp), function(x) ifelse(substr(x,

3, 3) == "c" || substr(x, 3, 3) == "g", "blue", "red"))
pchcod <- ifelse(colcod == "red", 1, 19)
dotchart(tmp$Axis1, labels = toupper(rownames(tmp)), color = colcod,

42 D. Charif & J.R. Lobry & L. Palmeira

pch = pchcod, main = "Codon coordinates on first factor\nfor synonymous codon usage")
legend("topleft", inset = 0.02, legend = c("GC ending codons",

"AT ending codons"), text.col = c("blue", "red"), pch = c(19,
1), col = c("blue", "red"), bg = "white")

GTA

GTT

GCT

GCA

TGC

TGT

GCC

GCG

GTG

GTC

●

●

●

●

●

●

●

●

●

●

−0.10 −0.05 0.00 0.05 0.10

Codon coordinates on first factor
for synonymous codon usage

●

●

GC ending codons
AT ending codons

At the synonymous level, coding sequence number 2 is different because it
is enriched in GC-ending codons as compared to the two others. Note that this
is hard to see at the global codon usage level because of the strong amino-acid
effect.

To illustrate the interest of synonymous codon usage analyses, let’s use now
a more realistic example. In [17] there was an assertion stating that selection
for translation optimisation in Escherichia coli was also visible at the amino-
acid level. The argument was in figure 5 of the paper (cf fig 1.2), that can be
reproduced6 with the following R code:

ec <- read.table(file = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt",
header = TRUE, row.names = 1)

ec.coa <- dudi.coa(ec, scann = FALSE, nf = 3)
tmp <- read.table(file = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/ecoli999.cai")
cai <- exp(tmp$V2)
plot(cai, ec.coa$li[, 2], pch = 20, xlab = "CAI Score", ylab = "F2 Score",

main = "Fig 5 from Lobry & Gautier (1994) NAR 22:3174")

6 the code to reproduce all figures from [17] is available at http://pbil.

univ-lyon1.fr/members/lobry/repro/nar94/.

1 SeqinR 1.0-4 43

Fig. 1.2. Screenshot of figure 5 from [17]. Each point represents a protein. This was
to show the correlation between the codon adaptation index (CAI Score) with the
second factor of correspondence analysis at the amino-acid level (F2 Score). Highly
expressed genes have a high CAI value.

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Fig 5 from Lobry & Gautier (1994) NAR 22:3174

CAI Score

F
2

S
co

re

44 D. Charif & J.R. Lobry & L. Palmeira

So, there was a correlation between the CAI (Codon Adaptation Index [24])
and the second factor for amino-acid composition variability. However, this is
not completely convincing because the CAI is not completely independent
of the amino-acid composition of the protein. Let’s use within amino-acid
correspondence analysis to remove the amino-acid effect. Here is a commented
step-by-step analysis:

data(ec999)
class(ec999)

[1] "list"

names(ec999)[1:10]

[1] "ECFOLE.FOLE" "ECMSBAG.MSBA" "ECNARZYW-C.NARV" "ECNARZYW-C.NARW"
[5] "ECNARZYW-C.NARY" "ECNARZYW-C.NARZ" "ECNIRBC.NIRB" "ECNIRBC.NIRD"
[9] "ECNIRBC.NIRC" "ECNIRBC.CYSG"

ec999[[1]][1:50]

[1] "a" "t" "g" "c" "c" "a" "t" "c" "a" "c" "t" "c" "a" "g" "t" "a" "a" "a"
[19] "g" "a" "a" "g" "c" "g" "g" "c" "c" "c" "t" "g" "g" "t" "t" "c" "a" "t"
[37] "g" "a" "a" "g" "c" "g" "t" "t" "a" "g" "t" "t" "g" "c"

This is to load the data from [17] which is available as ec999 in the seqinR
package. The letters ec are for the bacterium Escherichia coli and the number
999 means that there were 999 coding sequences available from this species at
that time. The class of the object ec999 is a list, which names are the coding
sequence names, for instance the first coding sequence name is ECFOLE.FOLE.
Each element of the list is a vector of character, we have listed just above the 50
first character of the first coding sequence of the list with ec999[[1]][1:50],
we can see that there is a start codon (ATG) at the beginning of the first
coding sequence.

ec999.uco <- lapply(ec999, uco)
class(ec999.uco)

[1] "list"

class(ec999.uco[[1]])

[1] "table"

ec999.uco[[1]]

aaa aac aag aat aca acc acg act aga agc agg agt ata atc atg att caa cac cag
9 5 2 4 2 8 8 1 0 2 0 4 0 9 8 6 2 3 7

cat cca ccc ccg cct cga cgc cgg cgt cta ctc ctg ctt gaa gac gag gat gca gcc
7 1 1 6 0 1 7 1 4 1 3 13 3 12 3 1 9 1 6

gcg gct gga ggc ggg ggt gta gtc gtg gtt taa tac tag tat tca tcc tcg tct tga
7 5 2 3 0 4 0 5 9 4 0 2 0 2 2 3 2 1 1

tgc tgg tgt tta ttc ttg ttt
1 0 1 1 4 2 3

This is to compute the codon usage, that is how many times each codon
is used in each coding sequence. Because ec999 is a list, we use the function
lapply() to apply the same function, uco(), to all the elements of the list
and we store the result in the object ec999.uco. The object ec999.uco is a
list too, and all its elements belong to the class table.

1 SeqinR 1.0-4 45

df <- as.data.frame(lapply(ec999.uco, as.vector))
dim(df)

[1] 64 999

df[1:5, 1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
1 9 15 2 6 23
2 5 18 2 4 16
3 2 8 1 3 4
4 4 3 2 2 4
5 2 3 1 1 0

This is to put the codon usage into a data.frame. Note that the codons
are in row and the coding sequences are in columns. This is more convenient
for the following because groups for within and between analyses are usually
handled by row.

row.names(df) <- names(ec999.uco[[1]])
df[1:5, 1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
aaa 9 15 2 6 23
aac 5 18 2 4 16
aag 2 8 1 3 4
aat 4 3 2 2 4
aca 2 3 1 1 0

This is to keep a trace of codon names, just in case we would like to re-
order the dataframe df. This is important because we can now play with the
data at will without loosing any critical information.

ec999.coa <- dudi.coa(df = df, scannf = FALSE)
ec999.coa

Duality diagramm
class: coa dudi
$call: dudi.coa(df = df, scannf = FALSE)

$nf: 2 axis-components saved
$rank: 63
eigen values: 0.05536 0.02712 0.02033 0.01884 0.01285 ...

vector length mode content
1 $cw 999 numeric column weights
2 $lw 64 numeric row weights
3 $eig 63 numeric eigen values

data.frame nrow ncol content
1 $tab 64 999 modified array
2 $li 64 2 row coordinates
3 $l1 64 2 row normed scores
4 $co 999 2 column coordinates
5 $c1 999 2 column normed scores
other elements: N

This is to run global correspondence analysis of codon usage. We have set
the scannf parameter to FALSE because otherwise the eigenvalue bar plot is
displayed for the user to select manually the number of axes to be kept.

facaa <- as.factor(aaa(translate(s2c(c2s(rownames(df))))))
facaa

46 D. Charif & J.R. Lobry & L. Palmeira

[1] Lys Asn Lys Asn Thr Thr Thr Thr Arg Ser Arg Ser Ile Ile Met Ile Gln His
[19] Gln His Pro Pro Pro Pro Arg Arg Arg Arg Leu Leu Leu Leu Glu Asp Glu Asp
[37] Ala Ala Ala Ala Gly Gly Gly Gly Val Val Val Val Stp Tyr Stp Tyr Ser Ser
[55] Ser Ser Stp Cys Trp Cys Leu Phe Leu Phe
21 Levels: Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe ... Val

This is to define a factor for amino-acids. The function translate() use
by default the standard genetic code and this is OK for E. coli.

ec999.syn <- within(dudi = ec999.coa, fac = facaa, scannf = FALSE)
ec999.syn

Within analysis
call: within(dudi = ec999.coa, fac = facaa, scannf = FALSE)
class: within dudi

$nf (axis saved) : 2
$rank: 43
$ratio: 0.6438642

eigen values: 0.04855 0.0231 0.01425 0.007785 0.006748 ...

vector length mode content
1 $eig 43 numeric eigen values
2 $lw 64 numeric row weigths
3 $cw 999 numeric col weigths
4 $tabw 21 numeric table weigths
5 $fac 64 numeric factor for grouping

data.frame nrow ncol content
1 $tab 64 999 array class-variables
2 $li 64 2 row coordinates
3 $l1 64 2 row normed scores
4 $co 999 2 column coordinates
5 $c1 999 2 column normed scores
6 $ls 64 2 supplementary row coordinates
7 $as 2 2 inertia axis onto within axis

This is to run the synonymous codon usage analysis. The value of the
ratio component of the object ec999.syn shows that most of the variability
is at the synonymous level, a common situation in codon usage studies.

ec999.btw <- between(dudi = ec999.coa, fac = facaa, scannf = FALSE)
ec999.btw

Between analysis
call: between(dudi = ec999.coa, fac = facaa, scannf = FALSE)
class: between dudi

$nf (axis saved) : 2
$rank: 20
$ratio: 0.3561358

eigen values: 0.01859 0.0152 0.01173 0.01051 0.008227 ...

vector length mode content
1 $eig 20 numeric eigen values
2 $lw 21 numeric group weigths
3 $cw 999 numeric col weigths

data.frame nrow ncol content
1 $tab 21 999 array class-variables
2 $li 21 2 class coordinates
3 $l1 21 2 class normed scores
4 $co 999 2 column coordinates

1 SeqinR 1.0-4 47

5 $c1 999 2 column normed scores
6 $ls 64 2 row coordinates
7 $as 2 2 inertia axis onto between axis

This is to run the non-sysnonymous codon usage analysis, or amino-acid
usage analysis.

x <- ec999.syn$co[, 1]
y <- ec999.btw$co[, 2]
kxy <- kde2d(x, y, n = 100)
nlevels <- 25
breaks <- seq(from = min(kxy$z), to = max(kxy$z), length = nlevels +

1)
col <- cm.colors(nlevels)
image(kxy, breaks = breaks, col = col, xlab = "First synonymous factor",

ylab = "Second non-synonymous factor", xlim = c(-0.5,
0.5), ylim = c(-0.3, 0.3), las = 1, main = "The second factor for amino-acid variability is\ncorrelated with gene expressivity")

contour(kxy, add = TRUE, nlevels = nlevels, drawlabels = FALSE)
box()
abline(c(0, 1), lty = 2)
abline(lm(y ~ x))
legend("topleft", lty = c(2, 1), legend = c("y = x", "y = lm(y~x)"),

inset = 0.01, bg = "white")

−0.4 −0.2 0.0 0.2 0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

The second factor for amino−acid variability is
correlated with gene expressivity

First synonymous factor

S
ec

on
d

no
n−

sy
no

ny
m

ou
s

fa
ct

or

y = x
y = lm(y~x)

This is to plot the whole thing. We have extracted the coding sequences
coordinates on the first synonymous factor and the second non-synonymous
factor within x and y, respectively. Because we have many points, we use the
two-dimensional kernel density estimation provided by the function kde2d()
from package MASS.

48 D. Charif & J.R. Lobry & L. Palmeira

aaa a prec p h tot gc

1 Ala A pyr 1 5 12 h
2 Cys C 3pg 7 9 25 m
3 Asp D oaa 1 6 13 m
4 Glu E akg 3 6 15 m
5 Phe F 2 pep, eryP 13 19 52 l
6 Gly G 3pg 2 5 12 h
7 His H penP 20 9 38 m
8 Ile I pyr, oaa 4 14 32 l
9 Lys K oaa, pyr 4 13 30 l

10 Leu L 2 pyr, acCoA 3 12 27 l
11 Met M oaa, Cys, -pyr 10 12 34 m
12 Asn N oaa 3 6 15 l
13 Pro P akg 4 8 20 h
14 Gln Q akg 4 6 16 m
15 Arg R akg 11 8 27 h
16 Ser S 3pg 2 5 12 m
17 Thr T oaa 3 8 19 m
18 Val V 2 pyr 2 11 23 m
19 Trp W 2 pep, eryP, PRPP, -pyr 28 23 74 m
20 Tyr Y eryP, 2 pep 13 18 50 l

Table 1.7. Aerobic cost of amino-acids in Escherichia coli and G+C classes to be
loaded with data(aacost).

1 SeqinR 1.0-4 49

1.5 Nonparametric statistics

Nonparametric statistical methods were initially developped to study variables
for which little or nothing is known concerning their distribution. This makes
them particularly suitable for statistical analysis of biological sequences, in
particular for the study of over- and under-representation of k-letter words.

We will briefly describe two statistics for the measure of dinucleotide over-
and under-representation in sequences [25, 26], which can both be computed
with seqinR. We will subsequently use them to answer the long-time con-
troversial question concerning the relationship between UV exposure and ge-
nomic content in bacteria [27, 28].

1.5.1 Determining dinucleotides over- and under-representation

The rho statistic

The ρ statistic (rho()), presented in [25], measures the over- and under-
representation of two-letter words:

ρ(xy) =
fxy

fx × fy

where fxy and fx are respectively the frequencies of dinucleotide xy and
nucleotide x in the studied sequence. The underlying model of random genera-
tion considers dinucleotides to be formed according to the specific frequencies
of the two nucleotides that compose it (ρxy = 1). Departure from this value
characterizes either over- or under-representation of dinucleotide xy.

We expect the ρ statistic of a randomly generated sequence to be neither
over- nor under-represented. Indeed, when we compute the ρ statistic on 500
random sequences, we can fit a normal distribution which is centered on 1
(see Fig. 1.3)

50 D. Charif & J.R. Lobry & L. Palmeira

rhoseq <- sapply(seq(n), function(x) {
rho(sample(s2c("acgt"), 6000, rep = TRUE))

})
hist(rhoseq[di,], freq = FALSE, xlab = "Rho statistic", main = paste("Distribution for dinucleotide",

toupper(labels(rhoseq)[[1]][di]), "on", n, "random sequences"),
las = 1, col = grey(0.8), border = grey(0.5))

abline(v = 1, lwd = 2, lty = 3)
lines(density(rnorm(1000, mean = mean(rhoseq[di,]), sd = sqrt(var(rhoseq[di,

])))), lwd = 2, lty = 2)

Distribution for dinucleotide AT on 500 random sequences

Rho statistic

D
en

si
ty

0.90 0.95 1.00 1.05 1.10

0

2

4

6

8

10

Fig. 1.3. Distribution of the ρ statistic computed on 500 random sequences. The
vertical dotted line is centered on 1. The dashed curve draws the fitted normal
distribution.

The downside of this statistic, is that the model against which we compare
the sequence under study is fixed. For several types of sequences, dinucleotides
are far from being formed by mere chance (CDS, ...). In this case, the model
used in the ρ statistic becomes trivial, and the over- or under-representations
measured are mainly due to the strong constraints acting on those sequences.

The zscore statistic

The zscore statistic (zscore()) is inspired by the ρ statistic, and is defined so
that several different models can be used for the determination of over- and
under-representation [26]. It allows for a finer measure of over- and under-
representation in sequences, according to the chosen model.

The zscore is defined as follows:

1 SeqinR 1.0-4 51

zscore =
ρxy − E(ρxy)√

V ar(ρxy)

where E(ρxy) and V ar(ρxy) are the expected mean and variance of ρxy

according to a given model that describes the sequence.
This statistic follows the standard normal distribution, and can be com-

puted with several different models of random sequence generation based on
permutations from the original sequence (modele argument). More details on
those models can be obtained in the documentation for the zscore() function,
by simply typing ?zscore.

For instance, if we want to measure the over- and under-representation
of dinucleotides in CDS sequences, we can use the codon model, which mea-
sures the over- and under-representations existing in the studied sequence once
codon usage bias has been erased. For intergenic sequences, or sequences for
which no good permutation model can be established, we can use the base
model.

Comparing statistics on a sequence

Let’s have a look at what these different statistics can show. First, we will
extract a CDS sequence of Escherichia coli ’s chromosome from the Genome
Reviews database. We will first make a request to retrieve all available CDS
from this bacteria:

choosebank("greview")
query("coli", "sp=escherichia coli et t=cds et no k=partial")
sequence <- getSequence(coli$req[[448]])

From the 3684 sequences annotated as CDS in the Genome Reviews
database, let’s choose one coding sequence: say, for instance, number 448.
We can see that this CDS encodes a maltose O-acetyltransferase protein
(getAnnot(coli$req[[448]],30)). We will now compare the three follow-
ing nonparametric statistics:

� the ρ statistic,
� the zscore statistic with base model,
� and the zscore statistic with codon model.

52 D. Charif & J.R. Lobry & L. Palmeira

rhocoli = rho(sequence)
zcolibase = zscore(sequence, mod = "base")
zcolicodon = zscore(sequence, mod = "codon")
par(mfrow = c(1, 3))
plot(rhocoli - 1, ylim = c(-0.5, 0.5), las = 1, ylab = "rho")
plot(zcolibase, ylim = c(-2.5, 2.5), las = 1, ylab = "zscore with base model")
plot(zcolicodon, ylim = c(-2.5, 2.5), las = 1, ylab = "zscore with codon model")

−0.4

−0.2

0.0

0.2

0.4

rh
o

aa at cg gc ta tt

−2

−1

0

1

2

zs
co

re
 w

ith
 b

as
e

m
od

el

aa at cg gc ta tt

−2

−1

0

1

2

zs
co

re
 w

ith
 c

od
on

 m
od

el

aa at cg gc ta tt

Fig. 1.4. Three different non-parametric statistics (from left to right: ρ, zscore
with base model, zscore with codon model), computed on the same sequence from
Escherichia coli. In order to make the figures easily comparable, we substracted 1
to the rho() results, so that all 3 statistics are centered on 0.

The first two figures are almost identical: this is due to the way the zscore
statistic has been built. The statistic computed with the base model is a
reflection of the ρ statistic. The difference being that the zscore follows a
standard normal distribution, which makes easier the comparisons between
the results from the base model and the ones from the codon model. The last
figure (zscore with codon model), is completely different: almost all over- and
under-representations have been erased. We can safely say that these over-
and under-representations were due to codon usage bias.

On this last figure, four dinucleotides stand out: CC and TT seem rather
under-represented, CT and TC rather over-represented. This means that, in

1 SeqinR 1.0-4 53

this sequence, codons ending with a given pyrimidine tend to be more fre-
quently followed by a codon starting with the other pyrimidine than expected
by chance. This is not a universal feature of Escherichia coli, and is proba-
bly due to the amino-acid composition of this particular sequence. It seemed
a funny example, as the following part will also relate to pyrimidine dinu-
cleotides. However, what we see on this CDS from Escherichia coli has nothing
to do with what follows...

1.5.2 UV exposure and dinucleotide content

In the beginning of the 1970’s, two contradictory papers considered the ques-
tion of the impact of UV exposure on genomic content. Both papers had strong
arguments for either side, and the question remained open until recently [26].

The expected impact of UV light on genomic content

On this controversy, the known facts are: pyrimidine dinucleotides (CC, TT,
CT and TC) are the major DNA target for UV-light [29]; the sensitivities of
the four pyrimidine dinucleotides to UV wavelengths differ and depend on the
micro-organism [29]:

G+C content CC (%) CT + TC (%) TT (%)

Haemophilus influenzae 62 5 24 71

Escherichia coli 50 7 34 59

Micrococcus lysodeikticus 30 26 55 19

Table 1.8. Proportion of dimers formed in the DNA of three bacteria after irradi-
ation with 265 nm UV light. Table adapted from [29].

The hypothesis presented by Singer and Ames [27] is that pyrimidine din-
ucleotides are avoided in light-exposed micro-organisms. At the time, only
G+C content is available, and – based exclusively on the sensitivity of the
four pyrimidine dinucleotides in an Escherichia coli chromosome – they hy-
pothesize that a high G+C will result in less pyrimidine target. Indeed, they
find that bacteria exposed to high levels of UV have higher G+C content than
the others. Bak et al. [28] strongly criticize their methodology, but no clear
cut answer is achieved.

In an Escherichia coli chromosome, it is true that a sequence with a high
G+C content will contain few phototargets (see Fig. 1.5).

54 D. Charif & J.R. Lobry & L. Palmeira

0 20 40 60 80 100

0

5

10

15

20

25

30

Estimated as in Escherichia coli chromosome

G+C content [%]

P
ho

to
ta

rg
et

s
w

ei
gh

te
d

de
ns

ity
 [%

]

Biological range

Fig. 1.5. Density of phototargets, weighted by their frequency in the Escherichia
coli chromosome, and calculated for different G+C contents and for three kinds
of random genomes. The weights are as follows: 0.59 ∗ ftt + 0.34 ∗ (ftc + fct) +
0.07 ∗ fcc (where fxy is the frequency of dinucleotide xy in the specified genome).
Three models of random genomes are analyzed. In the worst case (solid curve), the
genome is the concatenation of a sequence of pyrimidines and a sequence of purines:
all pyrimidines are involved in a pyrimidine dinucleotide. In the best case (dotted
curve), the genome is an unbroken succession of pyrimidine-purine dinucleotides: no
pyrimidine is involved in a pyrimidine dinucleotide. In the ”random case” (dashed
curve), the frequency of a pyrimidine dinucleotide is the result of chance (fxy =
fx × fy).

In a Micrococcus lysodeikticus sequence (see Fig. 1.6), we can see that this
is no longer true...

1 SeqinR 1.0-4 55

0 20 40 60 80 100

0

2

4

6

8

10

12

Estimated as in Micrococcus lysodeikticus chromosome

G+C content [%]

P
ho

to
ta

rg
et

s
w

ei
gh

te
d

de
ns

ity
 [%

]

Fig. 1.6. Density of phototargets, weighted by their frequency in the Micrococcus
lysodeikticus chromosome, and calculated for different G+C contents and for three
kinds of random genomes. The weights are as follows: 0.19 ∗ ftt + 0.55 ∗ (ftc + fct) +
0.26 ∗ fcc. See previous figure for more details.

These two figures show that the density of phototargets depends on:

� the degree of aggregation of pyrimidine dinucleotides in the sequence,
� the sensitivities of the four pyrimidine dinucleotides.

Instead of looking at G+C content, which is an indirect measure of the
impact of UV exposure on genomic content, let us look at pyrimidine dinu-
cleotide content.

Are CC, TT, CT and TC dinucleotides avoided in light-exposed bacteria?

The measured impact of UV light on genomic content

On all available genomes (as retrieved from Genome Reviews database on June
16, 2005), we have computed the mean of the zscore with the base model on
all intergenic sequences, and the mean of the zscore with the codon model on
all CDS:

data(dinucl)

The results show that there is no systematic under-representation of none
of the four pyrimidine dinucleotides (see Fig. 1.7).

56 D. Charif & J.R. Lobry & L. Palmeira

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

CpT bias

intergenic

co
di

ng

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

TpC bias

intergenic

co
di

ng

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

CpC bias

intergenic

co
di

ng

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

TpT bias

intergenic

co
di

ng

Fig. 1.7. Plot of the mean zscore statistics for intergenic sequences (x-axis) and
for coding sequences (y-axis), for each of the four pyrimidine dinucleotides. On
each plot, a dot corresponds to the mean of these two statistics in a given prokaryote
chromosome. The null x and y axis (dotted lines), and the 5% limits of significance
for the standard normal distribution (dashed lines) are plotted as benchmarks. It
should be noted that the variability within one chromosome is sometimes as great
as that between different chromosomes.

However, we have little or no information on the exposure of this bacteria
to UV light. In order to fully answer this question, let’s do another analysis
and look at Prochlorococcus marinus genome.

Prochlorococcus marinus seems to make an ideal model for investigat-
ing this hypothesis. Three completely sequenced strains are available in the
Genome reviews database: two of these strains are adpated to living at a depth
of more than 120 meters (accession numbers AE017126 and BX548175), and
the other one at a depth of 5 meters (accession number BX548174).

Living at a depth of 5 meters, or at a depth of more than a 120 meters
is totally different in terms of UV exposure: the residual intensity of 290
nm irradiation (UVb) in pure water can be estimated to 56% of its original
intensity at 5 m depth and to less than 0.0001% at more than 120 m depth.
For this reason, two of the Prochlorococcus marinus strains can be considered

1 SeqinR 1.0-4 57

to be adapted to low levels of UV exposure, and the other one to much higher
levels. Is pyrimidine dinucleotide content different in these three strains? And
is it linked to their UV exposure?

We have computed the zscore with the codon model on all CDS from each
of these three strains (as retrieved from Genome Reviews database on June
16, 2005):

data(prochlo)

−4 −2 0 2 4

0.0
0.1
0.2
0.3
0.4

CpT bias

−4 −2 0 2 4

0.0
0.1
0.2
0.3
0.4

TpC bias

−4 −2 0 2 4

0.0
0.1
0.2
0.3
0.4

CpC bias

−4 −2 0 2 4

0.0
0.1
0.2
0.3
0.4

TpT bias

Fig. 1.8. Each figure shows the distributions of the zscore in all coding sequences
corresponding to each of the three strains of Prochlorococcus marinus. In each figure,
the distribution for the MED4 (a high-light adapted strain) is shown as a solid line;
the distribution for the SS120 (a low-light adapted strain) is shown as a dashed
line, and the distribution for the MIT 9313 (a low-light adapted strain) is shown
as a dotted line. The 5% limits of significance for the standard normal distribution
(dashed vertical lines) are plotted as benchmarks.

Figure 1.8 shows that there is no difference between the relative abun-
dances of pyrimidine dinucleotides in these three strains. We can say that
pyrimidine dinucleotides are not avoided, and that the hypothesis by Singer
and Ames [27] no longer stands [26].

58 D. Charif & J.R. Lobry & L. Palmeira

1.6 FAQ: Frequently Asked Question

1.6.1 How do I compute a score on my sequences?

In the example below we want to compute the G+C content in third codon
positions for complete ribosomal CDS from Escherichia coli :

choosebank("emblTP")
query("ecribo", "sp=escherichia coli ET t=cds ET k=ribosom@ ET NO k=partial")
sapply(sapply(ecribo$req, getSequence), GC3)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

At the amino-acid level, we may get an estimate of the isoelectric point of
the proteins this way:

sapply(sapply(sapply(ecribo$req, getSequence), getTrans),
computePI)

[1] 6.624309 7.801329 10.864793 5.931989 7.830476 6.624309 7.801329
[8] 9.203410 9.826485 5.674672 7.154423 6.060457 6.313741 5.571446
[15] 9.435422 4.310745 6.145496 4.876054 11.006430 10.876036 6.624309
[22] 7.801329 10.864793 9.346289 9.203410 5.877050 5.931989 9.934988
[29] 5.920490 6.612505 6.624309 6.624309 7.801329 10.864793 5.931989
[36] 11.182505 9.598944 6.624309 10.864793 9.203410 11.031943 5.858421
[43] 5.858421 11.777516 11.777516 10.619175 11.365738 9.460987 10.864793
[50] 13.002381 9.845859 10.584868 11.421257 10.248325 11.031938 10.402075
[57] 4.863862 6.612505 9.681066 11.150304 11.182505 11.043602 6.624309
[64] 6.612505 6.624309 4.310747

Note that some pre-defined vectors to compute linear forms on sequences
are available in the EXP data.

As a matter of convenience, you may encapsulate the computation of your
favorite score within a function this way :

GC3m <- function(list, ind = 1:list$nelem) sapply(sapply(list$req[ind],
getSequence), GC3)

GC3m(ecribo)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

GC3m(ecribo, 1:10)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324

1 SeqinR 1.0-4 59

1.7 Releases notes

1.7.1 release 1.0-4

� The scaling factor n•• was missing in equation 1.3.
� The files louse.fasta, louse.names, gopher.fasta, gopher.names and

ortho.fasta that were used for examples in the previous version of this
document are no more downloaded from the internet since they are now
distributed in the sequences/ folder of the package.

� An example of synonymous and non synonymous codon usage analysis was
added to the vignette along with two toy data sets (toyaa and toycodon).

� A FAQ section was added to the vignette.
� A bug in getAnnot() when the number of lines was zero is now fixed.
� There is now a new argument, latexfile, in tablecode() to export ge-

netic codes tables in a LATEX document, for instance table 1.1 and table
1.2 here.

� Function splitseq() has been entirely rewritten to improve speed.

1.7.2 release 1.0-3

� The new package maintainer is Dr. Simon Penel, PhD, who has now a fixed
position in the laboratory that issued seqinR (penel@biomserv.univ-lyon1.fr).
Delphine Charif was successful too to get a fixed position in the same lab,
with now a different research task (but who knows?). Thanks to the close
vicinity of our pioneering maintainers the transition was sweet. The DE-
SCRIPTION file of the seqinR package has been updated to take this
into account.

� The reference paper for the package is now in press. We do not have the
full reference for now, you may use citation("seqinr") to check if it is
complete now:
citation("seqinr")

To cite seqinR in publications use:

in the body of the text (J.R. Lobry, personal communication), or
wait for the exact complete reference.

A BibTeX entry for LaTeX users is

@incollection{,
author = {D. Charif and J.R. Lobry},
title = {SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis.},
booktitle = {Structural approaches to sequence evolution: Molecules, networks, populations},
year = {2006},
editor = {U. Bastolla, M. Porto, H.E. Roman and M. Vendruscolo},
volume = {NA},
series = {Biological and Medical Physics, Biomedical Engineering},
pages = {NA},
address = {New York},
month = {NA},
organization = {NA},
publisher = {Springer Verlag},
note = {in press},

60 D. Charif & J.R. Lobry & L. Palmeira

}

Note that the orginal article and updates are available in the
/Users/lobry/seqinr.Rcheck/seqinr/doc/ folder in PDF format

� There was a bug when sending a gfrag request to the server for long
(Mb range) sequences. The length argument was converted to scientific
notations that are not understand by the server. This is now corrected
and should work up the the Gb scale.

� The query() function has been improved by de-looping list element info
request, there are now download at once which is much more efficient. For
example, a query from a researcher-home ADSL connection with a list
with about 1000 elements was 60 seconds and is now only 4 seconds (i.e.
15 times faster now).

� A new parameter virtual has been added to query() so that long lists
can stay on the server without trying to download them automatically.
A query like query(s$socket,"allcds","t=cds", virtual = TRUE) is
now possible.

� Relevant genetic codes and frames are now automatically propagated.
� SeqinR sends now its name and version number to the server.
� Strict control on ambiguous DNA base alphabet has been relaxed.
� Default value for parameter invisible of function query() is now TRUE.

1.8 Acknowledgments

Please enter contibutors() in your R console.

References

1. Charif, D., Thioulouse, J., Lobry, J.R., Perrière, G.: Online synonymous sodon
usage analyses with the ade4 and seqinR packages. Bioinformatics 21 (2005)
545–547. http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/.

2. Buckheit, J., Donoho, D.L.: Wavelab and reproducible research. (1995) In A.
Antoniadis (ed.), Wavelets and Statistics, Springer-Verlag, Berlin, New York.

3. Gautier, C: Analyses statistiques et évolution des séquences d’acides nucléiques.
PhD thesis (1987), Université Claude Bernard - Lyon I.

4. Hornik, K.: The R FAQ. ISBN 3-900051-08-9 (2005) http://CRAN.R-project.

org/doc/FAQ/.
5. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic char-

acter of a protein. J. Mol. Biol. 157 (1982) 105–132.
6. Leisch, F.: Sweave: Dynamic generation of statistical reports using literate data

analysis. Compstat 2002 — Proceedings in Computational Statistics (2002) 575–
580 ISBN 3-7908-1517-9.

7. Frank, A.C., Lobry, J.R.: Oriloc: prediction of replication boundaries in unan-
notated bacterial chromosomes. Bioinformatics 16 (2000) 560–561.

1 SeqinR 1.0-4 61

8. Hurst, L.D.: The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends
Genet. 18 (2002) 486–487.

9. Ihaka, R., Gentleman, R.: R: A Language for Data Analysis and Graphics. J.
Comp. Graph. Stat. 3 (1996) 299–314

10. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. (1969) pp. 21–132.
In H.N. Munro (ed.), Mammalian Protein Metabolism, Academic Press, New
York.

11. Keogh, J.: Circular transportation facilitation device. (2001) Australian Patent
Office application number AU 2001100012 A4. www.ipmenu.com/archive/AUI_
2001100012.pdf.

12. Kimura, M.: A simple method for estimating evolutionary rates of base substi-
tutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16
(1980) 111–120.

13. Legendre, P., Desdevises, Y., Bazin, E.: A statistical test for host-parasite co-
evolution. Syst. Biol. 51 (2002) 217–234.

14. Li, W.-H.: Unbiased estimation of the rates of synonymous and nonsynonymous
substitution. J. Mol. Evol. 36 (1993) 96–9.

15. Lobry, J.R.: Life history traits and genome structure: aerobiosis and G+C con-
tent in bacteria. Lecture Notes in Computer Sciences 3039 (2004) 679–686.
http://pbil.univ-lyon1.fr/members/lobry/repro/lncs04/.

16. Lobry, J.R., Chessel, D.: Internal correspondence analysis of codon and amino-
acid usage in thermophilic bacteria. J. Appl. Genet. 44 (2003) 235–261. http:
//jay.au.poznan.pl/html1/JAG/pdfy/lobry.pdf

17. Lobry, J.R., Gautier, C.: Hydrophobicity, expressivity and aromaticity are the
major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded
genes. Nucleic Acids Res 22 (1994) 3174–3180. http://pbil.univ-lyon1.fr/
members/lobry/repro/nar94/

18. Lobry, J.R., Sueoka, N.: Asymmetric directional mutation pressures in bac-
teria. Genome Biology 3 (2002) research0058.1–research0058.14. http://

genomebiology.com/2002/3/10/research/0058.
19. Mackiewicz, P., Zakrzewska-Czerwińska, J., Zawilak, A., Dudek, M.R., Cebrat,

S.: Where does bacterial replication start? Rules for predicting the oriC region.
Nucleic Acids Res. 32 (2004) 3781–3791.

20. Perrière, G., Thioulouse, J: Use and misuse of correspondence analysis in codon
usage studies. Nucleic Acids Res. 30 (2002) 4548–4555.

21. R Development Core Team: R: A language and environment for statistical com-
puting (2004) ISBN 3-900051-00-3, http://www.R-project.org

22. Rudner, R., Karkas, J.D., Chargaff, E.: Separation of microbial deoxyribonucleic
acids into complementary strands. Proc. Natl. Acad. Sci. USA, 63 (1969) 152–
159.

23. Saitou, N., Nei, M.: The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol. 4 (1984) 406–425.

24. Sharp, P.M., Li, W.-H.: The codon adaptation index - a measure of directional
synonymous codon usage bias, and its potential applications. Nucleic Acids Re-
search 15 (1987) 1281—1295.

25. Karlin, S., Brendel, V.: Chance and Statistical Significance in Protein and DNA
Sequence Analysis. Science 257 (1992) 39–49.

26. Palmeira, L., Guéguen L., Lobry, J.R.: UV-targeted dinucleotides are not de-
pleted in light-exposed Prokaryotic genomes. in prep.

62 D. Charif & J.R. Lobry & L. Palmeira

27. Singer, C.E., Ames, B.N.: Sunlight Ultraviolet and Bacterial DNA Base Ratios.
Science 170 (1970) 822–826.

28. Bak, A.L., Atkins, J.F., Singer, C.E., Ames, B.N.: Evolution of DNA Base Com-
positions in Microorganisms. Science 175 (1972) 1391–1393.

29. Setlow, R. B.: Cyclobutane-Type Pyrimidine Dimers in Polynucleotides. Science
153 (1966) 379–386.

