
Center for Tropical Forest Science R Package Manual
Pamela Hall, Suzanne Lao, Ellen Connell and Marie Massa

Version 1.00 March 29, 2006

7.0 Useful R functions for analysis of CTFS datasets

Synopsis of Contents of this Help File

x %in% table
This is short cut to selecting rows out of a file that have some given value for a
variable. It returns a vector of TRUE and FALSE so use it as a conditional.
rare.spp<-names(abund.spp$N[abund.spp$N<100])
rare.vct<-bci90.full$sp%in%rare.spp
rare.spp.ind<-bci90.full[rare.vct,]

subset(x, subset, select)
Creates a subset of the dataset x based a condition subset.
bci90.bigtree <- subset(bci90.full, bci90.full$dbh>=300)

order(vector1,vector2...,decreasing=FALSE)
Provide a vector to be sorted, returns the order number of each value in the
svector. Use this number to reorder the initial vector or data frame.
hameax[order(hameax$dbh,decreasing=TRUE),][1:10,]

sort(vector,decreasing=FALSE)
Provide a vector, returns the sorted vector. This can only be used on a vector.
sort(hameax$dbh,decreasing=TRUE)[1:10]

rank(vector, ties.method = c("average", "first", "random"))
Provide a vector to be ranked, returns the rank number of each value in the
vector. Use with order to create a vector or data frame in rank order.
hameax[order(rank(hameax$dbh)),][1:10,]

tapply(vector,index.vector,function)
Provide a vector and an index vector of the same length. The index vector
contains categories for classification of the values in the first vector. Apply the
function to the values in each category. Eg. compute the mean dbh0 for dbh
classes.
tapply(bci90.full$dbh,dbh.vct,mean)

apply(vector,row or col number,function)
Provide a maxtrix, use row or column values to classify the other values into
categories. Apply the function to values in the column or row. This computes
the number of habitats for which the species has more than 10 trees.
abund.spp.ha <- abundance(bci90.full,split1=bci90.full$sp,

split2=hab.vct)
countspp=function(x,min) return(length(subset(x,x>min)))

apply(abund.spp.ha,1,countspp,10))

merge(x, y, by.x = by, by.y = by, all.x = FALSE, all.y = FALSE)
Provide 2 data frames (x and y) and the columns used to merge the 2 files (by.x,
by.y). Indicate whether all of the rows in x and/or all of the rows in y should be
preserved. Often only all of the rows in x should be preserved.
bci90.full.grform <- merge(bci90.full,bcispp.info[,c(1,5)],
by.x="sp",by.y="sp",all.x=TRUE)

match(vector, table, nomatch = NA)
Provide 2 vectors. Returns a vector of the row numbers in table the same length
as the first vector when the values in the vectors match.
spp.mtch <- match(bci90.full$sp,bcispp.info$sp,nomatch=NA)
table(spp.mtch)
spp.mtch
 10 234 262
11128 160 1133

bcispp.info[c(10,234,262),c(1,5:8)]
 sp grform repsize breedsys maxht
alsebl alsebl T 20 B 15
psycde psycde S 1 B 3
socrex socrex M 8 M 30

cut(x,breaks, labels = NULL, right = TRUE)
Creates a categorical value for a continuous variable using the class limits
provided by breaks.

7.1 Examples and more detailed description of use

x %in% table
This is short cut to selecting rows out of a file that have some given value. It

tests a condition and so returns a vector of TRUE and FALSE.

x the values to be matched.
table the values to be matched against.

%in% is actual the function:

"%in%" <-function(x, table) match(x, table, nomatch = 0) > 0

Here is an example of how to use %in% which greatly simplifies the process of getting
“interesting” populations to analyses.

Problem: Get the tree data for rare species, defined as species with less than 100
individuals.

First, run totalabund() for each species. The result is a list and the first object is the
abundances for each species.

abund.spp<-abundance(bci90.full,split1=bci90.full$sp)
abund.spp$N[1:7]
acacme acaldi acalma ade1tr aegipa alchco alchla
 11 821 44 279 92 266 3

Identify the rare species, defined here as species with less than 100
individuals.

rare.spp<-names(abund.spp$N[abund.spp$N<100])
rare.spp[1:7]
[1] "acacme" "acalma" "aegipa" "alchla" "amaico" "anacex" "annoha"

Use %in% to create a vector of TRUE and FALSE that is the same length as the full
dataset and identifies the rows in the full dataset that are the individuals of rare species.
Note the length of rare.vct is the same as bci90.full and that when the values are tabled,
there are 8235 trees that are of rare species.

rare.vct<-bci90.full$sp%in%rare.spp
length(rare.vct)
[1] 344846
table(rare.vct)
rare.ind
 FALSE TRUE
336611 8235

Use rare.vct as the conditional vector to select the rows from bci90.full that are trees of
rare species. Note that rare.ind is a data frame containing all the columns of the full
datasets and is of the same length as the tabled TRUE values.

rare.ind<-bci90.full[rare.vct,]
dim(rare.ind)
[1] 8235 14
rare.ind[1:3,1:7]
 tag sp gx gy dbh0 dbh1 pom0
1 105951 acacme 610.0 104.7 105 116 1
2 132160 acacme 534.8 241.3 85 91 1
3 132234 acacme 539.4 242.3 119 122 1

Here’s a check that the trees records have been properly identified and subsetted.
Using the results from abundance() the sum of the abundances of all rare species is 1990

is computed. Then the abundance of the new data frame rare.ind is computed using
abundance(). Remember, for any set of tree records, not all of them will be valid as
“alive” in a given census, so the number of records in the data frame is NOT the same
as the abundance of rare species.

sum(abund.spp$N[abund.spp$N<100])
[1] 4589
abundance(rare.ind)$N
$N
 all
all 4589

In summary, the steps are as follows. Note that the conditional can be used directly
with %in% instead of making an intermediary vector.

abund.spp<-abundance(bci90.full,split1=bci90.full$sp)
rare.spp<-names(abund.spp$N[abund.spp$N<100])
rare.ind<-bci90.full[bci90.full$sp%in%rare.spp,]

subset(x, subset, select)

x object to be subsetted.
subset logical expression.
select expression, indicating columns to select from a data frame.

subset() makes a subset of the data in x based on the condtion provided by select. In
addition subset() creates a new object that is just those subsetted records and removes
all records that have NA for the conditions of select. The select argument accepts a
conditional statement and turns it into a vector of TRUE and FALSE or it accepts the
name of a variable in the data object x and some condition of it. You don’t have to
respecify the objects’ name only the variable within.. Recall that the use of the
[condition] includes all NAs and does not directly create a new data object,
it only creates a vector of TRUE or FALSE which can be used for
subsetting. Here are some examples.

bci90.bigtree <- subset(bci90.full,bci90.full$dbh>=300)

> bci90.bigtree[1:5,1:6]
 tag sp gx gy dbh pom
2453 3193 ade1tr 639.3 309.4 525 1
2999 207 alchco 972.8 130.3 353 1
3000 256 alchco 967.5 303.4 310 1
3001 279 alchco 973.6 392.9 549 2
3003 834 alchco 889.5 8.1 565 1

Here is the same example, but only 3 variables from the full dataset are preserved in
the subsetting.

bci90.bigtree=subset(bci90.full,bci90.full$dbh0>300,
select=c(sp,dbh0,dbh1))

> bci90.bigtree[1:5,]
 sp dbh0 dbh1
2 ABARJU 333 335
3 ABARJU 444 472
7 ABARJU 361 378
12 ABARJU 673 NA
14 ABARJU 367 386

A more complicated use that uses the function %in% as part of the select condition.

abund.spp<-abundance(bci90.full,split1=bci90.full$sp)
abund.spp$N[1:7]

ABARJU ABARLA ABUTGR ACALCU ACALPU
 23 96 293 538 0

Identify the rare species, defined here as species with less than 100 individuals.

rare.spp<-names(abund.spp$N[abund.spp$N<100])
rare.spp[1:7]
[1] "acacme" "acalma" "aegipa" "alchla" "amaico" "anacex" "annoha"

bci.rare<-subset(bci90.full,bci90.full$sp%in%rare.spp)
> bci.rare[1:5,1:6]
 tag sp gx gy dbh pom
1 105951 acacme 610.0 104.7 105 1
2 132160 acacme 534.8 241.3 85 1
3 132234 acacme 539.4 242.3 119 1
4 132235 acacme 538.8 242.5 29 2
5 191542 acacme 282.7 177.5 41 1

order(vector1,vector2...,na.last=TRUE,decreasing=FALSE)

vector1, vector2...
1 or more vectors of the same length

na.last
place NAs at the end

decreasing = FALSE
reorders from low to high or TRUE for high to low. If using more than 1 vector
and want one to increase and one to decrease, use a “-” (negative) sign in front
of the variable name

order() returns a new vector of row numbers. The row numbers refer to the rows in
the original vector in increasing (or decreasing) order. To get the original vector
reordered, use the row numbers.

Examples:
ocotob$dbh[1:10]
 [1] NA NA 350 NA NA NA NA 335 NA NA

default.order <- order(ocotob$dbh,decreasing=TRUE)
default.order[1:10]
 [1] 14 11 157 15 3 8 20 18 64 95

row 14 has rank 1
row 11 has rank 2
row 157 has rank 3...

ocotob$dbh[c(14,11,157,15,3,8,20,18,64,95)]
 [1] 444 428 428 405 350 335 324 323 300 282

N ote below how the row have been reordered according to the value of default.order

ocotob[default.order,][1:4,1:7]
 tag sp gx gy dbh pom date
225196 3910 OCOTOB 556.5 174.4 444 1 3514
225193 2513 OCOTOB 716.8 221.4 428 1 3570
225339 209296 OCOTOB 221.2 491.8 428 1 3506
225197 4005 OCOTOB 529.5 148.8 405 2 3674

Put it all together in one line:
ocotob[order(ocotob$dbh,decreasing=TRUE),][1:4,1:7]
 tag sp gx gy dbh pom date
225196 3910 OCOTOB 556.5 174.4 444 1 3514
225193 2513 OCOTOB 716.8 221.4 428 1 3570
225339 209296 OCOTOB 221.2 491.8 428 1 3506
225197 4005 OCOTOB 529.5 148.8 405 2 3674

Use of more than 1 vector:
hameax <- bci90.split$HAMEAX
hameax[1:5,1:7]
 tag sp gx gy dbh pom date

127020 15377 HAMEAX 845.3 59.2 NA NA 3557
127021 15984 HAMEAX 841.7 138.0 16 1 3572
127022 17883 HAMEAX 858.7 266.1 NA 2 3592
127023 19466 HAMEAX 852.3 475.9 NA NA 3612
127024 22527 HAMEAX 947.5 313.6 NA NA 3639

tmp<-order(hameax$dbh,decreasing=FALSE)
tmp[1:5]
[1] 115 138 202 139 114

hameax[tmp,][1:5,1:7]
 tag sp gx gy dbh pom date
127134 265824 HAMEAX 2.8 497.2 11 1 3431
127157 400428 HAMEAX 6.4 352.0 10 1 3397
127221 500193 HAMEAX 7.5 351.2 NA NA 3397
127158 400500 HAMEAX 7.9 375.1 12 1 3403
127133 261744 HAMEAX 8.4 200.1 NA NA 3366

tmp<-order(hameax$gx,hameax$gy,decreasing=FALSE)
tmp[1:5]
[1] 115 138 202 139 114

hameax[tmp,][1:5,1:7]
 tag sp gx gy dbh pom date
127134 265824 HAMEAX 2.8 497.2 11 1 3431
127157 400428 HAMEAX 6.4 352.0 10 1 3397
127221 500193 HAMEAX 7.5 351.2 NA NA 3397
127158 400500 HAMEAX 7.9 375.1 12 1 3403
127133 261744 HAMEAX 8.4 200.1 NA NA 3366

Use of “-” to change the order from increasing to decreasing. Note that only the
reordered row numbers are provided below, not the actual data of the species. This is
particularly useful when using 2 vectors but you want the sort order opposite in them:
eg. the first decreasing and the second increasing.

tmp<-order(hameax$dbh,hameax$date)
tmp[1:5]
[1] 152 153 155 138 160
tmp<-order(hameax$dbh,-hameax$date)
tmp[1:5]
[1] 165 160 138 153 155

sort(vector,na.last=TRUE,decreasing=FALSE)

vector
only one vector can be used

na.last
place NAs at the end

decreasing = FALSE
reorders from low to high or TRUE for high to low.

sort() returns the actual vector in a different order, not a set of row numbers as in
order(). Therefore, the results of sort() cannot be used to reorder a data frame.

Examples:
hameax[1:6,1:7]
 tag sp gx gy dbh0 dbh1 pom0
127020 15377 HAMEAX 845.3 59.2 NA NA 3557
127021 15984 HAMEAX 841.7 138.0 16 1 3572
127022 17883 HAMEAX 858.7 266.1 NA 2 3592
127023 19466 HAMEAX 852.3 475.9 NA NA 3612
127024 22527 HAMEAX 947.5 313.6 NA NA 3639
127025 24557 HAMEAX 957.2 497.9 NA NA 3639

sort(hameax$dbh,decreasing=FALSE)[1:6]
[1] 10 10 10 10 10 10

Beware of using “-” in sort(). It does NOT behave the same as in order(). The negative
sign negates the values, it does not change the sorting order.

sort(hameax$dbh)[1:6]
[1] 10 10 10 10 10 10
sort(hameax$dbh,decreasing=TRUE)[1:6]
[1] 39 37 34 31 31 30
sort(-hameax$dbh)[1:6]
[1] -39 -37 -34 -31 -31 -30

rank(vector, na.last = TRUE,
ties.method = c("average", "first", "random"))

vector
only one vector can be used

na.last
place NAs at the end

ties.method
provides options for determining how to assign a rank to tied values. Use of
average will return a decimal values.

rank() returns the rank value of the vector contents in the order of the original vector.
You can combine rank() and order() to create a data frame sorted by the rank order of a
given column within the data frame. Note how ties.method=(“random”) creates different

order for rows with equal ranked values.

Examples:
hameax[1:5,1:7]
 tag sp gx gy dbh dbh1 pom0
127020 15377 HAMEAX 845.3 59.2 NA NA 3557
127021 15984 HAMEAX 841.7 138.0 16 1 3572
127022 17883 HAMEAX 858.7 266.1 NA 2 3592
127023 19466 HAMEAX 852.3 475.9 NA NA 3612
127024 22527 HAMEAX 947.5 313.6 NA NA 3639

tmp <- rank(hameax$dbh)
tmp[1:7]
 [1] 108 55 109 110 111 112 113
hameax[rank(hameax$dbh),][1:5,1:7]
 tag sp gx gy dbh pom date
127127 242878 HAMEAX 88.7 280.9 NA NA 3368
127074 116524 HAMEAX 564.8 180.5 NA NA 3502
127128 242917 HAMEAX 91.0 294.6 NA NA 3368
127129 244848 HAMEAX 84.8 486.7 NA NA 3407
127130 246496 HAMEAX 68.5 171.2 NA NA 3347

tmp <- order(rank(hameax$dbh,ties.method="random"))
tmp[1:7]
 [[1] 153 152 155 160 165 138 161

hameax[order(rank(hameax$dbh,ties.method=c("random"))),][1:5,1:7]
 tag sp gx gy dbh0 dbh1 pom0
127157 400428 HAMEAX 6.4 352.0 10 1 3397
127171 410049 HAMEAX 207.9 36.5 10 1 3333
127179 413436 HAMEAX 265.2 245.7 10 1 3431
127172 410373 HAMEAX 213.6 229.7 10 1 3361
127174 410406 HAMEAX 218.4 230.0 10 1 3361

tapply(vector, index, FUN = NULL)

vector
one vector only

index
a vector or list of the classes into which the values in the input vector are going to
be categorized. The index must be of the same length as the input vector. It can
be numeric or character. More than one index vector can be used. It must be
provided as a list.

FUN

the function to be applied to the vector values in each class of index. In the case of
functions like +, %*%, etc., the function name must be quoted.

tapply() works as a loop. It categorizes each value in vector by the classes in index
treating these as a “population”. Then it performs the FUN on the population. For
example, vector = growth, index = dbhcat, FUN = mean, gives the mean growth rate for
each dbhclass in dbhcat: tapply(growth,dbhcat,mean)

Examples: dbhcat = dbh classes, habcat = habitat designations for quadrates

dbhcat <- sep.dbh(bci90.full)
table(dbhcat)
dbhcat
 10.100 100.300 300.10000
 222826 17113 4120
tapply(bci90.full$dbh,dbhcat,mean)
 10.100 100.300 300.10000
 28.21493 157.41033 503.21917
habcat <- sep.quadinfo(bci90.full,bciquad.info,by.col="hab")
table(habcat)
habcat
 1 2 3 4 5 6 7 8
47250 23650 77806 27770 46752 56487 35292 29752

table(habcat,dbhcat)
 dbhcat
habcat 10.100 100.300 300.10000
 1 30779 2208 574
 2 15234 1091 280
 3 49801 4130 909
 4 18178 1416 327
 5 30698 2403 568
 6 36092 2719 682
 7 22957 1706 419
 8 19044 1440 361

tapply(bci90.full$dbh,list(habcat,dbhcat),mean)
 10.100 100.300 300.10000
1 27.96319 157.9524 516.0540
2 27.61461 155.5481 531.1286
3 28.82796 159.2973 485.6898
4 28.39889 156.7394 500.2966
5 28.08665 157.0300 506.0528
6 27.60972 157.5542 498.6496

7 28.45973 156.9015 490.8282
8 28.41273 154.2035 526.5069

apply(array, dim number, function)

array
matrix of 2 dimensions or an array of >2 dimensions

number
the dimension number of categories used to classify the value of the other matrix
dimension

function
the function to be applied to the matrix values in each class of in the dimension
number. In the case of functions like +, %*%, etc., the function name must be
quoted.

apply() works as a loop. It starts with the array and computes function for the values in
one dimension by the categories in the second dimension. The dimensions are 1 for
row, 2 for column in a 2 dimensional array (a matrix). It is like tapply() but the values
for the categories and the variable are both contains in the supplies array.

Examples: species and hectares, compute the number of species per hectare and the
number of hectares in which a species occurs. The function countnonzero() is used
instead of length because length will include hectares without species.

hacat<-gxgy.to.index(bci90.full$gx,bci90.full$gy,gridsize=100)
sppcat<-bci90.full$sp
abund.spp.ha<-table(sppcat,hacat)
abund.spp.ha[1:5,1:5]
 hacat
sppcat 1 2 3 4 5
 acacme 1 0 0 0 0
 acaldi 64 23 6 20 43
 acalma 19 4 4 13 5
 ade1tr 0 1 33 17 3
 aegipa 8 4 2 7 5

Count the species in each ha
spp.ha<-apply(abund.spp.ha,2,countnonzero)
spp.ha[1:7]
 1 2 3 4 5 6 7
 208 189 192 192 194 196 188

Count the number of ha each species occurs in
nspp.ha <- apply(abund.spp.ha,1,countspp,0)
nspp.ha[1:7]
acacme acaldi acalma ade1tr aegipa alchco alchla

 6 50 23 39 48 49 3

apply() can also work on a 3 or more dimension array. The number of dimensions
specified provide the dimensions over which the values are aggregated for computing
some function. Here is an example with abundance computed for each species and
hectare and dbhclass.

abund.spp.ha.dbh <- table(sppcat,hacat,dbhcat)
dim(abund.spp.ha.dbh)
[1] 318 50 3

Use apply() with for 2 dimension to count for that dimension.

test1<-apply(abund.spp.ha.dbh,c(1,2),countspp,0)
test1[1:5,1:5]
 hacat
sppcat 1 2 3 4 5
 acacme 1 0 0 0 0
 acaldi 1 1 1 1 1
 acalma 1 1 1 1 0
 ade1tr 0 1 2 2 1
 aegipa 1 1 1 1 2

test1<-apply(abund.spp.ha.dbh,c(1,3),countspp,0)
test1[1:5,]
 dbhcat
sppcat 10.100 100.300 300.10000
 acacme 6 2 0
 acaldi 50 2 0
 acalma 16 2 0
 ade1tr 33 27 1
 aegipa 36 17 0

test1<-apply(abund.spp.ha.dbh,c(2,3),countspp,0)
test1[1:5,]
 dbhcat
hacat 10.100 100.300 300.10000
 1 178 86 37
 2 166 80 40
 3 172 82 41
 4 165 88 22
 5 163 89 38

merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by,

all = FALSE, all.x = all, all.y = all)
x, y

data frames.

by.x, by.y
specifications of the common columns. This can be the column numbers or
names (in quotes).

all.x
logical; if TRUE, then extra rows will be added to the output, one for each row in
x that has no matching row in y. These rows will have NAs in those columns that
are usually filled with values from y. The default is FALSE, so that only rows
with data from both x and y are included in the output.

all.y
logical; analogous to all.x above.

all
logical; all=L is shorthand for all.x=L and all.y=L. Note that the default is to
EXCLUDE rows that have no match in either data frame.

This function is similar to “lookup” functions in other programs. It take the value of a
column in the first data frame (by.x) and “looks it up” in the second data frame. If it
finds a matching variable value (by.y), it merges the columns at that row in the second
data frame with those in the first data frame. It merges ALL of the columns, so if you
only want 1 (or a few) from the second data frame to be on the first, specify only those
that you want to merge and the variable that matches the two data frames together.
Take care with the default for all that can result in the loss of records from the first data
frame if there is no match in the second.

This example merges the growth form from bci.spp.info to bci9095.full.

tst.merge<-merge(bci90.full,bcispp.info,by.x="sp",by.y="sp")
> names(tst.merge)
[1] "sp" "tag" "gx" "gy" "dbh" "pom" "date"
[8] "codes" "status" "genus" "species" "family" "grform""repsize"
[15] "breedsys" "maxht"

Select only the column(s) in bci.spp.info that is to be merged.

tst.merge<merge(bci90.full[,c(1,2,5)],bci.spp.info[,c(1,5)],
by.x="sp",by.y="sp")

names(tst.merge)
 [1] "sp" "tag” "dbh" "grform"

match(vector, table, nomatch = NA)

vector

table
Provide 2 vectors: vector and table. Returns a vector of the row numbers in
table the same length as the first vector when the values in the vectors match.

nomatch=NA
Use NA when a match cannot be made.

Match returns a vector of row numbers that can be used to select the column values
from the second vector that match the values in the first. For example, to find the row
in table.in with the same species as a row in datafile. Then use this vector of row
numbers to select rows from table.in to get grform and create a vector of the same
length and order as datafile.

This example creates a vector of growth form for each tree in a full dataset.

bcispp.info[1:5,c(1,5:8)]
 sp grform repsize breedsys maxht
1 acacme U 4 B 6
2 acaldi S 2 M 6
3 acalma U 2 M 5
4 ade1tr U 10 D 5
5 aegipa M 4 B 15

spp.match=match(bci90.full$sp,bcispp.info$sp,nomatch=NA)
spp.match[10:20]
[1] 1 1 1 2 2 2 2 2 2 2 2

spp.grform<-bcispp.info[spp.match,"grform"]
spp.grform[10:20]
[1] "U" "U" "U" "S" "S" "S" "S" "S" "S" "S" "S"

cut(x,breaks, labels = NULL, right = TRUE)

x
A vector of the continuous variable that is going to be used to make categories

breaks
The min and max of each category.

labels = NULL
Labels for each category. Default labels are provided (see below).

right = TRUE
How to determine whether the values in a category are >= or only > to the
minimum value. For instance, using dbh classes:
right = TRUE 10 >= 100 , 10 is NOT included and 100 IS
right = FALSE 10 => 100 , 10 IS included and 100 is NOT
The CTFS convention is, right = FALSE:
10 <= tree dbh < 100

bci90.full$dbh[1:10]
 [1] 105 85 119 29 41 18 20 13 18 12>

dbhclass=c(10,30,50,100,300,700,100000)
bci90.dbh.vct <- cut(bci90.full$dbh,breaks=dbhclass,right=F)

bci90.dbh.vct[1:7]
[1] [100,300) [50,100) [100,300) [10,30) [30,50) [10,30)
[10,30)
Levels: [10,30) [30,50) [50,100) [100,300) [300,700) [700,1e+05)

bci90.dbh.vct <- cut(bci90.full$dbh,breaks=dbhclass,
right=F,labels=paste(dbhclass[-7],dbhclass[-1],sep="."))

bci90.dbh.vct[1:7]
[1] 100.300 50.100 100.300 10.30 30.50 10.30 10.30
Levels: 10.30 30.50 50.100 100.300 300.700 700.1e+05

7.2 How NA , NaN and Inf are handled by some R functions:

NA and and NaN (not a number) are special characters in R. They do not appear
quoted. They are either values in an object explicitly used by the design of the object or
they are the result of a computation. NaN will be the result a numerical computation
that produces an impossible value such as taking the log of a negative number.

log(-1)
[1] NaN
Warning message:
NaNs produced in: log(x)

Normal arithmetic returns NA if or NaN, respectively, if they are in the computation.

x=c(seq(1:5),NA,seq(6:10))
x
 [1] 1 2 3 4 5 NA 1 2 3 4 5
y=c(seq(1:10),NA)
y
 [1] 1 2 3 4 5 6 7 8 9 10 NA
z<-x+y
z
 [1] 2 4 6 8 10 NA 8 10 12 14 NA

Inf is a number. It is treated as a number. Therefore, any computation will return Inf
or -Inf as found.

x
 [1] 1 2 3 4 5 NA 1 2 3 4 5
y
 [1] 1 2 3 4 5 6 7 8 9 10 Inf
z<-x+y
z
 [1] 2 4 6 8 10 NA 8 10 12 14 Inf

Inf is also the result of a computation that produces infinity such as dividing by 0.

10/0
[1] Inf

To test for the presence of NA use:

is.na(x)

This is a condition test. If x is an NA the result is FALSE. If x is a vector then the result
will be FALSE wherever NA is in the vector and TRUE where it is not. A common
syntax to get rid of NAs is to negate the test with a !:

!is.na(x)

The descriptive statistics funtions require explicit removal of NA in order to provide
meaningfull results. They will return NA if NAs are in the vector of values to be
computed. You MUST explicitly remove NA to get a meaningfull answer. To be sure
the functions work well, use the full word TRUE not just T.

mean
sum
range
min
max
median
sd

mean(bci90.full$dbh)
[1] NA
mean(bci90.full$dbh,na.rm=TRUE)
[1] 45.29252

subset() and [condition] treat NAs differently. subset() will set NAs to FALSE and does
NOT INCLUDE them in the subsetted data if they are encountered during the
determining of the condition part of subset. Conditions determined by the use of []
will set NAs to TRUE and DOES INCLUDE them in any subsequent use of the condition
vector created.

table() by defaults EXCLUDES NAs. To include them you must explicitly request it:

table(bci90.full$dbh)[c(1:5,1021)]
10 11 12 13 14 <NA>
 8301 12851 12597 11474 10882 NA

table(bci90.full$dbh,exclude=NULL)[c(1:5,1021)]
10 11 12 13 14 <NA>
 8301 12851 12597 11474 10882 100787

cut() ignores NAs and does not include them in any category.

Functions such as lm() will fail if NaN or Inf are included in the data for the model.

lm(y~x)
Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok,

...) :
NA/NaN/Inf in foreign function call (arg 4)

