
RGtk2 - A GUI Toolkit for R

September 9, 2005

1 Introduction

1.1 Motivation

RGtk2 enables the R programmer to construct graphical user interfaces with
GTK+, a GUI toolkit that is very commonly used by linux desktop applications
and so is popular with the open-source community. The R platform greatly ben-
e�ts from access to GTK+ in that it allows novice users, such as biologists, to
capitalize on the analytical functionality of R, without the hindrance of the
learning curve associated with a console-driven interface. For example, a graph-
ical interface could guide a biologist through a microarray data analysis task
driven by Bioconductor. GTK+ is a vast improvement over the existing GUI
toolkit for R, tcl/tk, as GTK+ is more advanced and, by virtue of its popular-
ity in open-source applications, is capable of integrating interface functionality
from a wide-range of other projects, including GGobi and Mozilla Firefox.

1.2 Background

The original RGtk, based on the now obsolete GTK+ version 1.2, was developed
by Duncan Temple Lang. About 4 years ago, GTK+ 1.2 was overhauled and
renamed to GTK2. The fundamental GTK object system was abstracted into
a separate library called GObject, part of GLib. GTK2 also takes advantage
of the new font rendering library, Pango. Many widgets were added, removed,
and heavily altered. GTK2 has more sophisticated widgets, prettier text, and
a more elegant foundation than its predecessor. RGtk2 is an attempt to catch
up with the evolution of GTK+. The goal is virtually complete support for the
latest version of GTK2 (2.8.0) and its underlying libraries.

1.3 Scope

GTK2 is dependent upon a collection of libraries, all of which RGtk2 aims to
bind to R.

GLib: Handles common tasks such as string manipulation, linked lists,
event looping, etc.

1

GObject: Contains object and dynamic type system, including properties and
signals.

ATK: De�nes a common interface for accessibility technologies, imple-
mented by GTK.

Cairo: Vector graphics library with which GTK+ widgets are drawn.

Pango: Renders text, with full support for internationalization.

GDK: Handles interaction with native window system, including drawing
and events.

GdkPixbuf: Renders pixbufs, integrated with GDK.

GTK: Provides the widgets for the GUI.

Except for the �rst two, GLib and GObject, all of these libraries are fully bound
to R by RGtk2. GLib and GObject are partially bound to the extent necessary
for support of the others. A library binding consists of several components:

Functions: All functions are wrapped with automatic type conversion of the
parameters and return value(s).

Fields: The values for �elds of non-opaque structures are retrieved and con-
verted. This is read-only access.

Callbacks: User R functions are wrapped as typed C callback functions.

Converters: Library-speci�c types may require special conversion.

2 Design

2.1 Goals

The design goals of the project are two-fold. First, the bindings must be com-
plete and consistent with the bound API. This simpli�es documentation in that
there is a more-or-less one-to-one correspondence between RGtk functions and
the API functions. This also ensures that the R programmer has complete con-
trol over the API without any gaps or de�ciencies in functionality. Whatever
the C programmer can do, the R programmer should be able to do. Second, in-
teraction with RGtk must be simple and familiar to the R programmer. Foreign
C concepts such as memory management, return-by-reference parameters, and
type casting must be hidden or adapted to their R equivalent. The user should
be able to enjoy the bene�ts of GTK+ without knowing that it is implemented
in a foreign language.

2

2.2 Central Problem

Given the broad scope of the project, it is obvious that manual implementation
of the bindings would be extremely tedious and time consuming. In order to
avoid this, much of the code was autogenerated. Autogeneration also enhances
the maintainability of the project, since improved code can be uniformly and
automatically generated across all cases.

GTK+ and other GObject-based API's are de�ned according to a scheme-
based format called defs. The de�nitions describe an API's object hierarchy,
function names, parameter types, structure �elds, etc. They are annotated with
information that assists in more subtle aspects, such as memory management.
The most mature GTK+ language binding, pygtk, maintains a set of reference
defs �les and provides python scripts for their generation and parsing. RGtk
employs these scripts for parsing the defs �les via RSPython. The result is
converted to R and C binding code through the use of a code generation library
implemented in R. The defs format was overhauled along with GTK+ in the
transition to GTK2, and it contains much more information than was provided
to the original RGtk. However, there are still a small number of functions
that require manual implementation, such as varargs functions and cases of
complicated memory management.

2.3 Defs Shortcomings

The annotated de�nitions are very helpful in generating code. Unfortunately,
the pygtk authors manually implement a large portion of their bindings, so they
rely less on the defs information. The pygtk de�nitions, therefore, are buggy
and do not contain all of the information necessary to come close to completely
generating all of the bindings automatically.

The �rst task of building RGtk was the cleaning and annotating of the
defs �les. An example of an annotation is the speci�cation of a parameter as
in, out, or in-out. This allows the code generator to know when to accept a
parameter as input to a function and when to only return it as part of the
result. Other additions include de�ning explicit callback types for generating
wrappers and specifying the types of linked list elements, which is useful for
type conversion. Some of these modi�cations were not explicitly supported by
the defs speci�cation, but nor were they disallowed. The pygtk parsers were
extended to handle the new features, since they were written only to handle the
subset of the speci�cation employed by the pygtk de�nitions.

2.4 Type Conversion

Every component of the bindings requires type conversion to some extent. The
code generator attempts to write code that converts C types to and from R.
Primitive types, such as double [numeric], int [integer], and char* [character],
are perhaps the simplest to convert. Opaque structures such as GObjects and
�boxed� types are passed to R as externalptr's, with the class attribute set to

3

a character vector representing the type hierarchy of the object. Collections
of these types, in the form of arrays and linked lists, are simply converted by
iterating over the data structures. The original version of RGtk supported this
functionality, except for linked lists and some array types.

A more complicated problem that RGtk2 attempts to solve is the conversion
of simple, transparent C structures that are normally initialized manually and
therefore lack a constructor. This problem could be solved in at least two ways.
First, a function could be added that serves as a constructor for the structure.
Unfortunately, this would break the strict adherence to the API, since a new
function is introduced. Also, this solution violates the �spirit� of the API's
design. The simple structures are meant to be initialized and manipulated
without the extra baggage of function calls. Given these disadvantages, the
alternative is favored: allowing the user to de�ne an instance of such a type
as an R list which is automatically converted to the corresponding C structure
when passed to a wrapped function. When an instance of such a type is returned
from a function, it is converted to its R list equivalent, preserving symmetry.

For example, suppose a user wished to construct an instance of GdkColor,
a structure describing an RGB color with �elds red, green, and blue. The
following code would yield the color red: c(65535, 0, 0). Here the �elds for red,
green, blue must be speci�ed in the same order as they occur in the C structure
de�nition. If the user desires an alternative order or does not wish to specify
all of the �elds (they default to zero), then the list should be named according
to the �eld names in the C structure. For example, red could be speci�ed as
c(red=65535).

2.5 Memory Management

Memory management in GObject-based libraries is based on the data type.
GObjects are reference counted, while boxed types are explicitly freed after
use. The memory persistence of other structures is either freed on demand,
based on reference counting, or is handled internally. Finalizer functions for
the boxed types are speci�ed in the defs. The code generator registers these as
the �nalizers for the corresponding externalptr in R. The reference counting of
objects is also handled automatically. Other structures may be special-cased in
the generator or dealt with manually.

All of these mechanisms are dependent on whether RGtk �owns� the memory
of a returned value, which is also speci�ed in the defs �les. For example, if RGtk
owns an object's memory, it does not need to increase the reference count. If
RGtk does not own an instance of a boxed type, then it should not register its
externalptr for �nalization. One shortcoming of the defs format is that it is
not possible to specify the ownership of memory returned by reference, so these
cases must be dealt with using heuristics and manual implementation.

4

2.6 Adapting to R

Memory management is just one of the annoyances of C that R programmers
are happy to avoid. One example is the need to specify the lengths of arrays
(including strings) when passing them to functions, unless it is assumed that
the arrays are NULL-terminated. The code generator uses heuristics to identify
these parameters and does not require R to provide them. The wrapping code
determines the length of arrays automatically. Another complication is the
ability of C to return values by reference. These parameters, in addition to
the return value, are returned to R compiled as a list. This avoids trying to
emulate the foreign concept of return-by-reference in R. As a �nal example,
certain errors that occur in GLib-based libraries are described by a returned
GError structure. In R, libraries often alert the user to a problem via a printed
warning. The RGtk2 user may specify whether to print such a warning when a
GError is returned by passing a parameter to the wrapped function. If printing
is not requested, the user can still inspect the list structure containing the �elds
of the GError.

3 Other Issues

3.1 The Event Loop

Many GTK2 widgets have complex behavior that requires the execution of time-
out and idle tasks. In order to reliably invoke these tasks, the GTK event loop
must be the primary R event loop. The strategy to achieve this depends on the
platform. On Linux, the REventLoop package by Duncan Temple Lang provides
a framework for replacing the default Read-Eval-Print Loop with a foreign loop,
without losing control of the console. RGtk2 provides a GTK2 (actually GLib
2.x) implementation for the REventLoop package. On Windows, the solution is
somewhat simpler. The tcl/tk package invokes a function named tcl_do when
it is waiting for console input, so that it can still respond to tcl/tk events. RGtk
simply rede�nes tcl_do so that it checks for GTK events instead. Both of these
solutions are satisfactory, but they are kind of ugly hacks.

3.2 Compatibility

The GTK+ API is in constant �ux; it changes with each minor version. RGtk
must somehow accomodate the many di�erent versions without overly com-
plicating the code generation process. For example, one solution would be to
autogenerate code with preprocessor directives allowing conditional compilation
based on the user's GTK version. However, this would greatly complicate the
process. It also would not account for the R side of the wrappers. Instead, the
RGtk code was simply branched, so that as of this writing three minor versions
of GTK are supported (2.8.0, 2.6.0, and 2.4.0). As GTK and RGtk advance, the
previously branched versions will continue to be maintained by merging version
independent code enhancements between them.

5

4 Additional API Support

4.1 iWidgets

Simon Urbanek's iWidgets is an attempt to establish a simple API for quickly
constructing GUI's in R. It is very minimalistic and thus it should be relatively
straightforward to provide iWidget implementations based on any mature wid-
get toolkit. In theory, it should allow the R programmer to easily create a
native GUI without concern for any quirks or minutia associated with a par-
ticular platform or toolkit. The programmer should be able to focus on the
statistics without getting bogged down in GUI building. RGtk2 provides a
GTK2 implementation of iWidgets, which is perhaps as close as one can get to
native support on Linux.

4.2 Extra Libraries

Two additional GTK-related libraries are included with RGtk2. The �rst is
libglade, which allows one to create a GUI by reading an XML speci�cation at
runtime. The Glade graphical GUI builder exports this XML, so even some-
one with little GUI programming experience can quickly and easily construct
a complex interface. Also, RGtk2 includes GtkMozEmbed bindings for embed-
ding a Mozilla Firefox renderer into an RGtk2 application. This demonstrates
the usefulness of binding to a toolkit that is used by many major open source
applications.

5 Code Example / Demo

The overall process of programming with GTK+ in R is essentially the same as
in C. Of course, in R there is no explicit memory management, the syntax is a bit
di�erent, and R greatly facilitates many C chores. An example is probably the
best way to demonstrate how RGtk2 parallels the C GTK+ API. The GTK+
distribution includes a demo of a simple use of the �expander� widget.

The �rst step is to create a dialog to contain the widget (in C):

window = gtk_dialog_new_with_buttons ("GtkExpander", NULL, 0,

GTK_STOCK_CLOSE, GTK_RESPONSE_NONE, NULL);

In RGtk2's style, the function name, gtk_dialog_new_with_buttons is col-
lapsed to an easier to type gtkDialogNewWithButtons. The constant stock
item identi�er is just given as its string value and the enum GtkResponseType
value is given as its equivalent string. This is a var-args function, so C requires
a NULL terminating argument, but of course this is not necessary in R.

window <- gtkDialogNewWithButtons("GtkExpander", NULL, 0, "gtk-close", "none")

6

Next, we want to make the dialog resizeable (in C):

gtk_window_set_resizable (GTK_WINDOW (window), FALSE);

For calling methods, RGtk2 supports a more convenient Java-like syntax where
the object is given �rst, followed by the $ operator, then the method and its
arguments. Also note that in RGtk2, there is no need to cast anything.

window$setResizable(FALSE)

Now it's time to set up a callback to the 'response' signal so that we can close
the dialog when the user is �nished:

g_signal_connect (window, "response", G_CALLBACK (gtk_widget_destroy), NULL);

RGtk2 supports an alias for g_signal_connect (connectSignal) to save typing.
It also takes advantage of R's convenience and lets you leave o� the unneeded
user data parameter.

connectSignal(window, "response", gtkWidgetDestroy)

Now we create a layout and add it to the dialog's internal layout widget (vbox):

vbox = gtk_vbox_new (FALSE, 5);

gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->vbox), vbox, TRUE, TRUE, 0);

We need to access the 'vbox' �eld from R, so we use the '[[' operator with the
�eld's name:

vbox <- gtkVBoxNew(FALSE, 5)

window[["vbox"]]$packStart(vbox, TRUE, TRUE, 0)

Here is the rest of the R code for the demo:

vbox$setBorderWidth(5)

label <- gtkLabelNew("Expander demo. Click on the triangle for details.")

vbox$packStart(label, FALSE, FALSE, 0)# Create the expander

expander <- gtkExpanderNew("Details")

vbox$packStart(expander, FALSE, FALSE, 0)

label <- gtkLabelNew("Details can be shown or hidden.")

expander$add(label)

window$showAll()

Another reasonable introduction to the style and capabilities of RGtk2 is cre-
ating an R-based web browser using GtkMozEmbed, the embedded Mozilla
rendering widget.

The �rst step (after loading RGtk2) is to create our main window, set its
size and title, and then create the GtkMozEmbed widget.

7

browserWindow <- gtkWindowNew("toplevel")

browserWindow$setTitle("RGtk web browser")

browserWindow$setSizeRequest(800, 500)

mozembed <- gtkMozEmbedNew()

Next we need to de�ne some user actions for the interface. The GTK+ API
includes a convenience structure, GtkActionEntry, for quickly de�ning and cre-
ating instances of GtkAction. The structure is an example of a transparent type
- we de�ne it as a list in R. The action group needs an array of actions, which
means we combine the entries in an R list, yielding a nested list structure.

actionEntries <- list(

list("BrowserBack", "gtk-go-back", "Go _Back", "<control>B",

"Go back to previous page", browserBackward.handler),

list("BrowserForward", "gtk-go-forward", "Go _Forward", "<control>F",

"Go forward to next page", browserForward.handler),

list("BrowserRefresh", "gtk-refresh", "_Refresh", "<control>F",

"Refresh the current page", browserRefresh.handler),

list("BrowserHome", "gtk-home", "Go _Home", "<control>H",

"Go back to initial page", browserHome.handler),

list("BrowserStop", "gtk-stop", "_Stop", "<control>F",

"Stop operation", browserStop.handler)

)

ag <- gtkActionGroupNew("BrowserActions")

ag$addActions(actionEntries, mozembed)

The rest of the code necessary to create the browser may be found as a demo in
the RGtk2 package. There are many other demos available, mostly converted
from the C demos included with GTK+-2.0.

6 Conclusion

In short, RGtk2 has achieved its goals of being complete and consistent without
sacri�cing simplicity and familiarity to the R programmer. A total of eight
libraries are completely (and two more partially) bound to R. Every attempt
is made to keep a one-to-one correspondence with the C API. Technologies
such as glade and iWidgets greatly simplify the task of creating GUI's using
RGtk2. Finally, foreign C concepts like memory management are avoided and
assimilated, ensuring that the learning curve for an R developer is as shallow as
possible.

RGtk2 does, however, have several shortcomings, which hopefully will be re-
solved in the near future. The maintenance of defs �les is time-consuming and
error-prone. Duncan Temple Lang is �nishing work on a new SWIG-inspired
system for generating bindings directly from C code. It promises to streamline
the bindings generation process. Another item on the wishlist is support for

8

Figure 1: A screenshot of a web browser interface constructed from R, using
the GtkMozEmbed widget for rendering the HTML content. The navigation
buttons, URL entry, and statusbar are all driven by R callbacks.

9

implementing new GObject classes purely in R; however this would be a di�-
cult task and the great majority of RGtk-based projects would not bene�t from
it. Other possible improvements include write support for structure �elds (if al-
lowed), a cleaner event loop implementation (mostly depends on R itself), and
the ability to wrap varargs functions automatically. Except for these improve-
ments, most of the future work on RGtk2 will be keeping up with additions
to the GTK+ and related API's, ensuring that the R developer is never left
behind.

References

[1] The original RGtk: http://www.omegahat.org/RGtk

[2] GTK+: http://www.gtk.org

[3] R: http://www.r-project.org

[4] GeneGobi: http://www.public.iastate.edu/ dicook/GeneGobi/MetNetGeneGobi.htm

[5] iWidgets: http://stats.math.uni-augsburg.de/R

10

