
The OdfWeave Package

Max Kuhn
max.kuhn@pfizer.com

September 5, 2006

1 Introduction

The Sweave function (Leisch, 2002) is a powerful component of R. It can be used to combine R code
with LATEX so that the output of the code is embedded in the processed document. The capabilities
of Sweave were later extended to HTML format in the R2HTML package.

A written record of an analysis can be created using Sweave, but additional annotation of the
results may be needed such as context–specific interpretation of the results. Sweave can be used
to automatically create reports, but it can be difficult for researchers to add their subject–specific
insight to pdf or HTML files.

The odfWeave package was created so that the functionality of Sweave can used to generate
documents that the end–user can easily edit.

The markup language used is the Open Document Format (ODF), which is an open, non–
proprietary format that encompasses text documents, presentations and spreadsheets. Version 1.0
of the specification was finalized in May of 2005 (OASIS, 2005). One year later, the format was
approved for release as an ISO and IEC International Standard.

There are several editors/office suites that can produce ODF files. OpenOffice is a free, open
source editor that, as of version 2.0, uses ODF as the default format. odfWeave has been tested
with OpenOffice to produce text documents. As of the current version, odfWeave processing of
presentations and spreadsheets should be considered to be experimental (but should be supported
in subsequent versions). OpenOffice can be used to export the document to MS Word, rich text
format, HTML, plain text or pdf formats.

One advantage to using Sweave with ODF files is that no experience with markup languages is
needed, so a broader set of users can create documents. However, the Open Document Format is
very new and may go through significant changes in the future

Users can create documents with Sweave commands in ODF using (almost) exactly the same

OdfWeave

format as required when using LATEX markup. A basic call to odfWeave looks like

odfWeave(inFile, outFile, workDir = odfTmpDir(), control = odfWeaveControl())

where inFile and outFile are the source and destination file names, workDir is a path where the
files are processed and control is a control object that can be used to specify image formats and
style specifications. The functionality of odfWeave is described in more detail later.

2 Requirements

To use odfWeave, the user must have a basic understanding of Sweave.

odfWeave requires files to be in the Open Document Format, version 1.0 or above. These can be
generated by OpenOffice version 2.0 or above (see Section 3). The package also requires a utility to
zip and unzip compressed files, such as unzip1, Winzip or jar.

Also, by default, odfWeave tries to save images in png format. In Unix and Linux, a png device
may not be available. There are three options if this is the case: enable the png device, using the
bitmap device (which requires GhostScript) or specify an alternate image format.

3 The Open Document Format

The Open Document Format is a document format that encompasses text documents, spreadsheets,
presentations and other types of files. The document extension depends on the document type: odt
for text documents, odp for presentations and so on. Open Document Format files are compressed
archives of several files and folders which can be decompressed using standard tools such as unzip,
jar or WinZip. Some resources for the format are:

� The format specification (OASIS, 2005)

� ”Introduction to the format internals” by David Carrera

� ”OASIS OpenDocument Essentials – Using OASIS OpenDocument XML” by J. David Eisen-
berg

A typical document will have a structure similar to:

1a free utility available for many operating systems at http://www.info-zip.org/

2 of 11

http://www.info-zip.org/

OdfWeave

Name

content.xml

layout-cache

META-INF/

META-INF/manifest.xml

meta.xml

mimetype

Pictures/

Pictures/rplot.png

settings.xml

styles.xml

Thumbnails/

Thumbnails/thumbnail.png

There are sub–directories in the archive:

� META-INF/ contains manifest.xml, which enumerates the entries in the compressed archive

� Pictures/ contains any image files that are included in the document.

� Thumbnails has images of the rendered document.

Additionally, the files contained in the compressed archive include:

� content.xml contains the content of the document (e.g. text paragraphs, tables, etc.)and
some formatting.

� meta.xml contains summary information about the document, such as creation date, num-
ber of edits, document statistics (e.g. number of words, etc) and the identification of the
application that generated the document.

� settings.xml lists the configuration of the document, such as the zoom when opened or
printing options.

� styles.xml has formatting information for almost all of the elements in the document, such
as fonts or table formatting.

Since ODF is based on XML, the underlying markup tends to be very verbose. For example, the
in–line Sweave expression:

\Sexpr{paste(letters[1:5], collapse = ",")}

3 of 11

OdfWeave

produces the following markup in content.xml:

<text:p text:style-name="SomeStyleDef">

\Sexpr{paste(letters[1:5], <text:s text:c="2"/>collapse = ",")}

</text:p>

Code chunks yield similar formatting:

figureTest2,fig = TRUE,echo=FALSE,results=hide =

library(lattice)

out <- densityplot(randomData, adjust = 1.5)

print(out)

The resulting markup in content.xml would look like:

<text:p><<figureTest2,fig = TRUE,echo=FALSE,results=hide>>=</text:p>

<text:p>library(lattice)</text:p>

<text:p>out <- densityplot(randomData, adjust = 1.5)</text:p>

<text:p>print(out)</text:p>

<text:p>@</text:p>

A significant portion of the odfWeave code base is for pre–processing the XML files so that they
can be passed to the Sweave function in conjunction with a custom ODF driver. All R code written
in ODF documents will be encased in XML tags, which isn’t an issue for in–line commands, but
these must be stripped for code chunks. Also, several characters (”>”, ”<”, ”&”, single quotes and
double quotes) are automatically converted to alternative representations (”>”, ”<”, ”&”,
”&apos” and ”"”). Also, two or more consecutive spaces are represented using XML tags. One
additional complication arises from the automatic character conversion features of some editors.
For example, minus signs (”-”) are sometimes converted to long dashes (”–”). These characters must
be caught and converted before they are sent to the R parser.

Given the structure of an ODF file, odfWeave must decompress the file, pre–process the XML
files, Sweave and then re–compress the archive.

4 Using odfWeave

The functionality of Sweave is mostly preserved in odfWeave, such as weaving, hooks, figure envi-
ronments, etc. Some functionality, such as writing output to separate files for each code chunk using

4 of 11

OdfWeave

the split argument, doesn’t make sense when using ODF. As another example, ODF supports a
broad range of image formats, so pdf or eps arguments to code chunks are somewhat limiting.

In–line Sweave expressions are created using \Sexpr. Code chunks can be created with the noweb
convention (using <<>>=). The LATEX code chunk syntax is not currently supported.

The image format and sizes are specified using getImageDefs and setImageDefs. For example:

> getImageDefs()

$type

[1] "png"

$device

[1] "png"

$plotHeight

[1] 480

$plotWidth

[1] 480

$dispHeight

[1] 5

$dispWidth

[1] 5

$args

list()

This shows that the type of image to generate is ”png”via the png device driver. The plotHeight
and plotWidth values are set in the units of the particular device driver (pixels in this case, but
other devices use inches). The dimensions of the image file and the dimensions of the rendered
image can be set independently using dispHeight and dispWidth (always in inches). The args

element is a list of graphics device arguments. For example, when using postscript graphics, you
might need to use the options horizontal = FALSE, onefile = FALSE and paper = "special".

To change the defaults, this list can be saved and edited. The modified version can be used via
setImageDefs(modObject), where modObject is a modified version of the above list. This can be
done prior to calling odfWeave or can be set in–between figure code chunks.

The odfTable class can be used to convert vectors, matrices and data frames to native ODF
tables, much like the latex function in the Hmisc package. The odfCat can be used to write out
text in native ODF format. There are also functions to created bulleted lists and inserting external

5 of 11

OdfWeave

images (i.e. images not created in a chunk with fig = TRUE).

Figure 1 shows an example text document prior to weaving. For illustrative purposes, we might
want to adjust the display size of the image to a 4.5 inch square. The R code to do this is:

library(odfWeave)

inFile <- "example.odt"

outFile <- "out.odt"

imageDefs <- getImageDefs()

imageDefs$dispWidth <- 4.5

imageDefs$dispHeight<- 4.5

setImageDefs(imageDefs)

odfWeave(inFile, outFile)

Figure 2 shows the results. Note that since the first in–line Sexpr command had uniform formatting,
the output of that command retained the formatting. In general, the formatting of in–line Sweave

tags and code chunks is required to be uniform (as an error is likely to be produced otherwise). For
example, round(sqrt(2), 2), ends up looking like

<text:p>round(<text:span text:style-name="T10">sqrt(2)</text:span>, 2)</text:p>

and can be difficult to process and parse.

One additional note about this example: the initial code chunk that loads the data does not
specify the full path to the file. In this example, the source data were previously zipped into the
ODF file (using zip example.odt pcrData.csv) so that the source data are embedded with the
analysis and report. Once the file is processed using odfWeave, the resulting document also contains
the source data in its original form.

5 Formatting

There are two main components to specifying output formats: style definitions and style assign-
ments. The definition has the specific components (such as a table cell) and their format values
(e.g. boxed with solid black lines). The function getStyleDefs can fetch the pre–existing styles in
the package. For example:

> getStyleDefs()$ArialNormal

$type

[1] "Paragraph"

6 of 11

OdfWeave

<<loadData, results = hide, echo = FALSE>>=
Polymerase chain reaction (PCR) data for 3 dose groups
pcrData <- read.csv("pcrData.csv")
@

There were \Sexpr{dim(pcrData)[1]} subjects measured across
\Sexpr{length(unique(pcrData$Compound))} drug groups. A density plot of the data is
produced with the lattice package:

<<densityPlot, echo = FALSE, fig = TRUE>>=
library(lattice)
trellis.par.set(col.whitebg())
print(
 densityplot(
 ~log(Cycles, base = 2),
 pcrData,
 groups = Compound,
 adjust = 1.5,
 pch = "|",
 auto.key = list(columns = 3)))
@

Here is a table of the mean cycles to threshold for each drug group:

<<meanTable, echo = FALSE, results = xml>>=
meanCycles <- tapply(
 log(pcrData$Cycles, base = 2),
 pcrData$Compound,
 mean)

odfTable(
 meanCycles,
 horizontal = TRUE)
@

Of course, we would normally look at diagnostics before going straight to the p-value

<<lmFit, results = verbatim>>=
linearModel <- lm(
 log(Cycles, base = 2) ~ Compound,
 data = pcrData)
anova(linearModel)
@

Figure 1: An example of an ODF document containing Sweave tags.

7 of 11

OdfWeave

There were 36 subjects measured across 3 drug groups. A density plot of the data is
produced with the lattice package:

Here is a table of the mean cycles to threshold for each drug group:

Compound1 Compound2 Vehicle
5.054 4.816 4.590

Of course, we would normally look at diagnostics before going straight to the p-value

> linearModel <- lm(log(Cycles, base = 2) ~ Compound, data = pcrData)
> anova(linearModel)
Analysis of Variance Table

Response: log(Cycles, base = 2)
 Df Sum Sq Mean Sq F value Pr(>F)
Compound 2 1.2947 0.6473 5.829 0.006794 **
Residuals 33 3.6648 0.1111

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 2: The processed ODF document.

8 of 11

OdfWeave

$parentStyleName

[1] ""

$textAlign

[1] "left"

$fontName

[1] "Arial"

$fontSize

[1] "12pt"

$fontType

[1] "normal"

$fontColor

[1] "#000000"

These can be modified and new definitions can be added. The function setStyledefs ”registers”
the style changes with the package. When odfWeave is called, these definitions are written to the
style sections of the XML files. There is a second mechanism to assign styles to specific output
elements. The functions getStyles and setStyles can be used to tell odfWeave which style
definition to use for a particular output:

> currentStyles <- getStyles()

$paragraph

[1] "ArialNormal"

$input

[1] "ttRed"

$output

[1] "ttBlue"

$table

[1] "Rtable1"

$cell

[1] "noBorder"

9 of 11

OdfWeave

$header

[1] "lowerBorder"

$cellText

[1] "ArialCentered"

$headerText

[1] "ArialCenteredBold"

$bullet

[1] "Rbullet"

For example, the input and output elements control how R code and command–line output look.
To change either of these, an existing definition can be assigned to these entries and reset using
setStyles(currentStyles). Unlike the style definitions, the style assignments can be modified
throughout the R code.

The package also contains a function, tableStyles, that can be used to differentially format
specific cells and text in tables.

6 Other Functions

There are a few miscellaneous functions also included in the package. pkgVersions can create a
summary of the packages and versions in the search path:

> pkgVersions("matrix", ncol = 3)

[,1] [,2] [,3]

[1,] "base (v.2.3.1)" "lattice (v.0.13-8)" "tools (v.2.3.1)"

[2,] "datasets (v.2.3.1)" "methods (v.2.3.1)" "utils (v.2.3.1)"

[3,] "grDevices (v.2.3.1)" "odfWeave (v.0.4.4)" ""

[4,] "graphics (v.2.3.1)" "stats (v.2.3.1)" ""

The function listString takes a vector and returns a textual list. For example, letters[1:4]
would become ”a, b, c and d”. Also, matrixPaste can take a series of character matrices with the
same dimensions and perform an element–wise paste.

10 of 11

OdfWeave

7 Converting ODF to Other Formats

Using OpenOffice, ODF files can be manually converted to other formats using the ”Save As” or
”Export” items in the File menu. To convert documents using a command line interface, there are
at last two options:

� on platforms with the Bash shell, Nathan Coulter has written a script that uses the Python in-
ternals that are installed with OpenOffice, called ooconvert. This can be found at
http://sourceforge.net/projects/ooconvert.

� there is a Java class, called JOOConverter, that is available at http://jooreports.sourceforge.net/
that can also convert documents.

.

8 References

Carrera, D. (2005). Introduction to the format internals. URL: http://opendocumentfellowship.org/
Articles/IntroductionToTheFormatInternals.

Eisenberg, J. D. (2005). OASIS OpenDocument Essentials – Using OASIS OpenDocument XML.
URL: http://books.evc-cit.info/.

Leisch, F. (2002). Sweave, Part I: Mixing R and LATEX. R News, 2(3):28–31. URL: http://cran.r-
project.org/doc/Rnews.

Organization for the Advancement of Structured Information Standards (OASIS) (2005). Open
Document Format for Office Applications (OpenDocument) v1.0. URL: http://www.oasis-
open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf

11 of 11

http://sourceforge.net/projects/ooconvert
http://jooreports.sourceforge.net/
http://opendocumentfellowship.org/Articles/IntroductionToTheFormatInternals
http://opendocumentfellowship.org/Articles/IntroductionToTheFormatInternals
http://books.evc-cit.info/
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews
http://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf
http://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf

	Introduction
	Requirements
	The Open Document Format
	Using odfWeave
	Formatting
	Other Functions
	Converting ODF to Other Formats
	References

