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Abstract

poLCA is a software package for the estimation of latent class and latent
class regression models for polytomous outcome variables, implemented in
the R statistical computing environment. Both models can be called using a
single simple command line. The basic latent class model is a finite mixture
model in which the component distributions are assumed to be multi-way
cross-classification tables with all variables mutually independent. The la-
tent class regression model further enables the researcher to estimate the
effects of covariates on predicting latent class membership. poLCA uses
expectation-maximization and Newton-Raphson algorithms to find maxi-
mum likelihood estimates of the model parameters.

1 Quick Start

This section is provided for users who wish to skip the technical details and proceed
directly to the estimation of latent class and latent class regression models.

1.1 Installation

Download the current version of the poLCA software package from the poLCA
website or from the Comprehensive R Archive Network (CRAN) by loading R
and selecting Packages > Install package(s)... from the drop-down menu.
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Select a nearby CRAN mirror and click OK. Scroll down to the poLCA package
and click OK. The package will automatically download to your computer.

If you are using the .zip file downloaded from the poLCA website, load R and
select Packages > Install package(s) from local zip files... from the
drop-down menu and navigate to the .zip file. Click Open to begin the installation.

Once either installation process is complete, enter

> library(poLCA)

in R to load the package into memory.

1.2 Data and formula definition

poLCA requires the user to provide a data frame of categorical variables, and a
formula definition for the model to be estimated. The data frame may contain
missing values (NA), but all other entries must be positive integers. Each variable
should contain values that increment from 1 to the maximum number of outcome
categories for that variable.

Suppose a data frame dat contains variables X1, X2, Y1, Y2, Y3, and Y4. To
estimate a latent class model for the outcome variables Y, define model formula f:

> f <- cbind(Y1,Y2,Y3,Y4)~1

To include covariates, modify the formula using the standard R formula expression:

> f <- cbind(Y1,Y2,Y3,Y4)~X1+X2

This will estimate the latent class regression model using X1 and X2 to predict
latent class membership.

1.3 Estimation

To estimate the latent class model with two latent classes (the default), the com-
mand is simply:

> lc <- poLCA(f,dat)

Additional classes can be assumed using the nclass argument, as for example:

> lc <- poLCA(f,dat,nclass=4)

After estimating the model, poLCA will output selected parameters. Other values
of interest are saved as a list in lc.

1.4 Global versus local maxima

It is always advisable to run poLCA more than once to ensure that the global
maximum likelihood of the latent class model has been obtained, rather than only
a local maximum. This is due to the algorithm that poLCA uses to estimate the
parameters of the latent class model. For more details, see Section 5.4 below.
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2 Motivation for poLCA

poLCA is the first R package to enable the user to estimate latent class models
for manifest variables with any number of possible outcomes, and it is the only
package that estimates latent class regression models with covariates. The two
other R commands that currently exist to estimate latent class models—the lca

command in package e1071, and the gllm command in package gllm—can only
estimate the basic model for dichotomous outcome variables.

Note that there is occasionally some confusion over the term “latent class
regression” (LCR); in practice it can have two meanings. In poLCA, LCR models
refer to latent class models in which the probability of latent class membership is
predicted by one or more covariates. In other contexts, however, LCR is used to
refer to regression models in which the dependent variable is partitioned into latent
classes as part of estimating the regression model. It is a way to simultaneously fit
more than one regression to the data when the latent data partition is unknown.
The regmix command in package fpc will estimate this other type of LCR model,
as will the flexmix command in package flexmix. Because of these terminology
issues, the LCR models estimated using poLCA are sometimes termed “latent class
models with covariates” or “concomitant-variable latent class analysis,” both of
which are accurate descriptions of this model.

3 Latent Class Models

The basic latent class model is a finite mixture model in which the component
distributions are assumed to be multi-way cross-classification tables with all vari-
ables mutually independent. This assumption is termed “local” or “conditional”
independence. This model was originally proposed by Lazarsfeld (1950) under
the name “latent structure analysis”. Chapter 13 in Agresti (2002) details the
connection between latent class models and finite mixture models.

3.1 Terminology

Suppose we observe J unordered polytomous categorical variables (the “manifest”
variables), each of which contains Kj possible outcomes, for individuals i = 1...N .
The manifest variables may have different numbers of outcomes, hence the index-
ing by j. Denote as Yijk the observed values of the J manifest variables such that
Yijk = 1 if respondent i gives the kth response to the jth variable, and Yijk = 0
otherwise, where j = 1 . . . J and k = 1 . . . Kj.

The latent class model approximates the observed joint distribution of the
manifest variables as the weighted sum of a finite number, R, of constituent cross-
classification tables. Let πjkr denote the class-conditional probability that an
observation in class r produces the kth outcome on the jth variable, where r =
1 . . . R. Within each class, for each manifest variable, therefore,

∑Kj

k=1 πjkr = 1.
Further denote as pr the R mixing proportions that provide the weights in the
weighted sum of the component tables, with

∑
r pr = 1. The number of latent
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classes R in the model must be specified by the researcher prior to estimating the
model.

The probability that an individual i in class r produces a particular set of J
outcomes on the manifest variables, assuming local independence, is the product

f(Yi; πr) =
J∏

j=1

Kj∏

k=1

(πjkr)
Yijk . (1)

The probability density function across all classes is the weighted sum

Pr(Yi|π, p) =
R∑

r=1

pr

J∏
j=1

Kj∏

k=1

(πjkr)
Yijk . (2)

The parameters estimated by the latent class model are pr and πjkr.
Given estimates p̂r and π̂jkr of pr and πjkr, respectively, the posterior probabil-

ity that each individual belongs to each class, conditional on the observed values
of the manifest variables, can be calculated using Bayes’ formula:

P̂r(r|Yi) =
prf(Yi; π̂r)∑
r prf(Yi; π̂r)

. (3)

Recall that the π̂jkr are estimates of outcome probabilities conditional on class r.
It is important to remain aware that the number of independent parameters

estimated by the latent class model increases rapidly with R, J , and Kj. Given
these values, the number of parameters is R

∑
j(Kj − 1)+ (R− 1). If this number

exceeds either the total number of observations, or one fewer than the total number
of cells in the cross-classification table of the manifest variables, then the latent
class model will be unidentified.

3.2 Parameter estimation

poLCA estimates the latent class model by maximizing the log-likelihood function

log L =
N∑

i=1

ln
R∑

r=1

pr

J∏
j=1

Kj∏

k=1

(πjkr)
Yijk (4)

with respect to pr and πjkr, using the expectation-maximization (EM) algorithm
(Dempster, Laird, and Rubin 1977). This log-likelihood function is identical in
form to the standard finite mixture model log-likelihood. As with any finite mix-
ture model, The EM algorithm is applicable because each individual’s class mem-
bership is unknown and may be treated as missing data (see McLachlan and
Krishnan 1997; McLachlan and Peel 2000).

The EM algorithm proceeds iteratively. Begin with arbitrary initial values
of p̂r and π̂jkr, and label them p̂old

r and π̂old
jkr. In the expectation step, calculate

the “missing” class membership probabilities using Eq. 3, substituting in p̂old
r and
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π̂old
jkr. In the maximization step, update the parameter estimates by maximizing

the log-likelihood function given these posterior P̂r(r|Yi), with

p̂new
r =

1

N

N∑
i=1

P̂r(r|Yi) (5)

as the new prior probabilities and

π̂new
jr =

∑N
i=1 YijP̂r(r|Yi)∑N

i=1 P̂r(r|Yi)
(6)

as the new class-conditional outcome probabilities (see Everitt and Hand 1981;
Everitt 1984). In Eq. 6, π̂new

jr is the vector of length Kj of class-r conditional
outcome probabilities for the jth manifest variable; and Yij is the N ×Kj matrix
of observed outcomes Yijk on that variable. The algorithm repeats these steps,
assigning the new to the old, until the overall log-likelihood reaches a maximum
and ceases to increment beyond some arbitrarily small value.

poLCA takes advantage of the iterative nature of the EM algorithm to make
it possible to estimate the latent class model even when some of the observations
on the manifest variables are missing. Although poLCA does offer the option to
listwise delete observations with missing values before estimating the model, it is
not necessary to do so. Instead, when determining the product in Eq. 1 and the
sum in the numerator of Eq. 6, poLCA simply excludes from the calculation any
manifest variables with missing observations. The priors are updated in Eq. 3
using as many or as few manifest variables as are observed for each individual.

Depending on the initial values chosen for p̂old
r and π̂old

jkr, and the complexity
of the latent class model being estimated, the EM algorithm may only find a
local maximum of the log-likelihood function, rather than the preferred global
maximum. For this reason, it is always advisable to re-estimate a particular model
a couple of times using poLCA, to ensure that the global maximum likelihood
solution has been achieved.

3.3 Model selection and goodness-of-fit criteria

The choice of number of latent classes is typically either guided by theory, or made
with reference to parsimony criteria that are designed to strike a balance between
over- and under-fitting the model to the data. Adding an additional class to a
latent class model will increase the fit of the model, but at the risk of fitting to
noise, and at the expense of estimating a further 1+

∑
j(Kj−1) model parameters.

Parsimony criteria handle this tradeoff by penalizing the log-likelihood by a
function of the number of parameters being estimated. The two most widely
used parsimony measures are the Bayesian information criterion (BIC) (Schwartz
1978) and Akaike (1973) information criterion (AIC). Preferred models are those
that minimize values of the BIC and/or AIC. Let Λ represent the maximum log-
likelihood of the model and Φ represent the total number of estimated parameters.
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Then,
AIC = −2Λ + 2Φ

and
BIC = −2Λ + Φ ln N.

poLCA calculates these parameters automatically when estimating the latent class
model. The BIC will usually be more appropriate for basic latent class models
because of their relative simplicity (Lin and Dayton 1997; also see Forster 2000).

Calculating χ2 and likelihood ratio chi-square (G2) statistics for the observed
versus predicted cell counts is another method to determine how well a particular
model fits the data (Goodman 1970). Let qc denote the observed number of cases
in each of the C =

∏
Kj cells of the cross-classification table of the manifest

variables. Let Q̂ denote the expected number of cases in each cell under a given
model. The cth cell (where c = 1 . . . C) corresponds to one particular sequence
of J outcomes on the manifest variables. Taking the π̂jkr corresponding only to
those outcomes,

Q̂c = N

R∑
r=1

pr

J∏
j=1

π̂jkr.

The two test statistics are then calculated as

χ2 =
∑

c

(q − Q̂)2/Q̂

and
G2 = 2

∑
c

q log(q/Q̂).

Generally, the goal is to select models that minimize these values without esti-
mating excessive numbers of parameters. Note, however, that the distributional
assumptions for these statistics are not met if many cells of the observed cross-
classification table contain zero observations. Like the AIC and BIC, these statis-
tics are outputted automatically after calling poLCA.

4 Latent Class Regression Models

The latent class regression model generalizes the basic latent class model by per-
mitting the inclusion of covariates (or “concomitant” variables) to predict indi-
viduals’ latent class membership (Dayton and Macready 1988; Hagenaars and
McCutcheon 2002). This is a so-called “one-step” technique for estimating the
effects of covariates, because the coefficients on the covariates are estimated si-
multaneously as part of the latent class model. An alternate estimation procedure
that is sometimes used is called the “three-step” model: estimate the basic latent
class model, calculate the predicted posterior class membership probabilities using
Eq. 3, and then use these values as the dependent variable(s) in a regression model
with the desired covariates. However, as demonstrated by Bolck et al. (2004), the
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three-step procedure produces biased coefficient estimates. It is preferable to es-
timate the entire latent class regression model all at once.

Covariates are included in the latent class regression model through their effects
on the priors pr. In the basic latent class model, it is assumed that every individual
has the same prior probabilities of latent class membership. The latent class
regression model, in contrast, allows individuals’ priors to vary depending upon
their observed covariates.

4.1 Terminology

Denote the mixing proportions in the latent class regression model as pri to reflect
the fact that these priors are now free to vary by individual. It is still the case that∑

r pri = 1 for each individual. To accommodate this constraint, poLCA employs
a generalized (multinomial) logit link function for the effects of the covariates on
the priors (Agresti 2002).

Let Xi represent the observed covariates for individual i. poLCA arbitrarily
selects the first latent class as a “reference” class and assumes that the log-odds of
the latent class membership priors with respect to that class are linear functions
of the covariates. Let βr denote the vector of coefficients corresponding to the rth
latent class. With S covariates, the βr have length S + 1; this is one coefficient
on each of the covariates plus a constant. Because the first class is used as the
reference, β1 = 0 is fixed by definition. Then,

log(p2i/p1i) = Xiβ2

log(p3i/p1i) = Xiβ3

...

log(pRi/p1i) = XiβR

Following some simple algebra, this produces the general result that

pri = p(Xi; βr) =
eXiβr∑
r eXiβr

. (7)

The parameters estimated by the latent class regression model are the R−1 vec-
tors of coefficients βr and, as in the basic latent class model, the class-conditional
outcome probabilities πjkr. Given estimates β̂r and π̂jkr of these parameters, the
posterior class membership probabilities in the latent class regression model are
obtained by replacing the pr in Eq. 3 with the function p(Xi; βr) in Eq. 7:

P̂r(r|Xi; Yi) =
p(Xi; β̂r)f(Yi; π̂r)∑
r p(Xi; β̂r)f(Yi; π̂r)

. (8)

The number of parameters estimated by the latent class regression model is equal
to R

∑
j(Kj − 1) + (S + 1)(R − 1). The same considerations mentioned earlier

regarding model identifiability also apply here.

7



4.2 Parameter estimation

The latent class regression model log-likelihood function is identical to Eq. 4 except
that the function p(Xi; βr) (Eq. 7) takes the place of pr:

log L =
N∑

i=1

ln
R∑

r=1

p(Xi; βr)
J∏

j=1

Kj∏

k=1

(πjkr)
Yijk . (9)

To find the values of β̂r and π̂jkr that maximize this function, poLCA uses a
modified EM algorithm with a Newton-Raphson step, as set forth by Bandeen-

Roche et al. (1997). This estimation process begins with initial values of β̂
old

r and

π̂old
jkr that are used to calculate posterior probabilities P̂r(r|Xi; Yi) (Eq. 8). The

coefficients on the concomitant variables are updated according to the formula

β̂
new

r = β̂
old

r + (−D2
β log L)−1Dβ log L (10)

where Dβ is the gradient and D2
β the Hessian matrix with respect to β. The π̂new

jkr

are updated as

π̂new
jr =

∑N
i=1 YijP̂r(r|Xi; Yi)∑N

i=1 P̂r(r|Xi; Yi)
. (11)

These steps are repeated until convergence, assigning the new parameter estimates
to the old in each iteration. The formulas for the gradient and Hessian matrix are
provided in Bandeen-Roche et al. (1997).

Because all of the concomitant variables must be observed in order to calculate
pri (Eq. 7), poLCA listwise deletes cases with missing values on the Xi before
estimating the latent class regression model. However, missing values on the
manifest variables Yi can be accommodated in the latent class regression model,
just as they were in the basic latent class model.

Note that when employing this estimation algorithm, different initial parameter
values may lead to different local maxima of the log-likelihood function. To ensure
that the global maximum likelihood has been found, the poLCA function call
should always be repeated a handful of times.

5 Using poLCA

The poLCA package makes it possible to estimate a wide range of latent class
models in R using a single command line, poLCA. Also included in the package is
the command poLCA.simdata, which enables the user to create simulated data
sets that match the data-generating process assumed by either the basic latent
class model or the latent class regression model. This functionality is useful for
testing the poLCA estimator and for performing Monte Carlo-style analyses of
latent class models.

Begin by loading the poLCA package into memory in R by entering

> library(poLCA)
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The internal documentation for the poLCA command may be viewed at any time
by entering

> ? poLCA

5.1 Data input and sample data sets

Data are input to the poLCA function as a data frame containing all manifest
and concomitant variables (if needed). The manifest variables must be coded as
integer values starting at one for the first outcome category, and increasing to the
maximum number of outcomes for each variable. If any of the manifest variables
contain zeros, negative values, or decimals, poLCA will produce an error message
and terminate without estimating the model.

poLCA also comes pre-installed with five sample data sets that are useful for
exploring different aspects of latent class and latent class regression models.

carcinoma: Dichotomous ratings by seven pathologists of 118 slides for the pres-
ence or absence of carcinoma in the uterine cervix. Source: Agresti (2002,
p. 542).

cheating: Dichotomous responses by 319 undergraduates to questions about cheat-
ing behavior. Also each student’s GPA, which is useful as a concomitant
variable. Source: Dayton (1998, pp. 33 and 85).

election: Two sets of six questions with four responses each, asking respondents’
opinions of how well various traits describe presidential candidates Al Gore
and George W. Bush. Also potential covariates vote choice, age, education,
gender, and party ID. Source: 2000 National Election Studies.

gss82: Attitudes towards survey taking across two dichotomous and two trichoto-
mous items among 1202 white respondents to the 1982 General Social Survey.
Source: McCutcheon (1987, p. 30).

values: Dichotomous measures of 216 survey respondents’ tendencies towards
“universalistic” or “particularistic” values on four questions. Source: Good-
man (1974).

These data sets may be accessed using the data(name ) command. Examples
of models and analyses using the sample data sets are included in the internal
documentation for each.

5.2 poLCA command line options

To specify a latent class model, poLCA uses the standard, symbolic R model
formula expression. The response variables are the manifest variables of the model.
Because latent class models have multiple manifest variables, these variables must
be “bound” as cbind(Y1,Y2,Y3,...) in the model formula. For the basic latent
class model with no covariates, the formula definition takes the form
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> f <- cbind(Y1,Y2,Y3)~1

The ~1 instructs poLCA to estimate the basic latent class model. For the latent
class regression model, replace the ~1 with the desired function of covariates, as,
for example:

> f <- cbind(Y1,Y2,Y3)~X1+X2*X3

Further assistance on formula specification in R can be obtained by entering
? formula at the command prompt.

To estimate the specified latent class model, the default poLCA command is:

> poLCA(formula, data, nclass=2, maxiter=1000, graphs=FALSE,

tol=1e-10, na.rm=TRUE)

At minimum, it is necessary to enter a formula (as just described) and a data
frame (as described in the previous subsection). The remaining options are:

nclass: The number of latent classes to assume in the model; R in the above
notation. Setting nclass=1 results in poLCA estimating the loglinear inde-
pendence model (Goodman 1970). The default is two.

maxiter: The maximum number of iterations through which the estimation algo-
rithm will cycle. If convergence is not achieved before reaching this number
of iterations, poLCA terminates and reports an error message. The default is
1000, but this will be insufficient for certain models.

graphs: Logical, for whether poLCA should graphically display the parameter es-
timates at each stage of the updating algorithm. The default is FALSE, as
setting this option to TRUE slows down the estimation process.

tol: A tolerance value for judging when convergence has been reached. When
the one-iteration change in the estimated log-likelihood is less than tol,
the estimation algorithm stops updating and considers the maximum log-
likelihood to have been found. The default is 1× 10−10 which is a standard
value; this option will rarely need to be invoked.

na.rm: Logical, for how poLCA handles cases with missing values on the manifest
variables. If TRUE, those cases are removed (listwise deleted) before esti-
mating the model. If FALSE, cases with missing values are retained. (As
discussed above, cases with missing covariates are always removed.) The
default is TRUE.

5.3 poLCA output

The poLCA function returns an object containing the following elements:

y: A data frame of the manifest variables.

x: A data frame of the covariates, if specified.
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N: Number of cases used in the model.

Nobs: Number of fully observed cases (less than or equal to N).

probs: A list containing the estimated class-conditional outcome probabilities
π̂jkr. Each item in the list represents one manifest variable; columns cor-
respond to possible outcomes on each variable, and rows correspond to the
latent classes.

P: The respective size of each latent class; equal to the estimated mixing propor-
tions p̂r in the basic latent class model, or the mean of the posteriors in the
latent class regression model.

posterior: An N ×R matrix containing each observation’s posterior class mem-
bership probabilities.

predclass: A vector of length N of predicted class memberships, by modal as-
signment.

predcell: A table of observed versus predicted cell counts.

llik: The maximum value of the estimated model log-likelihood.

numiter: The number of iterations required by the estimation algorithm to achieve
convergence.

coeff: An (S + 1) × (R − 1) matrix of estimated multinomial logit coefficients
β̂r, for the latent class regression model. Rows correspond to concomitant
variables X. Columns correspond to the second through Rth latent classes;
see Eq. 7.

aic: Akaike Information Criterion.

bic: Bayesian Information Criterion.

Gsq: Likelihood ratio/deviance statistic.

Chisq: Pearson Chi-square goodness of fit statistic.

time: Length of time it took to estimate the model.

npar: The number of degrees of freedom used by the model (that is, the number
of estimated parameters).

resid.df: The number of residual degrees of freedom, equal to the lesser of N
and (

∏
j Kj)− 1, minus npar.

eflag: Logical, error flag. True if estimation algorithm needed to automatically
restart with new initial parameters, otherwise false. A restart is caused in the
event of either a non-invertible Hessian matrix, or computational/rounding
errors that result in nonsensical parameter estimates. If one of these errors
occurs, poLCA outputs an error message to alert the user.
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Maximum Number of Respondent Type
log-likelihood occurrences Ideal Skeptics Believers

-2754.545 258 0.621 0.172 0.207
-2755.617 14 0.782 0.150 0.067
-2755.739 57 0.796 0.162 0.043
-2762.005 70 0.508 0.392 0.099
-2762.231 101 0.297 0.533 0.170

Table 1: Results of 500 poLCA function calls for three-class model using gss82 data
set. Five local maxima of the log-likelihood function were found. Estimated latent
class proportions p̂r are reported for each respondent type at each local maximum.

Selected items from this list are outputted automatically once the specified latent
class model has been estimated.

5.4 Recognizing and avoiding local maxima

A well-known drawback of the EM algorithm is that depending upon the initial
parameter values chosen in the first iteration, the algorithm may only find a local,
rather than the global, maximum of the log-likelihood function (McLachlan and
Krishnan 1997). To avoid these local maxima, a user should always call poLCA at
least a couple of times to ensure that the estimated model parameters correspond
to the model with the global maximum likelihood.

We demonstrate this using a basic three-class latent class model to analyze the
four survey variables in the gss82 data set included in the poLCA package.

> data(gss82)

> f <- cbind(PURPOSE,ACCURACY,UNDERSTA,COOPERAT)~1

We estimate this model 500 times, and after each function call, we record the
maximum log-likelihood and the estimated population sizes of the three types of
survey respondent. Following McCutcheon (1987), from whom these data were
obtained, we label the three types ideal, skeptics, and believers. Among other
characteristics, the ideal type is the most likely to have a good understanding of
surveys, while the believer type is the least likely.

> mlmat <- matrix(NA,nrow=500,ncol=4)

> for (i in 1:500) {

> gss.lc <- poLCA(f,gss82,nclass=3,maxiter=3000,tol=1e-7)

> mlmat[i,1] <- gss.lc$llik

> o <- order(gss.lc$probs$UNDERSTA[,1],decreasing=T)

> mlmat[i,-1] <- gss.lc$P[o]

> }

Results of this simulation are reported in Table 1. Of the five local maxima of
the log-likelihood function that were found, the global maximum was obtained in
only approximately half of the trials. At the global maximum, the ideal type is
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estimated to represent 62.1% of the population, with another 17.2% skeptics and
20.7% believers. In contrast, the second-most frequent local maximum was also
the lowest of the local maxima, and the parameter estimates corresponding to
that “solution” are substantially different: 29.7% ideal types, 53.3% skeptics, and
17.0% believers. This is why it is essential to run poLCA multiple times until you
are certain that you have found the parameter estimates that produce the global
maximum likelihood solution.

5.5 Creating simulated data sets

The command polca.simdata will generate simulated data sets that can be used
to examine properties of the latent class and latent class regression model es-
timators. The properties of the simulated data set are fully customizable, but
polca.simdata uses the following default arguments in the function call.

> poLCA.simdata(N=5000, probs=NULL, nclass=2, ndv=4, nresp=NULL,

niv=0, b=NULL, classdist=NULL, missval=FALSE,

pctmiss=NULL)

These input arguments control the following parameters:

N: Total number of observations, N .

probs: A list of matrices of dimension nclass × nresp, containing, by row, the
class-conditional outcome probabilities πjkr (which must sum to 1) for the
manifest variables. Each matrix represents one manifest variable. If probs
is NULL (default) then the outcome probabilities are generated randomly.

nclass: The number of latent classes, R. If probs is specified, then nclass is
set equal to the number of rows in each matrix in that list. If classdist is
specified, then nclass is set equal to the length of that vector. Otherwise,
the default is two.

ndv: The number of manifest variables, J . If probs is specified, then ndv is set
equal to the number of matrices in that list. If nresp is specified, then ndv

is set equal to the length of that vector. Otherwise, the default is four.

nresp: The number of possible outcomes for each manifest variable, Kj, entered
as a vector of length ndv. If probs is specified, then ndv is set equal to the
number of columns in each matrix in that list. If both probs and nresp are
NULL (default), then the manifest variables are assigned a random number
of outcomes between two and five.

niv: The number of concomitant variables, S. Setting niv=0 (default) creates a
data set assuming no covariates. If nclass=1 then niv is automatically set
equal to 0. All covariates consist of random draws from a standard normal
distribution and are mutually independent.
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b: When using covariates, an niv+1 × nclass-1 matrix of (multinomial) logit
coefficients, β̂r. If b is NULL (default), then coefficients are generated as
random integers between -2 and 2.

classdist: A vector of mixing proportions of length nclass, corresponding to pr.
classdist must sum to 1. Disregarded if niv>1 because then classdist

is, in part, a function of the concomitant variables. If classdist is NULL

(default), then the pr are generated randomly.

missval: Logical. If TRUE then a fraction pctmiss of the observations on the
manifest variables are randomly dropped as missing values. Default is FALSE.

pctmiss: The percentage of values to be dropped as missing, if missval=TRUE.
If pctmiss is NULL (default), then a value between 5% and 40% is chosen
randomly.

Note that in many instances, specifying values for certain arguments will over-
ride other specified arguments. Be sure when calling polca.simdata that all
arguments are in logical agreement, or else the function may produce unexpected
results.

Specifying the list of matrices probs can be tricky; we recommend a command
structure such as this for, for example, five manifest variables, three latent classes,
and Kj = (3, 2, 3, 4, 3).

> probs <- list(

matrix(c(0.6,0.1,0.3, 0.6,0.3,0.1, 0.3,0.1,0.6 ),ncol=3,byrow=T),

matrix(c(0.2,0.8, 0.7,0.3, 0.3,0.7 ),ncol=2,byrow=T),

matrix(c(0.3,0.6,0.1, 0.1,0.3,0.6, 0.3,0.6,0.1 ),ncol=3,byrow=T),

matrix(c(0.1,0.1,0.5,0.3, 0.5,0.3,0.1,0.1, 0.3,0.1,0.1,0.5),ncol=4,byrow=T),

matrix(c(0.1,0.1,0.8, 0.1,0.8,0.1, 0.8,0.1,0.1 ),ncol=3,byrow=T))

The object returned by polca.simdata is a list containing both the simulated
data set and all of the parameters used to generate that data set. The elements
listed here have the same characteristics and meanings as just described.

dat: A data frame containing the simulated variables X and Y . Variable names
for manifest variables are Y1, Y2, . . ., YJ . Variable names for concomitant
variables are X1, X2, . . ., XS .

probs: A list of matrices of dimension nclass × nresp containing the class-
conditional outcome probabilities.

nresp: A vector containing the number of possible outcomes for each manifest
variable.

b: A matrix containing the coefficients on the covariates, if used.

classdist: The mixing proportions corresponding to each latent class.
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Figure 1: Estimation of the three-class basic latent class model using the
carcinoma data; obtained by setting graphs=TRUE in the poLCA function call.
Each group of red bars represents the conditional probabilities, by latent class, of
being rated positively by each of the seven pathologists (labeled A through G). Taller
bars correspond to conditional probabilities closer to 1 of a positive rating.

pctmiss: The percent of observations missing.

trueclass: A vector of length N containing the “true” class membership for each
individual.

Examples of possible uses of polca.simdata are included in the poLCA inter-
nal documentation and may be accessed by entering ? poLCA.simdata in R.

6 Two Examples

To illustrate the usage of the poLCA package, we present two examples: a basic
latent class model and a latent class regression model, using sample data sets
included in the package.

6.1 Basic latent class modeling with the carcinoma data

The carcinoma data from Agresti (2002, p. 542) contain seven dichotomous man-
ifest variables that represent the ratings by seven pathologists of 118 slides on
the presence or absence of carcinoma. The purpose of studying these data is to
model “interobserver agreement” by examining how subjects might be divided
into groups depending on the consistency of their diagnoses.

It is straightforward to replicate Agresti’s published results (p. 543) using the
series of commands:
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> data(carcinoma)

> f <- cbind(A,B,C,D,E,F,G)~1

> lc2 <- poLCA(f,carcinoma,nclass=2)

> lc3 <- poLCA(f,carcinoma,nclass=3)

> lc4 <- poLCA(f,carcinoma,nclass=4,maxiter=5000)

Note that the four-class model will typically require a larger number of iterations
to achieve convergence.

Figure 1 shows a screen capture of the estimation of model lc3 with the graphs
option set to TRUE and maxiter=400. In this case, the model has converged
after 34 iterations. As Agresti describes, the three estimated latent classes clearly
correspond to a pair of classes that are consistently rated negative (37%) or positive
(44%), plus a third “problematic” class representing 18% of the population. In
that class, pathologists B, E, and G tend to diagnose positive; C, D, and F tend
to diagnose negative; and A is about 50/50.

6.2 Latent class regression modeling with the election data

In the election data set, respondents to the 2000 American National Election
Study public opinion poll were asked to evaluate how well a series of traits—
moral, caring, knowledgable, good leader, dishonest, and intelligent—described
presidential candidates Al Gore and George W. Bush. Each question had four
possible choices: (1) extremely well; (2) quite well; (3) not too well; and (4) not
well at all.

A reasonable theoretical approach might suppose that there are three latent
classes of survey respondents: Gore supporters, Bush supporters, and those who
are more or less neutral. Gore supporters will tend to respond favorably towards
Gore and unfavorably towards Bush, with the reverse being the case for Bush
supporters. Those in the neutral group will not have strong opinions about either
candidate. We might further expect that falling into one of these three groups
is a function of each individual’s party identification, with committed Democrats
more likely to favor Gore, committed Republicans more likely to favor Bush, and
less intense partisans tending to be indifferent. We can investigate this hypothesis
using a latent class regression model.

Begin by loading the election data into memory, and specifying a model with
12 manifest variables and PARTY as the lone concomitant variable. Next, estimate
the latent class regression model and assign those results to object nes2a.

> data(election)

> f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,

MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY

> nes2a <- poLCA(f2a,election,nclass=3)

The model finds that the three groups indeed separate as expected, with 27% in
the favor-Gore group, 34% in the favor-Bush group, and 39% in the neutral group.
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Figure 2: Predicted prior probabilities of latent class membership at varying levels
of partisan self-identification. Results are from a three-class latent class regression
model.

To interpret the generalized logit coefficients β̂r estimated by the model, we
plot predicted values of pri, the prior probability of class membership, at vary-
ing levels of party ID. The PARTY variable is coded across seven categories, from
strong Democrat at 1 to strong Republican at 7. People who primarily consider
themselves Independents are at 3-4-5 on the scale. The R commands to do this
are as follows, producing the graph in Figure 2.

> pidmat <- cbind(1,c(1:7))

> exb <- exp(pidmat %*% nes2a$coeff)

> matplot(c(1:7),(cbind(1,exb)/(1+rowSums(exb))),ylim=c(0,1),type="l",

main="Party ID as a predictor of candidate affinity class",

xlab="Party ID: strong Democratic (1) to strong Republican (7)",

ylab="Probability of latent class membership")

> text(5.9,0.35,"Other")

> text(5.4,0.7,"Bush affinity")

> text(1.8,0.6,"Gore affinity")

Strong Democrats have over a 60% prior probability of belonging to the Gore
affinity group, while strong Republicans have over an 80% prior probability of
belonging to the Bush affinity group. The prior probability of belonging to the in-
different category, labeled “Other”, is greatest for self-identified Independents (4)
and Independents who lean Democratic (3).
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7 License, Contact, Versioning, Development

poLCA is provided free of charge, subject to version 2 of the GPL or any later
version. Users of poLCA are requested to cite the software package as:

Linzer, Drew A. and Jeffrey Lewis. 2006. “poLCA: Polytomous Variable Latent
Class Analysis,” http://dlinzer.bol.ucla.edu/poLCA.

Please direct all inquiries, comments, and reports of bugs to dlinzer@ucla.edu.

7.1 Version history

0.9: First public release (June 1, 2006).

7.2 Planned developments

• Estimation of standard errors for coefficients in the latent class regression
model, based upon the observed Fisher information matrix. Bandeen-Roche
et al. (1997) provide the necessary formulas only for the case of dichotomous
manifest variables.

• A bootstrapping algorithm to calculate standard errors.

• An internal looping mechanism to re-estimate the latent class model a user-
specified number of multiple times, to help ensure that the global maximum
of the log-likelihood function has been found.

• Flexibility to relax the assumption of local independence among user-specified
manifest variables in the component cross-classification tables.

• Accommodation of user-specified constraints on selected parameters πjkr,
either for theoretical reasons, or to reduce the number of parameters needing
to be estimated in the latent class model (Goodman 1974).

• More aggressive error checking on input data, to ensure that manifest vari-
ables are entered properly as integers from one to the maximum number of
outcomes for each variable, with no zeros or negative numbers.
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