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The tgp package for R [18] is a tool for fully Bayesian, nonparametric,
semiparametric, and nonstationary regression by treed Gaussian processes with
jumps to the limiting linear model. Special cases also implemented include
Bayesian linear models, linear CART, stationary separable and isotropic Gaus-
sian processes. In addition to inference and posterior prediction 1-d and 2-d
plotting with higher dimension projection and slice capabilities and tree draw-
ing functions (requiring maptree and combinat libraries) are also provided for
visualization of tgp-class output.

This document is intended to familiarize a (potential) user of tgp with the
models and analyzes available in the package. After a brief overview, the brunt of
this document consists of examples on mainly synthetic and randomly generated
data which illustrate the various functions and methodologies implemented by
the package. This document has been authored in Sweave (try help(Sweave)).
This means that (1) the code quoted throughout is certified by R, and the
Stangle command can be used to extract it; and (2) that this is a dynamic
document, i.e., each time the document is compiled the figures and analyzes are
re-run and updated based on random data and initialization [I suggest you try
this nifty feature].

The outline of this tutorial is as follows. Section 1 introduces the functions
and associated regression models implemented by the tgp package, including
plotting and visualization methods. The Bayesian mathematical specification
of these models is contained in Section 2. In Section 3 the functions and methods
implemented in the package are illustrated by example. The appendix covers
miscellaneous topics such as how to link with the ATLAS libraries for fast linear
algebra routines, and some of the details of implementation.

This document is intended as a tutorial, or initial guide, to the tgp pack-
age covering key points, concepts, and methods. It was not meant to serve
as an instruction manual. For more detailed documentation of the functions
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R function Ingredients Description
blm LLM Linear Model
btlm T Linear CART
bgp GP GP Regression
bgpllm GP, LLM GP with jumps to the LLM
btgp T, GP treed GP Regression
btgpllm T, GP, LLM treed GP with jumps to the LLM
tgp Master interface for the above methods

Table 1: Bayesian regression models implemented by the tgp package

contained in the package, see the package help-manuals. At an R prompt, type
help(package=tgp). PDF documentation is also available on the world-wide-
web.

http://www.cran.r-project.org/doc/packages/tgp.pdf

1 What is implemented?

The tgp package contains implementations of six Bayesian multivariate regres-
sion models and functions for visualizing posterior predictive surfaces. These
models, and the functions which implement them, are outlined in Section 1.1.
Details pertaining to the mathematics of model specification, including prior and
posterior distributions, is deferred to Section 2. Also implemented in the pack-
age are functions which aid in the sequential design of experiments for tgp-class
models, which is what I call adaptive sampling. These functions are introduced
at the end of this section.

1.1 Bayesian regression models

The six regression models implemented in package are summarized in Table 1.
They include combinations of treed partition models, (limiting) linear models,
and Gaussian process models as indicated by T, LLM, & GP in the center col-
umn of the table. The details of model specification and inference are contained
in Section 2. Each is a fully Bayesian regression model, and in the table they
are ordered by some notion of “flexibility”. These b* functions, as I call them,
are wrappers around the master tgp function which is an interface to C code im-
plementing Bayesian treed Gaussian process models, with jumps to the limiting
linear model (LLM). Each b* function implements a special case of the treed
GP (tgp) model.

It is possible to invoke any of the b* methods directly via first calling the
the tgp.default.params function and then the tgp function after some minor
adjustments to the default parameterization. The help file for tgp shows how
to do this for many of the examples in this document. The b* functions are
intended as the main interface to the Bayesian multivariate regression models,

2



so little further attention to the tgp master function will be included here.
That is, with the exception of one example in Section 3.4 where a more custom
model is needed in order to capture input dependent noise, and a remark here
that the easiest way to see how the master tgp function implements one of the
b* methods is to simply type the name of the function of interest into R. For
example, to see the implementation of bgp, type:

> bgp

function (X, Z, XX = NULL, bprior = "bflat", corr = "expsep",

BTE = c(1000, 4000, 2), R = 1, m0r1 = FALSE, pred.n = TRUE,

ds2x = FALSE, ego = FALSE)

{

n <- dim(X)[1]

if (is.null(n)) {

n <- length(X)

X <- matrix(X, nrow = n)

d <- 1

}

else {

d <- dim(X)[2]

}

params <- tgp.default.params(d + 1)

params$bprior <- bprior

params$corr <- corr

params$tree <- c(0, 0, 10)

params$gamma <- c(0, 0.2, 0.7)

return(tgp(X, Z, XX, BTE, R, m0r1, FALSE, params, pred.n,

ds2x, ego))

}

The output (return-value) of tgp and the b* functions is a list-object of class
“tgp”. This is what is meant by a “tgp-class” object. This object retains all of
the relevant information necessary to summarize posterior predictive inference,
maximum a’ posteriori (MAP) trees, and statistics for adaptive sampling. Infor-
mation about its actual contents is contained in the help files for the tgp and b*

functions. Generic print and plot methods are defined for tgp-class objects.
The plot function is discussed below. The print function simply provides a
list of the names of the fields comprising a tgp-class object.

1.1.1 Plotting and visualization

The two main functions provided by the tgp package for visualization are
plot.tgp, inheriting from the generic plot method, and a function called
tgp.trees for graphical visualization of MAP trees.

The plot.tgp function can make plots in 1-d or 2-d. Of course, if the data
are 1-d, the plot is in 1-d. If the data are 2-d, or higher, they are 2-d image
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or perspective plots unless a 1-d projection argument is supplied. Data which
is 3-d, or higher, requires projection down to 2-d or 1-d, or specification of
a 2-d slice. The plot.tgp default is to make a projection onto the first two
input variables. Alternate projections are specified as an argument (proj) to
the function. Likewise, there is also an argument (slice) which allows one
to specify which slice of the posterior predictive data is desired. For models
that use treed partitioning (those with a T in the center column of Table 1),
the plot.tgp function will overlay the region boundaries of the MAP tree (T̂ )
found during MCMC.

A few notes on 2-d plotting of tgp-class objects:

• 2-d plotting requires interpolation of the data onto a uniform grid. This is
supported by the tgp package in two ways: (1) loess smoothing, and (2)
the akima package, available from CRAN. The default is loess because it
is more stable and does not require installing any further packages. When
akima works it makes (in my opinion) smarter interpolations. However
there are two bugs in the akima package, one malign and the other benign,
which preclude it from the default position in tgp. The malign bug can
cause a segmentation fault, and bring down the entire R session. The
benign bug produces NA’s when plotting data from a grid. For beautiful
2-d plots of gridded data I suggest exporting the tgp predictive output to
a text file and using gnuplot’s 2-d plotting features.

• The current version of this package contains no examples—nor does this
document—which demonstrate plotting of data with dimension larger than
two. The example provided in Section 3.5 uses 10-d data, however no
plotting is required. My thesis [10] contains a detailed analysis of some
proprietary 3-d data sampled using a NASA supercomputer.

• The plot.tgp function has many more options than are illustrated [in
Section 3] of this document. Please refer to the help files for more details.

The tgp.trees function provides a graphical representation of the MAP
trees of each height encountered by the Markov chain during sampling. The
function will not plot trees of height one, i.e., trees with no branching or parti-
tioning. Plotting of trees requires the maptree package, which in turn requires
the combinat package, both available from CRAN.

1.1.2 Speed

This is as good a place as any to make a disclaimer on the computational burdens
of some of the modeling functions in this package. Fully Bayesian analyses with
MCMC are not the super-speediest of all statistical models. Nor is inference for
GP models, classical or Bayesian.

Great care has been taken to make the implementation of Bayesian inference
of GP models as efficient as possible [see Appendix B]. However, inference for
non-treed GPs for non-linear data can be computationally intense. Two things
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are implemented by the package which can help speed things up a bit. The first
is direct support for ATLAS [23] for fast linear algebra. Details on linking this
package with ATLAS is contained in Appendix A. The second is an argument
called linburn to the tree class (T) functions in Table 1. When linburn =

TRUE, the Markov chain is initialized with a run of the Bayesian linear CART
algorithm [4] before burn-in in order to pre-partition the input space using linear
models.

1.2 Sequential design of experiments

Sequential design of experiments, a.k.a. adaptive sampling, is not implemented
by any single function in the tgp package. Nevertheless, options and functions
are provided in order to facilitate the automation of adaptive sampling with
tgp-class models. A detailed example is included in Section 3.6.

Arguments to b* functions, and tgp, which aid in adaptive sampling include
ds2x and ego. Both are booleans, i.e., should be set to TRUE or FALSE (the de-
fault for both is FALSE). TRUE booleans cause the tgp-class output list to contain
vectors of the similar names which contain statistics that can be used toward
adaptive sampling. When ds2x = TRUE then the ∆σ2(x̃) statistic is computed
at each x̃ ∈ XX, in accordance the ALC (Active Learning–Cohn) algorithm
[5]. Likewise, when ego = TRUE, statistics for Expected Global Optimization
(EGO) [14] are computed in order to asses the expected information gain for
each x̃ ∈ XX about the global minimum. The ALM (Active Learning–Mackay)
algorithm [15] is implemented by default in terms of difference in predictive
quantiles for the inputs XX, which can be accessed via the ZZ.q output field.
Details and references on the ALM, ALC, and EGO algorithms are provided in
Section 2.

Calculation of EGO statistics is considered to be “alpha” functionality in
this version of the tgp package. It has not been adequately tested, and its
implementation is likely to change substantially in future versions of the package.

The functions included in the package which explicitly aid in the sequential
design of experiments are tgp.design and dopt.gp. They are both intended
to produce sequential D-optimal candidate designs XX at which one or more of
the adaptive sampling methods (ALM, ALC, EGO) can gather statistics. The
dopt.gp function generates D-optimal candidates for a stationary Gaussian
process. The tgp.design function extracts the MAP tree from a tgp-class
object and uses dopt.gp on each region of the MAP partition in order to get
treed sequential D-optimal candidates.

2 Methods and Models

This section provides a quick overview of the statistical models and methods im-
plemented by the tgp package. Stationary Gaussian processes (GPs), GPs with
jumps to the limiting linear model (LLM; a.k.a. GP LLM), treed partitioning
for nonstationary models, and sequential design of experiments (a.k.a. adaptive
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sampling) concepts for these models are all briefly discussed. Appropriate ref-
erences are provided for the details. Of course, the best reference is probably
my thesis [10].

As a first pass on this document, it might make sense to skip this section
and go straight on to the examples in Section 3.

2.1 Stationary Gaussian processes

Below is a hierarchical generative model for a stationary GP with linear tend
for data D = {X,Z}.

Z|β, σ2,K ∼ Nn(Fβ, σ2K)

β|σ2, τ2,W,β
0
∼ NmX

(β
0
, σ2τ2W)

β
0
∼ NmX

(µ,B) (1)

σ2 ∼ IG(ασ/2, qσ/2)

τ2 ∼ IG(ατ/2, qτ/2)

W−1 ∼ W ((ρV)−1, ρ),

where F = (1,X), and W is a (mX + 1) × (mX + 1) matrix. N , IG, and
W are the (Multivariate) Normal, Inverse-Gamma, and Wishart distributions,
respectively. Constants µ,B,V, ρ, ασ, qσ, ατ , qτ . are treated as known.

The GP correlation structure K is chosen either from the isotropic power
family, or separable power family, with a fixed power p0 (see below), but un-
known (random) range and nugget parameters. Correlation functions used in
the tgp package take the form K(xj ,xk) = K∗(xj ,xk) + gδj,k, where δ·,· is the
Kronecker delta function, and K∗ is a true correlation representative from a
parametric family.

All parameters in (1) can be sampled using Gibbs steps, except for the
covariance structure and nugget parameters, and their hyperparameters, which
can be sampled via Metropolis-Hastings [11, 10].

2.1.1 The nugget

The g term in the correlation function K(·, ·) is referred to as the nugget in the
geostatistics literature [16, 6] and sometimes as jitter in the Machine Learning
literature [17]. It must always be positive (g > 0), and serves two purposes.
Primarily, it provides a mechanism for introducing measurement error into the
stochastic process. It arises when considering a model of the form:

Z(X) = m(X,β) + ε(X) + η(X), (2)

where m(·, ·) is underlying (usually linear) mean process, ε(·) is a process co-
variance whose underlying correlation is governed by K∗, and η(·) represents
i.i.d. Gaussian noise. Secondarily, though perhaps of equal practical impor-
tance, the nugget (or jitter) prevents K from becoming numerically singular.
Notational convenience and conceptual congruence motivates referral to K as a
correlation matrix, even though the nugget term (g) forces K(xi,xi) > 1.
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2.1.2 Exponential Power family

Correlation functions in the isotropic power family are stationary which means
that correlations are measured identically throughout the input domain, and
isotropic in that correlations K∗(xj ,xk) depend only on a function of the Eu-
clidean distance between xj and xk: ||xj − xk||.

K∗
ν (xj ,xk|dν) = exp

{

−||xj − xk||p0

d

}

, (3)

where d > 0 is referred to as the width or range parameter. The power 0 < p0 ≤ 2
determines the smoothness of the underlying process. A typical default choice
is the Gaussian p0 = 2 which gives an infinitely differentiable process.

A straightforward enhancement to the isotropic power family is to employ
a unique range parameter di in each dimension (i = 1, . . . ,mX). The resulting
separable correlation function is still stationary, but no longer isotropic.

K∗(xj ,xk|d) = exp

{

−
mX
∑

i=1

|xij − xik|p0

di

}

(4)

The isotropic power family is a special case (when di = d, for i = 1, . . . ,mX).
With the separable power family, one can model correlations in some input
variables as stronger than others. However, with added flexibility comes added
costs. When the true underlying correlation structure is isotropic, estimating
the extra parameters of the separable model represents a sort of overkill.

2.1.3 Prediction and Adaptive Sampling

The predicted value of z(x) is normally distributed with mean and variance

ẑ(x) = f>(x)β̃ + k(x)>K−1(Z − Fβ̃), (5)

σ̂2(x) = σ2[κ(x,x) − q>(x)C−1q(x)], (6)

where β̃ is the posterior mean estimate of β, and

C−1 = (K + FWF>/τ2)−1

q(x) = k(x) + τ2FWf(x)

κ(x,y) = K(x,y) + τ2f>(x)Wf(y)

with f>(x) = (1,x>), and k(x) a n−vector with kν,j(x) = K(x,xj), for all
xj ∈ X. Notice that σ̂(x)2 does not directly depend on the observed responses
Z. These equations often called kirking equations [16].

The ALM algorithm [15] is implemented with MCMC inference by comput-
ing the norm (or width) of predictive quantiles obtained by samples from the
Normal distribution given above. The ALC algorithm [5] computes the reduc-
tion in variance given that the candidate location x̃ ∈ X̃ is added into the data
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(averaged over a reference set Ỹ):

∆σ̂2(x̃) =
1

|Ỹ|
∑

y∈Ỹ

∆σ̂2

y(x̃) =
1

|Ỹ|
∑

y∈Ỹ

σ̂2

y − σ̂2

y(x̃) (7)

=
1

|Ỹ|
∑

y∈Ỹ

σ2
[

q>
N (y)C−1

N qN (x̃) − κ(x̃,y)
]2

κ(x̃, x̃) − q>
N (x̃)C−1

N qN (x̃)
,

which is easily computed using MCMC methods. In the tgp package, the refer-
ence set is taken to be the same as the candidate set, i.e., Ỹ = X̃.

The Expected Global Optimization (EGO) algorithm [14] is centered around
a statistic which captures the expected improvement in the model about its
ability to predict the spatial location of its global minimum. If fmin is the
model’s current best guess about the minimum, e.g., fmin = min{z1, . . . , zN},
then the expected improvement at the point x̃ can reasonably be encoded as

E[I(x̃)] = E[max(fmin − Z(x̃), 0)],

which can be shown to work out to be

E[I(x̃)] = (fmin − ẑ(x̃))Φ

(

fmin − ẑ(x̃)

σ̂2(x̃)

)

+ σ̂2(x̃)φ

(

fmin − ẑ(x̃)

σ̂2(x̃)

)

(8)

where ẑ and σ̂2 are taken from the equations for the posterior predictive dis-
tribution (5). Φ and φ are the standard Normal cumulative distribution and
probability density functions, respectively. MCMC samples from (8) can be
gathered in order to determine which x̃ of a candidate set of locations x̃ ∈ X̃

give the highest reduction in uncertainty about the global minimum.

2.2 GPs and Limiting linear models

A special limiting case of the Gaussian process model is the standard linear
model. Replacing the top (likelihood) line in the hierarchical model (1)

Z|β, σ2,K ∼ N(Fβ, σ2K) with Z|β, σ2 ∼ N(Fβ, σ2I),

where I is the n×n identity matrix, gives a parameterization of a linear model.
From a phenomenological perspective, GP regression is more flexible than stan-
dard linear regression in that it can capture nonlinearities in the interaction
between covariates (x) and responses (z). From a modeling perspective, the
GP can be more than just overkill for linear data. Parsimony and over-fitting
considerations are just the tip of the iceberg. It is also unnecessarily compu-
tationally expensive, as well as numerically unstable. Specifically, it requires
the inversion of a large covariance matrix— an operation whose computing cost
grows with the cube of the sample size. Moreover, large finite d parameters can
be problematic from a numerical perspective because, unless g is also large, the
resulting covariance matrix can be numerically singular when the off-diagonal
elements of K are nearly one.
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Bayesians can take advantage of the limiting linear model (LLM) by con-
structing prior for the “mixture” of the GP with its LLM [12, 10]. The key
idea is an augmentation of the parameter space by mX indicators b = {b}mX

i=1
∈

{0, 1}mX . The boolean bi is intended to select either the GP (bi = 1) or its LLM
for the ith dimension. The actual range parameter used by the correlation func-
tion is multiplied by b: e.g. K∗(·, ·|b>d). To encode the preference that GPs
with larger range parameters be more likely to “jump” to the LLM, the prior on
bi is specified as a function of the range parameter di: p(bi, di) = p(bi|di)p(di).

p(d) = G(1,20) + G(10,10)

d

D
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0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

p(b) = 1
p(b|d)

Figure 1: Prior distribution for the boolean (b) superimposed on p(d).

Probability mass functions which increase as a function of di, e.g.,

pγ,θ1,θ2
(bi = 0|di) = θ1 + (θ2 − θ1)/(1 + exp{−γ(di − 0.5)}) (9)

with 0 < γ and 0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling
for the exclusion of dimensions i with with large di when constructing K∗.
Thus bi determines whether the GP or the LLM is in charge of the marginal
process in the ith dimension. Accordingly, θ1 and θ2 represent minimum and
maximum probabilities of jumping to the LLM, while γ governs the rate at
which p(bi = 0|di) grows to θ2 as di increases. Figure 1 plots p(bi = 0|di) for
(γ, θ1, θ2) = (10, 0.2, 0.95) superimposed on a convenient p(di) which is taken to
be a mixture of Gamma distributions,

p(d) = [G(d|α = 1, β = 20) + G(d|α = 10, β = 10)]/2, (10)

representing a population of GP parameterizations for wavy surfaces (small
d) and a separate population of those which are quite smooth or approximately
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linear. The θ2 parameter is taken to be strictly less than one so as not to preclude
a GP which models a genuinely nonlinear surface using an uncommonly large
range setting.

The implied prior probability of the full mX -dimensional LLM is

p(linear model) =

mX
∏

i=1

p(bi = 0|di) =

mX
∏

i=1

[

θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)}

]

. (11)

Notice that the resulting process is still a GP if any of the booleans bi are
one. The primary computational advantage associated with the LLM is fore-
gone unless all of the bi’s are zero. However, the intermediate result offers
increased numerical stability and represents a unique transitionary model lying
somewhere between the GP and the LLM. It allows for the implementation of
semiparametric stochastic processes like Z(x) = βf(x) + ε(x̃) representing a
piecemeal spatial extension of a simple linear model. The first part (βf(x))
of the process is linear in some known function of the full set of covariates
x = {xi}mX

i=1
, and ε(·) is a spatial random process (e.g. a GP) which acts on a

subset of the covariates x̃. Such models are commonplace in the statistics com-
munity [7]. Traditionally, x̃ is determined and fixed a’ priori. The separable
boolean prior (9) implements an adaptively semiparametric process where the
subset x̃ = {xi : bi = 1, i = 1, . . . ,mX} is given a prior distribution, instead of
being fixed.

2.2.1 Prediction and Adaptive Sampling under LLM

Prediction under the limiting GP model is a simplification of (5) when it is
known that K = (1 + g)I. It can be shown [12, 10] that the predicted value of
z at x is normally distributed with mean ẑ(x) = f>(x)β̃ and variance σ̂(x)2 =
σ2[1+ f>(x)Vβ̃f(x)], where Vβ̃ = (τ−2 +F>F(1+g))−1. This is preferred over
(5) with K = I(1 + g) because an mX × mX inversion is faster than an n × n
one.

Applying the ALC algorithm under the LLM is computationally less intense
compared to ALC under a full GP. Starting with the predictive variance given
in (5), the expected reduction in variance under the LM is [10]

∆σ̂2

y(x) =
σ2[f>(y)Vβ̃N

f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

. (12)

Since only an mX × mX inverse is required, Eq. (12) is preferred over simply
replacing K with I(1 + g) in (7), which requires an n × n inverse.

The statistic for the EGO algorithm is the same under the LLM as (8) for
the GP. Of course, it helps to use the linear predictive equations instead of the
kriging ones for ẑ(x) and σ̂2(x).

2.3 Treed partitioning

Nonstationary models are obtained by treed partitioning and inferring a separate
model within each region of the partition. Treed partitioning is accomplished
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X[:, u2] < s2

D1 = {X1, Z1} D2 = {X2, Z2}

D3 = {X3, Z3}

X[:, u2] ≥ s2

X[:, u1] ≥ s1

{u1, s1}

{u2, s2}

T : diagram

X[:, u1] < s1

u2

D1

D3

u1

D2

s1

s2

T : graphically

Figure 2: An example tree T with two splits, resulting in three regions, shown in a diagram
(left) and pictorially (left).

by making (recursive) binary splits on the value of a single variable so that
region boundaries are parallel to coordinate axes. Partitioning is recursive, so
each new partition is a sub-partition of a previous one. Since variables may be
revisited, there is no loss of generality by using binary splits as multiple splits
on the same variable are equivalent to a non-binary split.

Figure 2 shows an example tree. In this example, region D1 contains x’s
whose u1 coordinate is less than s1 and whose u2 coordinate is less than s2.
Like D1, D2 has x’s whose coordinate u1 is less than s1, but differs from D1 in
that the u2 coordinate must be bigger than or equal to s2. Finally, D3 contains
the rest of the x’s differing from those in D1 and D2 because the u1 coordinate
of its x’s is greater than or equal to s1. The corresponding response values (z)
accompany the x’s of each region.

These sorts of models are often referred to as Classification and Regression
Trees (CART) [1]. CART has become popular because of its ease of use, clear
interpretation, and ability to provide a good fit in many cases. The Bayesian
approach is straightforward to apply to tree models, provided that one can
specify a meaningful prior for the size of the tree. The tree process implemented
in the tgp package follows Chipman et al. [3] who specify the prior through a
tree-generating process. Starting with a null tree (all data in a single partition),
the tree, T , is probabilistically split recursively with each partition, η, being
split with probability psplit(η, T ) = a(1 + qη)−b where qη is the depth of η in
T and a and b are parameters chosen to give an appropriate size and spread to
the distribution of trees.

Extending the work of Chipman et al. [4], the tgp package implements a
stationary GP with linear trend, or GP LLM, independently within each of
the regions depicted by a tree T . Integrating out dependence on T is accom-
plished by reversible-jump MCMC (RJ-MCMC) via tree operations grow, prune,
change, and swap [3]. To keep things simple, proposals for new parameters—via
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an increase in the number of partitions—are drawn from their priors, thus elim-
inating the Jacobian term usually present in RJ-MCMC. New splits are chosen
uniformly from the set of marginalized input locations X. The swap operation
is augmented with a rotate option to improve mixing of the Markov chain [10].

There are many advantages to partitioning the input space into regions, and
fitting separate GPs (or GP LLMs) within each region. Partitioning allows for
the modeling of non-stationary behavior, and can ameliorate some of the com-
putational demands by fitting models to less data. Finally, a fully Bayesian
approach yields a uniquely efficient nonstationary, nonparametric, or semipara-
metric (in the case of the GP LLM) regression tool.

2.4 (Treed) sequential D-optimal design

In the statistics community, the traditional approach to sequential data solic-
itation goes under the general heading of (Sequential) Design of Experiments
[20]. Depending on a choice of utility, different algorithms for obtaining opti-
mal designs can be derived. For example, one can choose the Kullback-Leibler
distance between the posterior and prior distributions as a utility. For Gaus-
sian process models with correlation matrix K, this is equivalent to maximizing
det(K). Subsequently chosen input configurations are called D−optimal de-
signs. Choosing quadratic loss leads to what are called A−optimal designs. An
excellent review of Bayesian approaches to the design of experiments is provided
by Chaloner & Verdinelli [2].

Other approaches used by the statistics community include space-filling de-
signs: e.g. max-min distance and Latin Hypercube (LH) designs [20]. The
FIELDS package [8], available from CRAN, implements code for space-filling de-
signs in addition to kriging and thin plate spline models for spatial interpolation.

A hybrid approach to designing experiments employs active learning tech-
niques. The idea is to choose a set of candidate input configurations X̃ (say,
a D−optimal or LH design) and an active learning rule for determining the
order in which they are be added into the design. The ALM algorithm has
been shown to approximate maximum expected information designs by select-
ing the candidate location x̃ ∈ X̃ which has the greatest standard deviation in
predicted output [15]. An alternative algorithm is to select x̃ minimizing the
resulting expected squared error averaged over the input space [5], called ALC
for Active Learning–Cohn. Seo et al. [21] provide a comparison between ALC
and ALM using standard GPs. The EGO [14] algorithm can be used to find
global minima.

Choosing candidate configurations X̃ (XX in the tgp package), at which to
gather ALM, ALC, or EGO statistics, is half of the challenge in the hybrid
approach to experimental design. Arranging candidates so that they are well-
spaced out relative to themselves, and relative to already sampled configura-
tions, is clearly desirable. Towards this end, a sequential D-optimal design is
a good first choice. However, traditional D-optimal designs fall short of the
task for a number of reasons. They are based on a known parameterization of
a single GP model, and are thus not well-suited to MCMC inference. A D-
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optimal design may not choose candidates in the “interesting” part of the input
space, because sampling is high there already. Classic optimal design criteria,
in general, are ill-suited partition models wherein “closeness”may not measured
homogeneously across the input space. Another disadvantage is computational,
namely decomposing and finding the determinant of a large covariance matrix.

One possible solution to both computational and nonstationary modeling
issues is to use treed sequential D-optimal design [10]. Separate sequential
D-optimal designs can be computed in each of the partitions depicted by the
maximum a posteriori (MAP) tree T̂ . The number of candidates selected from
each region can be proportional to the volume of—or proportional to the num-
ber of grid locations in—the region. MAP parameters θ̂ν |T̂ , or “neutral” or
“exploration encouraging” ones, can be used to create the candidate design.
Separating design from inference by using custom parameterizations in design
steps, rather than inferred ones, is a common practice [20]. Small range param-
eters, for learning about the wiggliness of the response, and a modest nugget
parameter, for numerical stability, tend to work well together.

Finding a local maxima is generally sufficient to get well-spaced candidates.
The dopt.gp function uses a stochastic ascent algorithm which can find local
maxima without calculating too many determinants.

3 Examples using tgp

The following subsections take the reader through a series of examples based,
mostly, on synthetic data. At least two different b* models are fit for each
set of data, offering comparisons and contrasts. Duplicating these examples in
your own R session is highly recommended. The Stangle function can help
extract executable R code from this document. For example, the code for the
exponential data of Section 3.3 can be extracted with one command.

> Stangle(vignette("exp", package="tgp")$file))

This will write a file called “exp.R”. Additionally, each of the subsections that
follow is available as an R demo. Try demo(package="tgp") for a listing of
available demos. To envoke the demo for the exponential data of Section 3.3 try
demo(exp, package="tgp"). This is equivalent to source("exp.R") because
the demos were created using Stangle on the source files of this document.

Other successful uses of the methods in this pacakge include applications to
the Boston housing data [13], and designing an experiment for a reusable NASA
launch vehicle [11, 10] called the Langely glide-back booster (LGBB).

3.1 1-d Linear data

Consider data sampled from a linear model.

zi = 1 + 2xi + ε, where εi
iid∼ N(0, 0.252) (13)
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The following R code takes a sample {X,Z} of size N = 50 from (13). It
also chooses N ′ = 99 evenly spaced predictive locations X̃ = XX.

> X <- seq(0, 1, length = 50)

> XX <- seq(0, 1, length = 99)

> Z <- 1 + 2 * X + rnorm(length(X), sd = 0.25)

Using tgp on this data with a Bayesian hierarchical linear model goes as
follows:

> lin.blm <- blm(X = X, XX = XX, Z = Z)

tree[alpha,beta,nmin]=[0,0,10]

n=50, d=1, nn=99

BTE=(1000,4000,3), R=1, linburn=0

preds: data

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: separable power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[-1,0.2,0.7]

d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:

r=1000 corr=[0] : n = 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] : mh=1 n = 50

r=2000 corr=[0] : mh=1 n = 50

r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 of 1

removed 0 leaves from the tree

The first group of text printed to stdout is a summary of inputs to the
C code, and the prior parameterization. Then, MCMC progress indicators are
printed every 1,000 rounds. The linear model is indicated by cor=[0]. In
terminal versions, e.g. Unix, the progress indicators can give a sense of when
the code will finish. GUI versions of R—Windows or MacOS X—usually buffer
stdout, rendering this feature essentially useless as a real-time indicator of
progress.

The generic plot method can be used to visualize the fitted posterior pre-
dictive surface (with option layout = ’surf’) in terms of means and credible
intervals. Figure 3 shows how to do it, and what you get. The default option
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> plot(lin.blm, main = "Linear Model,", layout = "surf")

> abline(1, 2, lty = 3, col = "blue")
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Figure 3: Posterior predictive distribution using blm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

layout = ’both’ shows both a predictive surface and error (or uncertainty)
plot, side by side. The error plot can be obtained alone via layout = ’as’.
Examples of these layouts appear later.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using btgpllm) and let a more flexible model speak as to
the linearity of the process.

> lin.gpllm <- bgpllm(X = X, XX = XX, Z = Z)

tree[alpha,beta,nmin]=[0,0,10]

n=50, d=1, nn=99

BTE=(1000,4000,2), R=1, linburn=0

preds: data

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: separable power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[10,0.2,0.7]

d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:

r=1000 corr=[0] : n = 50
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Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] : mh=1 n = 50

r=2000 corr=[0] : mh=1 n = 50

r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 of 1

removed 0 leaves from the tree

> plot(lin.gpllm, main = "GP LLM,", layout = "surf")

> abline(1, 2, lty = 4, col = "blue")
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Figure 4: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

Whenever the progress indicators show corr[0] the process is under the LLM
in that round, and the GP otherwise. A plot of the resulting surface is shown in
Figure 4 for comparison. Since the data is linear, the resulting predictive surfaces
should look strikingly similar to one another. On occasion, the GP LLM may
find some bendy-ness in the surface. This happens rarely with samples as large
as N = 50, but is quite a bit more common for N < 20.

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx
5

)

+ 1

5
cos

(

4πx
5

)

x < 10
x/10 − 1 otherwise

(14)

The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.
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> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) *

+ (X <= 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

By design, the data is clearly nonstationary. Perhaps not knowing this, good
first model choice for this data might be a GP.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX)

> plot(sin.bgp, main = "GP,", layout = "surf")
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Figure 5: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% credible interval

Progress indicators have been suppressed. Figure 5 shows the resulting posterior
predictive surface under the GP. Notice how the (stationary) GP gets the wig-
gliness of the sinusoidal region, but fails to capture the smoothness of the linear
region. This is becuase the data comes from a process that is nonstationary.

So one might consider a Bayesian CART model instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

n=100, d=1, nn=99

BTE=(2000,7000,2), R=1, linburn=0

preds: data

tree[alpha,beta,nmin]=[0.25,2,10]

linear prior: flat
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s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: separable power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[-1,0.2,0.7]

d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:

**GROW** @depth 0: [0,0.494949], n=(50,50)

**GROW** @depth 1: [0,0.20202], n=(21,29)

**GROW** @depth 1: [0,0.10101], n=(11,10)

**GROW** @depth 3: [0,0.353535], n=(11,11)

r=1000 corr=[0] [0] [0] [0] [0] : n = 10 14 10 13 53

**PRUNE** @depth 3: [0,0.222222]

r=2000 corr=[0] [0] [0] [0] : n = 10 20 17 53

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] [0] [0] [0] : mh=4 n = 10 21 16 53

r=2000 corr=[0] [0] [0] [0] : mh=4 n = 15 15 17 53

r=3000 corr=[0] [0] [0] [0] : mh=4 n = 15 15 17 53

r=4000 corr=[0] [0] [0] [0] : mh=4 n = 15 15 17 53

r=5000 corr=[0] [0] [0] [0] : mh=4 n = 16 14 17 53

Grow: 0.01072%, Prune: 0.002899%, Change: 0.1496%, Swap: 0.7925%

finished repetition 1 of 1

removed 4 leaves from the tree

MCMC progress indicators printed to stdout indicate successful grow and prune
operations as they happen, and region sizes n every 1,000 rounds.

Figure 6 shows the resulting posterior predictive surface (top) and trees (bot-
tom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in the
form of vertical lines. The CART model captures the smoothness of the linear
region just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP becuase it can be
both smooth and wiggly.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX)

Progress indicators have been suppressed. Figure 7 shows the resulting posterior
predictive surface (top) and trees (bottom).

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[10], since half of the response surface is very smooth, or linear. This is not
shown here since the results are very similar to those above, replacing btgp
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> plot(sin.btlm, main = "Linear CART,", layout = "surf")
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> tgp.trees(sin.btlm)

x1 <> 5.85859

x1 <> 2.82828

0.0122 
15 obs

1

0.0143 
15 obs

2

x1 <> 9.29293

0.0132 
17 obs

3

0.0116 
53 obs

4

 height=3, log(p)=45.6299

x1 <> 9.29293

x1 <> 5.85859

x1 <> 2.82828

0.0124 
15 obs

1

0.0193 
15 obs

2

0.0164 
17 obs

3

0.0146 
53 obs

4

 height=4, log(p)=46.5659

Figure 6: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain showing σ̂2 and the number of observation n, at each leaf.

with btgpllm. The example in the next subsection offers a comparison for 2-d
data.
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> tgp.trees(sin.btgp)

x1 <> 9.29293

0.2142 
47 obs

1

0.1666 
53 obs

2

 height=2, log(p)=44.3265

Figure 7: Top: Posterior predictive distribution using btgp on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain.

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (15)
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A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data
subsampled from a grid of inputs and outputs described by (15) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$XX

Linear CART is clearly just as inappropriate for this data as it was for the
sinusoidal data in the previous section. However, a stationary GP fits this data
just fine. After all, the process is quite well behaved. In two dimensions one has
a choice between the isotropic and separable correlation functions. Separable is
the default in the tgp package. For illustrative purposes here, I shall use the
isotropic power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp")

> plot(exp.bgp, main = "GP,")
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Figure 8: Left: posterior predictive mean using bgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

Progress indicators are suppressed. Figure 8 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right) in the
default layout. The sampled locations (X) are shown as dots on the right image
plot. Predictive locations (XX) are circles. Predictive uncertainty for the sta-
tionary GP model is highest where sampling is lowest, despite that the process
is very uninteresting there.
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A treed GP seems more appropriate for this data. It can separate out the
large uninteresting oart of the input space from the interesting part. The result
is speedier inference and region-specific estimates of predictive uncertainty.

> exp.btgp <- btgp(X = X, Z = Z, XX = XX, corr = "exp")

> plot(exp.btgp, main = "treed GP,")

x1

x2

z

treed GP, z mean

−2 0 2 4 6

−
2

0
2

4
6

treed GP, z error

x1

x2

> tgp.trees(exp.btgp)

x2 <> 1.6  

0.0251 
52 obs

1

2e−04 
28 obs

2

 height=2, log(p)=182.594

x1 <> 2    

x2 <> 1.6  

0.0184 
44 obs

1

0 
16 obs

2

0 
20 obs

3

 height=3, log(p)=210.191

Figure 9: Top-Left: posterior predictive mean using btgp on synthetic exponential data; top-

right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles). Bottom: MAP trees of each height encountered in the Markov chain
with σ̂2 and the number of observations n at the leaves.
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Figure 9 shows the resulting posterior predictive surface (top) and trees (bottom).
Typical runs of the treed GP on this data find two, and if lucky three, partitions.
As might be expected, jumping to the LLM for the uninteresting, zero-response,
part of the input space can yield even further speedups [10]. Also, Chipman et
al. recommend restarting the Markov chain a few times in order to better explore
the marginal posterior for T [4]. This can be important for higher dimensional
inputs requiring deeper trees. The tgp default is R = 1, i.e., one chain with no
restarts. Here two chains—one restart—are obtained using R = 2.

> exp.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

n=80, d=2, nn=361

BTE=(2000,7000,2), R=2, linburn=0

preds: data

tree[alpha,beta,minpart]=[0.25,2,10]

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: isotropic power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[10,0.2,0.7]

d[a,b][0,1]=[1,20],[10,10]

d prior fixed

burn in:

**GROW** @depth 0: [1,0.35], n=(45,35)

**PRUNE** @depth 0: [1,0.4]

r=1000 corr=0.018638 : n = 80

**GROW** @depth 0: [0,0.5], n=(60,20)

r=2000 corr=0.0206168 0.114274 : n = 60 20

Obtaining samples (nn=361 predictive locations):

**GROW** @depth 1: [1,0.5], n=(50,10)

r=1000 corr=0.0226481 0(0.84922) 0(0.602632) : mh=3 n = 50 10 20

r=2000 corr=0.0230381 0(0.770479) 0.965604 : mh=3 n = 44 16 20

r=3000 corr=0.0209883 0(1.25422) 0(0.681911) : mh=3 n = 50 10 20

r=4000 corr=0.019928 0.785746 0.0729928 : mh=3 n = 44 16 20

r=5000 corr=0.0198103 0.813851 0.854068 : mh=3 n = 44 16 20

Grow: 0.008333%, Prune: 0.003597%, Change: 0.04887%, Swap: 0.178%

finished repetition 1 of 2

removed 3 leaves from the tree

burn in:

**GROW** @depth 0: [0,0.5], n=(60,20)
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**GROW** @depth 1: [0,0.1], n=(15,36)

**PRUNE** @depth 1: [0,0.05]

**GROW** @depth 1: [1,0.5], n=(50,10)

r=1000 corr=0.0210184 0.0147621 0.94543 : mh=3 n = 44 16 20

r=2000 corr=0.0247164 0.0838776 1.39391 : mh=3 n = 44 16 20

Obtaining samples (nn=361 predictive locations):

r=1000 corr=0.0211024 1.32905 1.41035 : mh=3 n = 44 16 20

r=2000 corr=0.0203233 0(1.2382) 0(0.0643748) : mh=3 n = 50 10 20

r=3000 corr=0.021733 0(0.625732) 0.0239015 : mh=3 n = 50 10 20

r=4000 corr=0.0213785 0.0360728 0.108831 : mh=3 n = 44 16 20

r=5000 corr=0.0201093 0.0127475 0.0738182 : mh=3 n = 44 16 20

Grow: 0.007979%, Prune: 0.003356%, Change: 0.04622%, Swap: 0.1706%

finished repetition 2 of 2

removed 3 leaves from the tree

> plot(exp.btgpllm, main = "treed GP LLM,")
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Figure 10: Left: posterior predictive mean using btgpllm on synthetic exponential data;
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles).

Progress indicators show where the LLM (corr=0(d)) or the GP is active. Fig-
ure 10 show how similar the resulting posterior predictive surfaces are compared
to the treed GP (without LLM).

Finally, viewing 1-d projections of tgp-class output is possible by supplying
a 1-vector proj argument to the plot.tgp. Figure 11 shows the two projections
for exp.btgpllm. In the left surface plots the open circles indicate the mean of
posterior priedictive distribution. Red lines show the 90% intervals, the norm
of which are shown on the right.
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> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1))
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> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2))
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Figure 11: 1-d projections of the posterior predictive surface (left) and normed
predictive intervals (right) of the 1-d tree GP LLM analysis of the synthetic
exponential data. The top plots show projection onto the first input, and the
bottom ones show the second.

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [22] is a classic nonstationary data set used in
recent literature [19] to demonstrate the success of nonstationary models. The
data consists of measurements of the acceleration of the head of a motorcycle
rider as a function of time in the first moments after an impact. In addition to
being nonstationary, the data has input-dependent noise which makes it useful
for illustrating how the treed GP model handles this nuance. There are at
least two—perhaps three—three regions where the response exhibits different
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behavior both in terms of the correlation structure and noise level.
The data is included as part of the MASS library in R.

> library(MASS)

Figure 12 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X = mcycle[, 1], Z = mcycle[, 2],

+ m0r1 = TRUE)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero and a range of one. The m0r1

argument to b* and tgp functions automates this procedure. Progress indicators
are surpressed.

> plot(moto.bgp, main = "GP,", layout = "surf")
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Figure 12: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

A Bayesian Linear CART model is able to capture the input dependent noise
but fails to capture the waviness of the “whiplash”—center— segment of th the
response.

> moto.btlm <- btlm(X = mcycle[, 1], Z = mcycle[, 2],

+ m0r1 = TRUE)

Figure 13 shows the resulting piecewise linear predictive surface and MAP par-
tition (T̂ ).

A treed GP model seems appropriate because it can model input dependent
smoothness and noise. A treed GP LLM is probably most appropriate since the
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> plot(moto.btlm, main = "Bayesian CART,", layout = "surf")
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Figure 13: Posterior predictive distribution using btlm on the motorcycle accident data:
mean and 90% credible interval

left-hand part of the input space is likely linear. One might further hypothesize
that the right-hand region is also linear, perhaps with the same mean as the
left-hand region, only with higher noise. The b* and tgp functions can force
an i.i.d. hierarchical linear model by setting bprior=b0. Moreover, instead of
rescaling the responses with m0r1, one might try encoding a mixture prior for
the nugget in order to explicitly model region-specific noise. This requires direct
usage of tgp.

> p <- tgp.default.params(2)

> p$bprior <- "b0"

> p$nug.p <- c(1, 0.1, 10, 0.1)

> moto.tgp <- tgp(X = mcycle[, 1], Z = mcycle[, 2],

+ params = p, BTE = c(2000, 22000, 2))

The resulting posterior predictive surface is shown in the top half of Figure 14.
The bottom half of the figure shows the norm (difference) in predictive quantiles,
clearly illustrating the treed GP’s ability to capture input-specific noise in the
posterior predictive distribution.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [9]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (16)
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> plot(moto.tgp, main = "custom treed GP LLM,", layout = "surf")
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> plot(moto.tgp, main = "custom treed GP LLM,", layout = "as")
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Figure 14: top Posterior predictive distribution using a custom parameterized tgp call on the
motorcycle accident data: mean and 90% credible interval; bottom Quantile-norm (90%-5%)
showing input-dependent noise.

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [4] used this data to compare
their linear CART algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
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use for comparison is root mean-square error (RMSE)

MSE =
∑n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model-predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

This example compares Bayesian linear CART with Bayesian GP LLM (not
treed), following the RMSE experiments of Chipman et al. It helps to scale the
responses so that they have a mean of zero and a range of one. First, fit the
Bayesian linear CART model, and obtain the RMSE.

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2, 10), m0r1 = TRUE)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2))

> fr.btlm.mse

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgpllm(X = X, Z = Z, XX = XX, m0r1 = TRUE)

> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2))

> fr.bgpllm.mse

So, the GP LLM is 3.868 times better than Bayesian linear CART on this data,
in terms of RMSE (in terms of MSE the GP LLM is 1.967 times better). Watch-
ing the evolution of the Markov chain for the GP LLM (via the progress state-
ments written to stdout, not shown because the not would fit on the page), it
is easy to see how the GP LLM quickly learns that b = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0),
and that β4 ≈ 4 and β5 ≈ 10—basically that only the first three inputs con-
tribute nonlinearly, the fourth and fifth contribute linearly, and the remaining
five not at all [10].

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- exp2d.data$XX
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Start by fitting a treed GP LLM model to the data, without prediction, in order
to infer the MAP tree T̂ .

> exp1 <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp")

> tgp.trees(exp1)

NOTICE: skipped plotting tree of height 1, with lpost = 143.976

x1 <> 2    

0.0138 
61 obs

1

0 
19 obs

2

 height=2, log(p)=185.103

x1 <> 2    

x2 <> 1.6  

0.0138 
44 obs

1

0 
17 obs

2

0 
19 obs

3

 height=3, log(p)=206.764

Figure 15: MAP trees of each height encountered in the Markov chain for the exponential

data, showing σ̂2 and the number of observations n at the leaves. T̂ is the one with the
maximum log(p) above.

The trees are shown in Figure 15. Then, use the tgp.design function to create
D-optimal candidate designs in each region of T̂ .

> XX <- tgp.design(10, Xcand, exp1)

sequential treed D-Optimal design in 3 partitions

dopt.gp (1) choosing 2 new inputs from 66 candidates

dopt.gp (2) choosing 3 new inputs from 104 candidates

dopt.gp (3) choosing 6 new inputs from 191 candidates

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (T̂ ). Notice how the candidates XX are spaced
out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D-optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [2].
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> plot(exp1$X, pch = 19, cex = 0.5)

> points(XX)

> tgp.plot.parts.2d(exp1$parts)
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Figure 16: Treed D-optimal candidate locations XX (circles), input locations X (dots), and

MAP tree T̂

Figure 16 uses the tgp.plot.parts.2d function. Unfortunately, this func-
tion is not well documented in the current version of the tgp package. This
should change in future versions.

Now, the idea is to fit the treed GP LLM model, again, in order to as-
sess uncertainty in the predictive surface at those new candidate design points.
For illustrative purpose, the following code gathers all three adaptive sampling
statistics: ALM, ALC, & EGO.

> exp1.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ ego = TRUE, ds2x = TRUE)

Figure 17 shows the posterior predictive surface. The error surface, on the
right, summarizes posterior predictive uncertainty by a norm of quantiles. Since
the combined data and predictive locations are not densely packed in the input
space, the loess smoother may have trouble with the interpolation. One option
is increase the tgp-default kernel span supplied to loess, e.g., span = 0.5. Or,
the akima method can be used instead.

In accordance with the ALM algorithm, candidate locations XX with largest
predictive error would be sampled (added into the design) next. These are most
likely to be in the interesting region, i.e., the first quadrant. However, due to
the random nature of this Sweave document, this is not always the case. Results
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> par(mfrow = c(1, 2), bty = "n")

> plot(exp1.btgpllm, main = "treed GP LLM,", method = "akima",

+ layout = "surf")

> plot(exp1.btgpllm, main = "treed GP LLM,", method = "akima",

+ layout = "as", as = "alm")
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Figure 17: Left: Posterior mean surface; right ALM adaptive sampling image for (only)
candidate locations XX (circles), MAP tree T and input locations X (dots). (circles), input

locations X (dots), and MAP tree T̂

depend heavily on the clumping of the original design in the un-interesting areas,
and on the estimate of T̂ .

Adaptive sampling via the ALC, or EGO (or both) algorithms proceeds
similarly, following the surfaces shown in Figure 18.

A Linking to ATLAS

ATLAS [23] is supported as an alternative to standard BLAS and LAPACK
for fast, automatically tuned, linear algebra routines. Compared standard
BLAS/Lapack, those automatically tuned by ATLAS are signigantly faster. If
you know that R has already been linked to tuned linear algebra libraries (e.g.,
on OSX), then compiling with ATLAS as described below, is unncessary—just
install as usual. As an alternative to linking tgp to ATLAS directly, one could
re-compile all of R linking it to ATLAS following the documentation on the R

website. While this is arguably best solution since all of R benefits, the task
can prove challenging to accomplish and may require administrator (root) priv-
iledges. Linking tgp with ATLAS directly is described here.

Three easy steps (assuming, of course, you have already compiled and in-
stalled ATLAS – http://math-atlas.sourceforge.net) need to be performed
before you install the tgp package from source.

1. Edit src/Makevars. Comment out the existing PKG_LIBS line, and replace
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> par(mfrow = c(1, 2), bty = "n")

> plot(exp1.btgpllm, main = "treed GP LLM,", method = "akima",

+ layout = "as", as = "alc")

> plot(exp1.btgpllm, main = "treed GP LLM,", method = "akima",

+ layout = "as", as = "ego")
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Figure 18: Adaptive sampling images for (only) candidate locations XX (circles), MAP tree

T and input locations X (dots). (circles), input locations X (dots), and MAP tree T̂ . Left:
ALC; right: EGO.

it with:

PKG_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas

You may need replace "-llapack -lcblas -latlas" with whatever AT-
LAS recommends for your OS. (See ATLAS README.) For example, if
your ATLAS compilation included F77 support, you might need to add
"-lF77blas", if you compiled with pthreads, you would might use "-llapack
-lptcblas -lptf77blas -latlas".

2. Continue editing src/Makevars. Add:

PKG_CFLAGS = -I/path/to/ATLAS/include

3. Edit src/linalg.h and commend out lines 40 & 41:

/*#define FORTPACK

#define FORTBLAS*/

Now simply install the tgp package as usual. Reverse the above instructions to
disable ATLAS. Don’t forget to re-install the package when you’re done.
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B Implementation

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (T ) and C for the GP at each leaf of T . The code has been tested on
Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies in
an <mX dimensional unit cube. This makes it easier to construct prior distri-
butions for the width parameters to the correlation function K(·, ·). Proposals
for all parameters which require MH sampling are taken from a uniform“sliding
window” centered around the location of the last accepted setting. For exam-
ple, a proposed a new nugget parameter gν to the correlation function K(·, ·) in
region rν would go as

g∗ν ∼ Unif

(

3

4
gν ,

4

3
gν

)

.

Calculating the corresponding forward and backwards proposal probabilities for
the MH acceptance ratio is straightforward.

After conditioning on the tree and parameters ({T ,θ}), prediction can be
parallelized by using a producer/consumer model. This allows the use of the
PThreads libraries in order to take advantage of multiple processors, and get
speed-ups of at least a factor of two. The current tgp package contains a par-
allelized implementation, but it is not enabled by default. Documentation ex-
plaining how to unleash this feature will be included in future versions. Parallel
sampling of the posterior of θ|T for each of the {θν}R

ν=1
is also possible. How-

ever, the speed-up in this second case is less impressive, and so is not supported
by the current version of the tgp package.
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